本实用新型涉及一种用于复合材料弯曲性能测试时使用的防护装置,尤其是一种复合材料力学性能试验设备夹具的防护装置。一种复合材料力学试验设备夹具防护装置,所述防护装置包括连接在一起的底板和围板,围板将试验设备夹具包围在内,实现周向全方位的防护隔离,底板用于收集试验件碎屑。本实用新型具有如下优点:1、不需要对现有夹具进行改动,且结构形式和安装形式简洁;2、实现了夹具的有效防护,提高了复合材料力学性能试验的安全性,同时便于对碎屑进行收集。
本实用新型公开了一种全自动复合材料成型设备,包括装置主体,所述装置主体由设置在该装置主体顶部的操作箱体及装置主体顶部的操作平台板构成,且所述操作箱体和操作平台板均与装置主体紧密焊接,所述操作平台板的一侧设有材料传送板,且所述材料传送板与操作平台板之间紧密贴合,该种全自动复合材料成型设备,采用高程度自动化操作和智能控制技术相结合的方法,以提高全自动复合材料成型设备的实用性,高程度的智能化控制,能够提高复合材料成型设备的工作效率,设有机械手臂,代替了人力操作,能使复合材料成型设备有自动化作业的功能,省时省力,减少工作人员操作时的危险程度,具有广阔的应用前景。
一种管状双曲面复合材料结构件的制备方法,首先制备金属阳模、阴模成型模和平板成型模的模具,而后采用阴模成型模,以确保小型管状延伸对称双曲面复合材料结构件的外表面表面光顺;为确保小型管状延伸对称双曲面复合材料结构件的金属件接头与复合材料结构件能够共固化组合,采用铺贴阳模与金属件接头定位,为保证产品脱模质量的稳定性,采用膨胀橡胶软模材料充当阳模,该阳模能够在加温过程中产生较大的热膨胀力以对小型管状延伸对称双曲面复合材料结构件预浸料蒙皮施加压力,使蒙皮中的挥发物和气泡能够得到充分排除,加温固化过程中膨胀橡胶软模回到常温状态后,体积进行收缩,有利于产品的脱模。
本发明公开了一种单/双向纤维增强叠层复合材料的制备方法,通过预先对较薄箔材(0.02mmAl箔或Ti箔)打孔并以此为纤维承载体,制备单/双向纤维编织体;通过编排纤维间距和方向,采用真空热压法,获得纤维排布较整齐的纤维增强叠层复合材料。本发明可显著减少纤维偏聚,避免C、O等其他元素的引入,具有纤维间距可控、成本低、工艺简单等优势,从而克服真空热压法制备纤维增强叠层复合材料时,纤维间距不可控和容易引入C、O等其他元素的问题。本发明适用于采用Al箔、Ti箔等箔材制备纤维增强Ti/Ti‑Al叠层复合材料。
一种碳纳米管/三氧化二铁复合材料的制备方法,包括以下步骤:S1:先将碳纳米管加入去离子水中并超声,制备得到碳纳米管分散液;S2:再在步骤S1制备得到的碳纳米管分散液中加入高铁酸钾搅拌均匀后,进行加热处理,制备得到含碳纳米管/三氧化二铁复合材料的悬浮液;S3:最后将步骤S2制备得到的含碳纳米管/三氧化二铁复合材料的悬浮液进行离心处理,再依次用水及乙醇进行洗涤,最后进行干燥,制备得到碳纳米管/三氧化二铁复合材料。本发明提供的制备方法步骤简洁、操作简单、节约能源,高铁酸钾作为氧化剂在整个pH值范围内都具有良好的氧化性,选择性高,活性强,且其还原产物为三氧化二铁,对环境无不良影响。
本发明公开了一种石墨烯增强Nb‑Si基复合材料的深冷处理方法,属于金属基复合材料及其制备技术领域。为了消除或降低石墨烯增强Nb‑Si基复合材料内部的界面应力,将石墨烯增强Nb‑Si基复合材料放入深冷处理装置内,并向深冷处理装置充入液氮使复合材料按照制定的降温速度持续或阶梯降温至深冷处理温度并保温一定时间,再按照制定的升温速度升温至室温,即完成石墨烯增强Nb‑Si基复合材料的1次深冷处理;可对复合材料进行单次或多次重复深冷处理;深冷处理可消除或减少石墨烯与Nb‑Si基体界面的残余应力,优化的应力状态,改善界面结合性能,可以有效提高其综合力学性能。
本发明一种热塑性复合材料成型方法属于导弹试验技术领域。本发明设计并制造金属预埋件,把加工完成的金属预埋件放置在热塑性复合材料机身结构件的预成型体中,将复合材料成型模具中的定位螺钉旋入金属预埋件的螺纹孔内,以对金属预埋件进行定位;通过对复合材料成型模具进行加温加压,将金属预埋件与热塑性复合材料机身结构件固化为整体。热塑性复合材料采用此种预埋金属件结构形式,可用于一些重要的连接部位,保证大载荷的传递,提高复合材料的安全使用性。
本发明提供了一种带耦合剂的超声波复合材料残余应力测试方法,本发明涉及复合材料无损检测技术领域,所述方法包括:制作拉伸样品选择检测位置、选择合适频率的超声波扫描显微镜探头、调节数字门限以及增益获取波形、采集声时差数据、计算声弹性应力系数K、检测冲击样确定缺陷、检测其不同位置波形图、根据公式计算得其内部残余应力。本发明提供的检测方法,可以借助C‑Scan扫描方式检测出复合材料分层及其缺陷,可以确定材料中分层及缺陷的位置与形状,同时还可以测试并计算复合材料内的残余应力分布,为复合材料的质量评估提供了有力的支撑。
本发明公开了电化学技术领域的一种锂电池用新型硫碳复合材料,该锂电池用新型硫碳复合材料的配方如下:聚偏二氯乙烯:9~11g;四氢呋喃溶液:500~700ml;氢氧化钾/乙醇饱和溶液:300~500ml;升华硫:20~25g,该锂电池用新型硫碳复合材料制备方法的具体步骤如下:S1:在室温下将两种溶液混合;S2:得到介孔碳产物;S3:在惰性气体保护下分别对升华硫和介孔碳加热;S4:得到复合材料产物;本发明采用介孔碳作为导电骨架,提高硫正极的导电性,保证了复合材料的结构稳定性,避免氧化还原过程中生成的二硫化物及多硫化物在电解液中的溶解,一定程度上对“穿梭效应”有很大改善。
本发明提供一种复合工艺制备石墨烯增强铝基复合材料的方法,属于金属材料制造技术领域。一种复合工艺制备石墨烯增强铝基复合材料的方法,包括以下步骤:在熔铸条件下,利用高能超声将铝石墨烯中间预制块分批加入铝合金熔体中,之后迅速降温浇注得到熔铸坯料;接着将熔铸坯料放入真空熔炼炉中进行熔炼,利用交流电产生的电磁力对增强相进一步分散,接着保温,然后迅速喷铸得到喷铸坯料;接着将喷铸坯料在真空热处理炉中进行热处理,最终在合适的工艺参数条件下得到高性能复合材料。本发明工艺稳定,环保安全,制备的复合材料组织明显细化,石墨烯与基体界面结合良好,分布也较为均匀,其综合力学性能得到较大程度的提高。
本发明提供了一种氧化锆包覆碳纳米管增强铝基复合材料的制备方法,通过醇热法在经酸洗后官能团化的碳纳米管表面沉积均匀的氧化锆颗粒,得到包覆氧化锆的碳纳米管增强相。将表面包覆氧化锆的碳纳米管与铝粉通过球磨法均匀混合并冷压制备得预制中间块,然后在高能超声过程中将其导入熔体中,持续超声一定时间后浇入预热后的覆膜砂模具中得到包覆氧化锆的碳纳米管增强铝基复合材料。本发明使包覆氧化锆的碳纳米管能够均匀分散在复合材料之中,改善增强相与基体间的界面结合,使制备的复合材料具有高强度、高硬度、耐腐蚀性等优良综合性能。同时,熔铸法制备技术具有简单、安全、低成本等优点。
本发明属于热界面复合材料领域,尤其是一种自修复聚氨酯导热复合材料及其制备方法,针对现有的热界面材料导热性能不佳和长时间使用造成老化开裂问题,现提出如下方案,其复合材料,包括银纳米线和聚氨酯基体材料,所述银纳米线为导热填料,银纳米线分散于聚氨酯基体材料中,银纳米线添加量为3‑12wt.%,制备方法包括以下步骤:多元醇还原法制备银纳米线;制备具有DA键的聚氨酯基体;按照复合材料中银纳米线添加量;本发明提供的聚氨酯/银纳米线自修复复合材料,导热填料用量少,用于电子工业热界面材料导热性能、自修复性能好,同时不影响聚氨酯力学性能及加工性能,制备方法步骤简单,反应条件温和,适合大规模生产。
本发明公开了一种3D编织纤维增强金属基复合材料的近净成形方法,属于先进复合材料技术领域。其特征是该方法采用了基于液态粘结剂来辅助精确控制3D编织纤维预制体结构形状和尺寸的真空气压浸渗制备技术。纤维预制体的3D编织过程中采用液态粘结剂准确固定定型3D编织纤维预制体,再通过内嵌纤维预制体的浸渗石墨模具来精确控制3D编织纤维增强金属基复合材料的尺寸精度,防止浸渗过程中的3D编织纤维预制体的变形和局部纤维偏聚。本发明制备的3D编织纤维增强金属基复合材料具有高的尺寸精度和优异的力学性能,实现了3D编织纤维增强金属基复合材料的近净成形,可批量工业化生产,在航空航天及国防军事等领域中具有广泛的应用前景。
本发明涉及限域型Fe掺杂CoSe2/MXene复合材料及其制备方法和应用,属于电催化析氧领域。该复合材料是按照以下步骤进行制备的:a、使用室温液相静电组装法在含有负电荷基团的二维MXene表面均匀生长组装金属沸石咪唑框架化合物,作为前驱体;b、使用前驱体与铁氰化钾发生室温离子交换反应,进一步负载细小含Fe类普鲁士蓝晶体,合成[ZIFs@PBA]/MXene“三明治”前驱体;c、在氢/氩混合气中,于石英管式炉中高温退火产生多孔碳层限域FeCo金属/MXene“三明治”复合结构;d、最终以晶体硒粉为硒源,通过高温退火反应获得限域型Fe掺杂CoSe2/MXene复合材料。该复合材料在碱性条件下表现出优异的电解水析氧反应性能,为发展超高效、稳定、低成本的电催化剂提供了新的思路,具有广阔的应用前景。
一种N-取代羧基聚苯胺共价接枝石墨烯复合材料制备方法,按如下步骤进行:取石墨粉制备出氧化石墨烯(GO)并超声分散形成均一溶液;然后将一定量的对氨基二苯胺溶于一定体积的浓盐酸和无水乙醇混合溶液中并超声分散;在冰水浴下,将定量的NaNO2溶液缓慢滴入混合溶液中,滴加完毕后将GO溶液缓慢滴入,反应一定时间后,处理得到的功能化GO,再通过水合肼、氨水还原;最后取一定量的RGO与定量的N-苯基甘氨酸溶于定浓度的HCl溶液中并超声分散,加入一定量的引发剂过硫酸铵,反应一段时间后,得到NPAN共价接枝的RGO复合材料。采用本发明所制备的复合材料导电率能达到5.0×10-1S/cm,溶解性和稳定性显著提高。所得复合材料可应用于超级电容器、传感器、太阳能电池等领域。
一种Al-Cr金属间化合物/Al原位复合材料的制备方法,所述制备方法包括以下步骤:先将电阻炉升温到720℃,把工业纯铝放入坩埚中,将铝液过热到800℃~950℃时,加入粒径为20~250μm经250℃预处理2h的金属铬粉,其中金属铬粉的质量占总质量的1%~20%;然后采用超声振动搅拌,超声振动的频率为20KHZ,功率为1KW,超声振动时间为5min~30min,最后浇铸成型,得到Al-Cr金属间化合物/Al原位复合材料;本发明所制备的本复合材料的硬度高,磨损率低,抗压强度高,耐腐蚀性好,阻尼性好等,具有良好的应用前景和经济意义。
本发明提供了一种水合炭/无定形多硒化钼复合材料及其制备方法和应用,属于钯吸附剂技术领域。本发明提供的水合炭/无定形多硒化钼复合材料,包括水合炭和分散于所述水合炭表面的无定形多硒化钼;所述水合炭表面具有含氧官能团;所述无定形多硒化钼中硒和钼的摩尔比为2.3~2.6:1。本发明提供的水合炭/无定形多硒化钼复合材料中,无定形多硒化钼相比于晶态硒化钼具有更多的有效硒位点,对钯离子的去除效果更优;所述水合炭表面具有的含氧官能团为无定形多硒化钼提供了更多生长位点,且水合炭载体的存在使无定形多硒化钼分散性好而不会发生团聚,暴露了更多有效硒位点,进一步提高了水合炭/无定形多硒化钼复合材料对于钯离子的吸附效果。
一种便捷的桥墩防撞装置的损伤检测方法,其特征是一种以纤维材料为增强材料、聚合物树脂为基体材料的复合材料外壳(1)、内部隔板(4)以及以泡沫塑料为填充材料(3)、以内置的装有超强吸水材料的透明塑料软管(2)为损伤检测工具的复合材料夹层结构桥墩防撞装置的损伤检测方法。本发明通过观测透明塑料管内超强吸水材料由于吸附从船舶撞击桥墩防撞装置所造成的复合材料外壳损伤处渗入的河水或海水而发生的体积变化来检测桥墩防撞复合材料夹层结构损伤。本发明具有简便可行、诊断准确、直观明了的特点。
一种半固态B4Cp/AZ61复合材料制备方法,其特征是首先将原料AZ61镁合金放入熔化炉内精炼,然后降温到625℃;经浇铸管将液态镁合金浇注入到搅拌炉中,以300r/min~500r/min的搅拌速度,搅拌3~5min,至温度600~610℃;然后加入3wt.%~6wt.%质量分数、粒度号为W7的B4C颗粒,以300r/min~500r/min的搅拌速度,等温搅拌3~5min,浇注。本发明可获得比较细小、圆整、分布均匀的半固态B4Cp/AZ61复合材料,且B4C增强颗粒发布均匀。
本发明公开了一种制备微纳米氧化锆/氧化铝复合材料的方法。在该方法中,首先称取适量3mol%Y2O3稳定的ZrO2粉体,将ZrO2粉体经特定球形模具冷等静压成型,然后常规烧结ZrO2球至半熟状态。再称取适量的Al2O3粉体,将ZrO2球与Al2O3粉体混合球磨,干燥后,可以得到微纳米ZrO2/Al2O3复合粉体。将复合粉体进行造粒、干压成型、冷等静压成型、排塑等工艺后烧结成型,最后可以得到如图1所示的ZrO2/Al2O3复合材料。本发明的复合粉体分散均匀,ZrO2晶粒尺寸较小,操作简单,重复性好,绿色环保,且未使用任何表面活性剂或溶剂。
本发明公开了一种选区熔化成形纤维增强复合材料的增材制造方法,通过确定纤维填充部位;生成Gcode文件;选区激光成形设备工作;逐层打印;完成纤维增强复合材料打印,直至最终打印结束。本发明通过有限元仿真模拟,根据零件的特征准确选择区域填充连续纤维或短纤维,实现打印纤维增强复合材料。基于选区熔化成形技术,打印过程便于控制,成形方式多样,制备多种基体材料多种纤维材料组合以及连续纤维和短纤维共同增强的复合材料零件,可选择的材料范围广。整个打印过程处于真空或惰性气体环境中,防止打印过程发生氧化。基于选择熔化成形技术,制造周期短,生产工序简单,能大幅度的降低制造复合材料的制备周期和成本。
本发明公开了一种羟基氧化铁共价有机框架复合材料的制备方法及应用,属于环境保护技术领域。先合成磺酸功能化共价有机框架母体材料,再与铁离子通过水解反应原位生成羟基氧化铁纳米粒子,制成羟基氧化铁共价有机框架复合材料。该复合材料的热稳定性和化学稳定性好,同时,由于羟基氧化铁纳米粒子和磺酸基团双结合位点的引入,提供了静电吸引和配位双重作用力。由于双功能基团作用位点不同,双重作用力的协同作用使羟基氧化铁共价有机框架复合材料与喹诺酮类抗生素之间产生了强大的结合力,即使在复杂水环境中依然具有良好的去除效率,可作为环境中喹诺酮类抗生素的高效吸附剂。
本发明提供一种微纳米石墨薄片环氧树脂基/改性碳纤维复合材料及其制备方法。该复合材料由膨胀石墨通过三辊研磨机剥离形成的微纳米石墨薄片强化的环氧树脂基体以及功能化的氧化物纳米粒子改性的碳纤维增强体复合组成。其制备方法为首先将膨胀石墨加入到环氧树脂中混合后通过三辊研磨机进行连续循环剥离得到微纳米石墨薄片/环氧树脂混合物;随后将得到的微纳米石墨薄片/环氧树脂混合物与固化剂混合均匀,然后将其均匀涂覆在功能化氧化物纳米粒子改性的碳纤维表面上进行铺层,热压罐中固化后即得到该发明所制备的微纳米石墨薄片环氧树脂基/改性碳纤维复合材料。该技术制备的高性能、低成本复合材料能够作为先进结构材料应用在航空工业领域。
本发明提供了一种制备多孔Fe基非晶合金‑Al基复合材料的方法,包括以下步骤:(1)将Fe基非晶合金粉、Si粉和金刚石粉按一定比例进行混合,再加入复合粘结剂混合均匀得到混料;(2)将混料压制成形状规则的多孔预制坯;(3)将多孔预制坯放入干燥箱中进行干燥处理得到脱水预制坯;(4)将脱水预制坯放入管式炉中进行第一阶段高温处理,冷却后得到脱脂混料骨架;(5)脱脂混料骨架与铝放入管式炉中进行第二阶段高温处理,冷却后得到多孔Fe基非晶合金‑Al基复合材料。本发明通过改变起始金刚石粉含量,间接调控多孔Fe基非晶合金‑Al基复合材料的致密度,从而制备出性能优良的多孔Fe基非晶合金‑Al基复合材料。
一种低成本、环保、耐磨双连续相复合材料的制备方法,用挤压铸造技术制备沉珠泡沫陶瓷增强铝基复合材料,其特征是将预热温度为200℃的泡沫陶瓷放入预热温度为350℃的模具中,并将温度为780℃—820℃的液态铝合金浇入挤压铸造模具中,然后合模加压,在20MPa—70MPa的压力下保压50s,冷却后开模取样,制备出复合材料。本发明的技术效果是:采用本发明得到的双连续相复合材料组织致密,界面结合良好,耐磨性好,完全满足汽车制动材料的要求,而且工艺简单、安全可靠,操作方便,对环境无污染。
本发明涉及激光焊接技术领域,具体涉及一种SiCp/Al基复合材料激光填粉焊接方法。该方法通过激光填粉焊接实现SiCp/Al基复合材料的连接,在激光焊接SiCp/Al基复合材料时填充不同含量的Ti、Si粉,改变了焊缝微观形貌及组织成分,有效抑制了脆性化合物Al4C3的生成和焊缝中孔洞、裂纹的产生,实现SiCp/Al基复合材料的有效连接。本发明通过调节焊接工艺改变焊接功率、焊接速度和填充粉末含量等有效抑制了脆性化合物Al4C3的生成和焊缝中孔洞、裂纹的产生,实现SiCp/Al基复合材料激光焊接,方法简单有效。
本发明提供了一种基于自偏置磁电复合材料的电流传感器,该电流传感器由支撑底座、封装外壳、质量块和自偏置磁电复合材料组成,自偏置磁电复合材料一端与支撑底座固定连接,另一端与质量块连接;自偏置磁电复合材料由硬磁薄膜层、磁致伸缩材料层和压电材料层组成,硬磁薄膜层和压电材料层分别层叠在磁致伸缩材料层上下两面,硬磁薄膜层给磁致伸缩材料层提供一个直流偏置磁场,从而使得在零偏置磁场下,磁致伸缩材料层能对载流导线产生的环形微小磁场作出反应,最终使得磁致伸缩材料层实现自偏置磁‑机‑电耦合效应。当自偏置磁致伸缩材料层在感受到载流导线产生的环形磁场时,由于自偏置磁电耦合效应,从而产生电输出,最终实现电流传感。
本发明公开了一种新型含多层硅酸锆界面相的SiC/SiC微型复合材料的制备方法,包括以下步骤:(1)SiC纤维束除胶;(2)非水解溶胶凝胶法配制ZrSiO4前驱体浸渍液;(3)使用ZrSiO4前驱体浸渍液浸涂SiC纤维束;(4)ZrSiO4前驱体干燥;(5)ZrSiO4前驱体高温裂解;(6)在SiC纤维束上重复ZrSiO4前驱体的浸涂‑干燥‑高温裂解过程;(7)用聚碳硅烷(PCS)溶液浸渍上述含ZrSiO4界面涂层的SiC纤维束;(8)PCS高温裂解;(9)重复PCS溶液浸渍‑高温裂解过程,得到含ZrSiO4界面相的SiC/SiC微型复合材料,本发明可明显改善SiC/SiC微型复合材料的高温力学性能,说ZrSiO4界面相对SiC/SiC微型复合材料可起到显著的抗氧化保护作用。
本发明属于复合材料技术领域,涉及一种直热法快速沉积制备C/C复合材料的方法,其特征在于,将制备的预制体固定在沉积炉内,使预制体通电加热,由预制体发热产生的热量使碳源气体达到热解温度,以裂解碳源气体,进行沉积致密化,最后对致密化的材料进行石墨化制得C/C复合材料。本发明设备投资小,操作简单,沉积速度可调,沉积效率高,且节省能源,无需外加设备就能制备出C/C复合材料。
一种纳米氧化铝增强铝基复合材料的制备方法,首先将纳米氧化铝在无水乙醇中超声处理10~15min,静置、去除无水乙醇后在500~560℃下烘3~4h;将铝合金放入石墨坩锅内加热、熔化,在温度700~800℃时,将上述纳米氧化铝按铝合金的1~6wt.%的量加入到铝合金熔体中,加入时间为8~25min,在加入过程中引入高能超声波到铝合金熔体中,超声频率5~10KHz、功率1000W,而后继续超声处理5~20min,超声频率20KHz、功率800~1000W;将熔体温度控制在740~750℃,继续超声2~4min,浇入到经400~450℃预热处理的金属模型中,冷却。本发明工艺成本低、简单;安全可靠;操作方便,得到的铝基纳米复合材料组织中晶粒细小,且纳米氧化铝增强相分布均匀,无团聚现象。
中冶有色为您提供最新的江西南昌有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!