本发明属于锂离子电池回收技术领域,具体涉及一种酸浸法回收处理废旧磷酸铁锂正极材料的方法。本发明方法包括以下步骤:a、酸浸:取磷酸铁锂正极材料,加酸酸浸,得到悬浮液,过滤,得到滤液;b、氧化:取a步骤得到的滤液,调节滤液pH值<1,加氧化剂,将滤液中的亚铁离子氧化成铁离子,得混合溶液;c、分离:取b步骤混合溶液,调节pH值为1.5~4,在60~95℃下反应1~3h,生成磷酸铁沉淀,过滤,洗涤,得到含锂滤液和磷酸铁。本发明方法工艺简单,连续循环,成本低,易工业化,环保,Li、Fe、P的回收率高达95%以上,后续制备的FePO4杂质含量低,粒径为1~6μm,且大小均匀分布窄,形貌可控,为电池级磷酸铁。
本发明涉及锂铝合金的真空合成方法,属于有色金属冶金和电池领域。本发明要解决的技术问题是提供一种锂铝合金的真空合成方法。本发明锂铝合金的真空合成方法,包括如下步骤:将铝和熔化的金属锂在真空环境下按重量比1:24~999混匀,然后于190~250℃熔炼,冷却,即得锂铝合金。进一步的,本发明还公开了本发明方法制备得到的锂铝合金及其在制备电池负极材料中的用途。本发明锂铝合金的真空合成方法合金化时间大幅下降,明显提高了生产效率;同时,杂质氮含量明显降低,提高了锂铝合金的产品品质,更利于制备高端超薄合金带。
本实用新型公开了一种高效分离精制碳酸锂的装置,所述装置包括通过管路连接的沉锂单元和分离精制单元,所述分离精制单元包括压滤机以及与所述压滤机连接的压缩空气储罐和洗涤水储槽,所述分离精制单元对所述沉锂单元输送至压滤机的碳酸锂溶液进行压滤、风干和洗涤并制得碳酸锂产品。本实用新型将碳酸锂溶液的过滤分离和精制集中在压滤机上进行,溶液过滤后在压滤机上进行滤饼的清洗精制工作,压滤机能有效地提升过滤量,同时在压滤机上进行清洗精制工作能够减少中间中转环节,提升过滤精制效率并降低异物带入风险,达到提升碳酸锂产量、质量;提高生产效率并降低产品成本的目的。
本发明公开了一种铝塑壳包装锂电池,包括铝塑壳(1)和电池芯,所述的铝塑壳(1)设有用于容置电池芯的凹槽(1.1),所述的铝塑壳(1)的一侧边上设有第一封边(1.2)、气袋(1.4)和第二封边(1.3),所述的气袋(1.4)位于第一封边(1.2)和第二封边(1.3)之间,所述的铝塑壳(1)设有第一封边(1.2)的侧边上设有具有隔热效果且不与锂电池电解液发生反应的高温纸,所述的高温纸位于第一封边(1.2)和第二封边(1.3)之间且靠近于第一封边(1.2)。该铝塑壳包装锂电池实际的第一封边的宽度与预想的第一封边的宽度相差无几。
本发明提供一种连续回收废旧三元锂离子电池的系统,属于锂离子电池回收技术领域。所述系统包括前处理单元,酸浸单元,一次除杂单元,共沉淀单元,二次除杂单元以及氨回收单元。其中,前处理包括粉碎机,脉冲除尘器,正负极粉末料仓以及分离机;酸浸包括浸出反应釜以及微滤机Ⅰ;一次除杂包括除杂反应釜以及压榨机,共沉淀包括配料釜,共沉淀反应釜以及离心机;二次除杂包括二次除杂反应釜以及微滤机Ⅱ;氨回收包括加热器,蒸发结晶器,冷凝器以及氨液接收罐。本发明还提供利用所述系统进行废旧三元电池回收的工艺。本发明制备出的镍钴锰三元材料前躯体纯度高,振实密度大,颗粒粒径小、分布窄且混合均匀;硫酸锂溶液可以直接用于碳酸锂的生产。
本发明涉及金属锂电池负极片的回收方法,属于电池技术领域。本发明解决的技术问题是提供金属锂电池负极片的回收方法,从金属锂电池负极片上提取金属锂或锂合金。该方法包括如下步骤:a、将金属锂电池负极片边角料浸泡于白油中;b、将浸泡有金属锂电池负极片的白油加热至180~220℃,并进行搅拌;c、保温过滤,取滤液;d、将滤液冷却,过滤,得到固态的金属锂或锂合金;e、将固态的金属锂或锂合金进行真空除油,即得到金属锂液或锂合金液;f、过滤浇注:在惰性气氛下将金属锂液或锂合金液过滤,过滤后将滤液浇注成电池级金属锂锭或锂合金锭。与现有技术相比,本发明的方法回收得到的产品纯度高,回收工艺无需重新电解提炼,工艺简洁,能耗低,综合成本低,易于实现。
本发明提供一种硫酸法生产电池级碳酸锂的方法,属于电池级碳酸锂制备技术领域。所述方法包括转型焙烧、酸化焙烧、浸出、净化、沉锂、清洗、干燥、粉碎。本发明采用循环浸出的方式,可以有效地提高浸出液中锂浓度,直接产出高浓度的含锂浸出液,无需蒸发浓缩,经过净化处理后,可以直接沉锂进行碳酸锂的生产。本发明循环浸出得到高浓度的含锂浸出液,可以在满足沉锂对高浓度锂要求的同时使得净化液中的钙离子浓度不升高,有效提高产品质量。采用本发明方法进行电池级碳酸锂的制备,可以避免使用三效高温蒸发设备,节能降耗,降低设备投入成本,简化工艺流程,产品质量稳定且品质较高,对环境友好。
本实用新型涉及锂电池材料生产技术领域,具体为一种锂电池材料生产用循环线的限位机构,包括:机体,所述机体底端一侧固定设置有安装箱,所述安装箱内部底端通过安装座固定设置有电机,所述机体在靠近安装箱一端的两侧均通过轴承活动设置有传动齿轮,所述电机的输出轴端与传动齿轮传动连接。本实用新型通过使两侧的限位带均向内部发生转动,通过两侧限位带开设的限位槽能够将锂电池固定在两侧限位带之间,通过两侧的限位带能够夹持锂电池向另一侧移动,且在夹持住锂电池的时候会挤压按压开关,此时能够使LED灯发生绿光,在没有夹持到锂电池的时候发出红光,便于工作人员手动添加锂电池,能够方便对锂电池进行限位运输。
本发明公开了磷酸铁锂杂质去除用PH值检测设备及其检测方法,涉及磷酸铁锂生产技术领域。磷酸铁锂杂质去除用PH值检测设备及其检测方法,包括固定机构,固定机构顶部固定连接有检测机构,检测机构顶部固定连接有体积可变的浮球,检测机构包括中空的安装板,安装板两侧内壁之间等距固定连接有多个分隔条。本发明通过设置的检测机构,利用多个检测机构和多个检测单元进行磷酸铁锂铁除杂池对应位置的PH值信息的实时检测,对磷酸铁锂铁除杂池内部的各个液位深度的PH值进行多点式测量,并通过这些数据计算预测出磷酸铁锂铁除杂池内部溶液稳定后的预测PH范围值范围,从而提高磷酸铁锂铁除杂池内部PH的检测效率。
本发明涉及从盐湖卤水中提取氢氧化锂和氢氧化钠的方法及装置,属于电渗析技术领域。本发明解决的技术问题是提供一种新的双极膜电渗析系统,采用该系统,可以在电渗析同时,将锂钠初步分离,减少氢氧化锂的重结晶次数,缩短工艺流程。本发明双极膜电渗析装置,采用两张对锂钠有一定分离率的阳膜,将碱室分为了两个(即第一碱室和第二碱室),该装置在处理盐湖卤水时,能同时得到氢氧化锂和氢氧化钠溶液,还能更大限度的使锂通过膜,减少盐溶液中锂的存留量,分离率达80%。本技术可减少氢氧化锂的重结晶次数,缩短工艺流程,氢氧化钠也可返盐湖的前工段,回收利用。
本发明涉及制备5N级高纯碳酸锂的方法,属于高纯碳酸锂技术领域。本发明所解决的技术问题是提供了一种工业化制备5N级高纯碳酸锂的方法。本发明制备5N级高纯碳酸锂的方法包括如下步骤:a、配制Li2O为12~25g/L的碳酸氢锂溶液,过滤除杂,得到净化碳酸氢锂溶液;b、取a步骤所得净化碳酸氢锂溶液的1/4~1/2加入分解釜中,并加入0.05~0.1%W/V的5N级碳酸锂晶种,以50~500转/min的速度搅拌并逐渐升温至90~100℃;c、保持90~100℃和50~500转/min的搅拌速度,将剩余的净化碳酸氢锂溶液以滴加的方式加入分解釜中,料液滴加完毕后保温10~30min;d、固液分离,得到固体和母液,所得固体经洗涤、干燥,得到5N级高纯碳酸锂。
本发明涉及锂铝合金及其生产方法和用途,属于二次电池负极材料技术领域。本发明所解决的技术问题是提供了一种充放电循环寿命更高的锂铝合金。本发明锂铝合金由如下重量百分比的组分组成:铝0.1~4.0wt%,余量为锂和不可避免的杂质。本发明锂铝合金,通过加入特定含量的铝,对纯金属锂的性能作了修饰,既保持了锂容量优点,又改善了枝晶抑制效果,其充放电中为单一相,不会发生相变,提高了锂铝合金的充放电循环寿命。
本发明涉及一种锂硫电池正极极片的制备方法及其产品,属于电池领域,正极极片的制备是通过三步涂布法而完成;第一,将含有导电剂的浆料均匀涂覆在铝箔上,烘干;第二,将含硫的正极浆料均匀涂覆在步骤一所得极片上,烘干;第三,将含导电聚合物的浆料涂覆在第二步所得极片上,烘干即得锂硫电池正极极片;本发明所述的三步涂布法,其中基底导电层有利于提高正极极片整体的导电性,可以保证中间层活性物质容量的发挥,同时表面层的导电聚合物材料能够有效吸附多硫化物,抑制穿梭效应,进而提高锂硫电池的循环性能。
本发明涉及锰酸锂电池正极材料回收方法,属于废旧电池回收技术领域。本发明所解决的技术问题是提供了一种锰酸锂电池正极材料回收方法。本发明锰酸锂电池正极材料回收方法,包括从锰酸锂电池正极片中分离铝箔步骤,其将锰酸锂电池正极片于300~600℃加热1~4h,然后分离铝箔,得到锰酸锂正极材料、导电剂和粘结剂的混合物。混合物于1000~1200℃煅烧1~3h,然后造球;造球后的混合物与碳质还原剂、硅石、石灰按重量比100:18~22:13~17:14~18混匀,然后电炉冶炼1~3h,得到锰硅合金和炉渣;炉渣酸浸得到含锂溶液,再加入碳酸钠溶液沉淀,过滤,得到碳酸锂。
本发明涉及连续化生产电池级碳酸锂的方法,属于化工技术领域。本发明解决的技术问题是提供连续化生产电池级碳酸锂的方法,该方法采用平行加料连续化生产电池级碳酸锂,通过两次平行加料,严格控制加料的量及加料温度和时间,直接生产得到电池级碳酸锂,无需再通入二氧化碳进行氢化,省去了氢化工艺流程,降低了生产成本,实现了电池级碳酸锂生产的连续化,产品稳定性增强。
本发明涉及含锂废渣的处理方法,属于锂的回收技术领域。本发明解决的技术问题是提供了一种含锂废渣的处理方法。该方法在隔绝空气的环境中,将含锂废渣加热到200℃以上,通入处理气体进行反应,反应后含锂废渣中的锂转化为碳酸锂,其中,所述处理气体中包含二氧化碳。本发明的处理方法杜绝了安全隐患,且不会生产易燃和有毒的气体,安全环保。反应迅速,处理耗时较少;方法简单,无需特别的设备,工艺流程简便。采用本发明方法处理后的含锂废渣,安全性能好,不会与空气和水有明显反应;得到的碳酸锂安全且易于回收。
本发明涉及一种硫酸法锂盐生产的尾气综合处理工艺方法,属于锂盐生产技术领域。本发明的硫酸法锂盐生产的尾气综合处理工艺方法包括将酸化焙烧产生的尾气返回转型焙烧窑作为燃烧的新风使用,再经转型焙烧窑的尾气处理系统处理后直接排空;所述燃烧的新风中还添加有空气,所述酸化焙烧产生的尾气和空气体积流量比为1~5:1;所述酸化焙烧产生的尾气预热至400~550℃再返回转型焙烧窑。本发明解决了传统硫酸焙烧法生产中酸化焙烧窑尾气处理的难点。解决直热式酸化焙烧窑尾气污染因子折算浓度超标的问题。既保留直热式酸化工艺换热效率高、能耗低的优点,又消除酸化尾气的排放点,节约酸化窑尾气处理的运行操作费用,实现节能减排的目的。
本实用新型公开了硫酸锂蒸发浓缩系统,涉及矿石提锂技术领域,其包括加热列管、蒸发室以及循环泵,加热列管的排液口与蒸发室的入液口通过相连通,加热列管的入液口与蒸发室的出液口通过循环管相连通,还包括顶部设置有开口的垢块收集腔,垢块收集腔的开口与循环管的底部相连通,垢块收集腔的开口处设置有第一阀门,垢块收集腔的底部还设置有排渣口,垢块收集腔于其排渣口处设置有第二阀门。本实用新型所提供的硫酸锂蒸发浓缩系统,使硫酸锂溶液中所携杂的大块垢块在硫酸锂溶液的流动以及自重的作用下,于循环管的底部落入垢块收集腔内,从而避免了大块垢块堵塞加热列管的入液口,延长了设备管路酸洗间隔时间,提高了生产效率。
本实用新型公开了一种锂电池叠加组装结构,包括内六角螺栓,防护盖机构,电池组装箱,固定套框和间隔板,本实用新型,通过设置防护盖机构,通过导线将锂电池与电池接线扣连接,电池接线扣与电池接线扣之间同样采用插扣的形式进行连接,拆装十分方便,有效的避免了裸接的危险;通过设置内嵌板和弧形罩,不但绝缘效果好,而且还能对电池接线扣起到保护作用;通过设置固定套框,将面框从电池组装箱底部套入,然后将内六角螺栓从通孔内穿入,并与螺纹孔螺纹固定,结构简单,固定可靠;通过设置间隔板,将锂电池单独的隔开,防止锂电池间的碰撞,有效的提高了锂电池的使用寿命。
本发明公开了一种锂电池生产用封口装置,包括链板输送机,链板输送机的输送带上设置有六个固定座,六个固定座上均开设有固定槽,固定槽内插设有锂电池,锂电池的电池帽底端开设有注液孔,锂电池的电池帽螺纹连有密封套,密封套的内壁顶端设置有安装块,安装块内设置有弹簧,安装块的下端面两侧转动连接有转杆,两个转杆的一端转动连接有压块,弹簧的一端连接在压块上。当注液完成后,将密封套螺纹连接在锂电池的电池帽上,完成对注液孔的密封作业,在电池仓内的电池液发生反应产生气体,气压产生的压力会带动压块向上滑动打开注液口,并通过密封套上的排气孔排出,提高了锂电池使用的安全性及稳定性。
本实用新型公开一种免清洗,同时方便取料的锂电池正极材料烧结用匣钵,具体涉及一种锂电池正极材料烧结用匣钵。锂电池正极材料烧结用匣钵,包括匣钵侧壁、匣钵底座,匣钵侧壁设置有纵向开口,匣钵内腔表面设置有隔绝纸层。匣钵底座上表面的4个角分别固定有支撑柱。匣钵侧壁设置横向U形槽和纵向卡槽,纵向卡槽内设置有挡板,挡板的外表面固定有把手。支撑柱外套有的钢管。本实用新型用挡板将匣钵侧壁密封,在密封的同时卡住隔绝纸,使得隔绝纸绷紧锂电池正极材料,再将匣钵底座表面垫上隔绝纸,即可进行焙烧,匣钵表面就不会粘附锂电池正极材料,从而达到免清洗的目的,由于支撑柱与匣钵侧壁之间有间隙,方便匣钵在焙烧后取料。
本发明涉及磷酸亚铁锂正极片综合回收利用方法,属于废旧锂资源回收利用技术领域。本发明所解决的技术问题是提供了一种磷酸亚铁锂正极片的综合回收利用方法。本发明磷酸亚铁锂正极片综合回收利用方法包括如下步骤:取磷酸亚铁锂正极片,加热至300-400℃热处理1~4h,将基体铝箔与正极材料分离,得到磷酸亚铁锂正极材料、导电剂和粘结剂残余物的混合物,混合物于500-800℃焙烧1~4h;焙烧后的物料加硫酸浸出,浸出时pH值控制在0.5~1,过滤得到磷酸锂、磷酸铁和硫酸铁的混合溶液;所得混合溶液加热到80~100℃,并调节pH值到2~2.5,反应1~4h,过滤、洗涤、干燥得到磷酸铁;过滤所得的滤液调节pH值到10~12,反应0.5~2h,过滤、洗涤、干燥得到磷酸锂。
本发明提供了一种电池级无水氯化锂的制备方法,包括(1)在锂精矿酸熟料浸取液——硫酸锂溶液中加入氯化钙,并加入NaOH调pH除Fe、Mg,反应后得到CaSO4·2H2O、Fe(OH)3、Mg(OH)2沉淀和氯化锂溶液;(2)将步骤(1)中所得产物经过滤、洗涤,除去CaSO4·2H2O、Fe(OH)3、Mg(OH)2沉淀,得LiCl溶液,即转化液;(3)在转化液中加入BaCO3,反应后经过滤和洗涤除去SO42-、Ca2+,得LiCl精制液1;(4)在LiCl精制液1中加入HCl后煮沸除去CO32-,然后加入NaOH液回调pH,然后蒸发浓缩,冷却结晶、分离后,得LiCl精制液2;(5)在LiCl精制液2中加入精制剂,反应后经过滤和洗涤除去Na,得LiCl完成液,再浓缩干燥得电池级无水LiCl产品。本发明生产过程简单、操作容易。
本实用新型公开了一种锂电池座及其电源转换器,包括:支座,所述支座起固定支撑作用;负极卡簧,所述负极卡簧布置在所述支座上,用于引出锂电池负极;正极舌簧,所述正极舌簧布置在所述支座上,用于引出锂电池正极;其中,若干所述负极卡簧布置在正极舌簧四周。为锂电取代传统锂电池提供新的解决方案,有利于减少传统锂电池的使用,降低传统锂电池对环境的污染。
本发明涉及一种锂铜复合带回收方法,属于金属回收技术领域。本发明所述锂铜复合带回收方法包括:将锂铜复合带置于密闭环境中与混合气体反应生成白色的碳酸锂,所述混合气体为N2、O2、H2O、CO2的混合气体,所述N2、O2的质量比为4~9:1,所述混合气体的湿度10~90%,CO2的体积浓度范围为0.04~2%;待90%以上的金属锂转化为碳酸锂后将其与铜箔通过机械破碎、水溶、过滤、干燥、结晶即可得到铜渣和碳酸锂粉体;所述金属锂充分反应转化为碳酸锂。本发明锂铜复合带的回收反应温和可控,安全系数高,反应完全,可高效、简便的分离出铜基材和高纯碳酸锂粉末。
本发明涉及制备钝化锂粉的方法,属于金属锂粉技术领域。本发明解决的技术问题是提供一种制备钝化锂粉的方法。该方法在隔绝氮气和氧气的条件下,采用雾化喷枪将金属锂液雾化,冷却,然后钝化,得到钝化锂粉;其中,保证流入雾化喷枪中的金属锂液的温度为230~500℃,且喷雾时的金属锂液的温度和流量恒定。本发明采用雾化的方式来制备钝化锂粉,无需用到烃油,有效的避免了后期烃油难以完全洗净的问题,无需使用有机溶剂,安全无毒。操作简单,成本低廉。制备得到的钝化金属锂粉纯度高,粒径均一,粒度范围小,质量较好。 1
本实用新型提供一种连续回收废旧三元锂离子电池的系统,属于锂离子电池回收技术领域。所述系统包括前处理单元,酸浸单元,一次除杂单元,共沉淀单元,二次除杂单元以及氨回收单元。前处理包括粉碎机,脉冲除尘器,正负极粉末料仓以及分离机;酸浸包括浸出反应釜以及微滤机Ⅰ;一次除杂包括除杂反应釜以及压榨机,共沉淀包括配料釜,共沉淀反应釜以及离心机;二次除杂包括二次除杂反应釜以及微滤机Ⅱ;氨回收包括加热器,蒸发结晶器,冷凝器以及氨液接收罐。通过本实用新型系统对废旧三元锂离子电池进行回收,制备出的镍钴锰三元材料前躯体纯度高,振实密度大,颗粒粒径小、分布窄且混合均匀;硫酸锂溶液可以直接用于碳酸锂的生产。
本发明涉及锂离子电池制造领域,尤其涉及一种钝化金属锂粉制备方法及制备装置。本发明解决的技术问题是提供一种能耗低且钝化效果好的钝化金属锂粉制备方法。该方法用等离子喷雾法将金属锂制备成锂射流喷出,喷出的锂射流与钝化气流在钝化反应区逆向接触,钝化的同时冷却,得到钝化金属锂粉。本发明将雾化和钝化进行一体化设计,钝化气流直接与雾化的锂射流相接触,借助锂射流带出的温度进行钝化反应,相较于传统先冷却再钝化的方式,不但可以节约能源,还能使锂粉钝化更为充分;而且钝化气流与锂射流相互作用在一定程度上可以促进金属锂进一步雾化,提高钝化锂粉的成球效果;此外,钝化气流还可起到冷却作用,使锂粉在接触仓壁前充分冷却定形。
中冶有色为您提供最新的四川遂宁有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!