本发明提供一种纳米金属层陶瓷基板的制造方法,包括以下内容:(1)在陶瓷衬底表面沉积活性金属得到沉积活性金属过渡层的陶瓷基片;(2)将(1)中沉积了活性金属过渡层的陶瓷基片表面通过SPS法热压烧结纳米金属粉,形成纳米金属层,制备纳米金属层陶瓷基板。本发明所述方法中,纳米铜金属层与陶瓷基体的结合强度提高,纳米金属层的塑性好强度高,保证了大功率、超大功率陶瓷基板在高低温冷热循环作用下的热疲劳抗力,从而防止了金属层的脱落,陶瓷基板的翘曲等不良现象。
一种低阻氧化锌陶瓷材料的制备方法,属于电子材料技术领域。本发明以ZnO、Al2O3、MgO和TiO2四种粉料为原料(可增加CaO、SiO2、NaOH或KOH)、经球磨、造粒、成型、烧结得到低阻氧化锌陶瓷材料。其中原料组分之间的质量配比为ZnO:Al2O3:MgO:TiO2=[65~98]:[1~15]:(0~10]:(0~10];烧结时采用隔离氧气氛条件下的分段式烧结工艺。本发明工艺流程简单可行,适用于工业化生产;所制备的低阻氧化锌陶瓷材料具有电阻率低(可达到10-1Ω·cm)、能量密度高(高于500J/㎝3)、稳定性好(电阻温度系数可达到10-3Ω/℃,相对密度高达97%)的特点。
本发明属于生物医用材料技术领域,公开了一种基于3D打印的骨诱导磷酸钙陶瓷及制备方法与应用。本发明基于3D打印的骨诱导磷酸钙陶瓷,包括若干个孔结构单元,孔结构单元为仿最密堆积晶格结构,孔结构单元由宏孔和开设于宏孔孔壁上的贯通孔构成,各宏孔占据晶格结构中各原子位置。本发明的制备方法包括,模型设计,配制浆料,并利用3D打印机制备多孔陶瓷坯体,再经过脱脂烧结从而得到具有良好骨诱导性能的磷酸钙陶瓷。本发明的基于3D打印的骨诱导磷酸钙陶瓷,具有良好的骨诱导性,对提升3D打印磷酸钙陶瓷的骨修复性能,促进其在临床中的应用具有十分重要的意义。
本发明公开了一种硬质合金表面非层状氧化铝/碳化钛涂层的制备方法,其特征在于采用液相法制备出Al(OH)3/Ti(OH)4核/壳结构溶胶,然后旋涂在经过固相烧结致密度达到90%~95%的硬质合金坯体表面形成Al2O3/TiO2层,再利用液相烧结过程中的CO/CH4渗碳气氛与表层发生碳热还原反应使TiO2转化为TiC,最终在硬质合金表面制造出非层状Al2O3/TiC。本发明制造的Al2O3/TiC涂层为均质复合涂层,每个涂层晶粒为Al2O3/TiC核/壳结构,避免了传统的气相沉积形成的层状结构因层间差异巨大而容易失效的问题,而且工艺过程简单,易于控制。
本发明提供一种用于节流阀的硬质合金阀芯的加工装置及方法,由外套、外套防漏板、隔板、内套、内套防漏板、打孔杆、工作箱、下挤压块、上挤压块组成;在下挤压块上由外向内依次放置外套、外套防漏板、隔板、内套、内套防漏板,上挤压块与内套轴线对齐,并设置于内套上方;所述工作箱为隔热箱体,内部下方设有底座,底座中部安装下挤压块,底座侧面设有抓手伸缩杆,并在抓手伸缩杆顶端设有延伸到下挤压块上方的抓手,工作箱顶部设有滑轨,滑轨下方安装有上挤压块伸缩杆,上挤压块伸缩杆可沿滑轨滑动,上挤压块伸缩杆下方连接上挤压块。本发明通过设计适应于节流阀硬质合金阀芯结构的阀芯加工装置并提供方法,达到制造双层硬质合金阀芯的目的。
本发明提供一种磁光记录靶材及其生产工艺,属于光盘、磁光盘制造技术领域。利用轻、中稀土元素的高饱和磁化强度、高磁晶各向异性、高磁光效应的优点,对传统的铽铁钴磁光材料进行轻、中稀土掺杂。采用磁悬浮熔炼技术熔炼基靶合金,基靶合金成分为铁钴合金。将纯铽和轻稀土线切割成扇片或圆片,对称地镶嵌在铁钴合金基靶刻蚀最大的圆环区内制成复合靶,通过调节铽片、轻稀土片的数量与位置或改变基靶合金含量,来改变靶材成分。采用磁悬浮熔炼技术熔炼靶材合金,熔炼过程中,合金在磁场中被悬浮于坩埚中,同时在磁场作用下,对合金进行搅拌,保证合金成分的均匀性,并避免了因使用石英坩埚所导致的高成本和效率低的问题。用于光盘、磁光盘制造。
本发明涉及一种添加石墨烯/纳米Al2O3粒子的WC‑Co硬质合金及制备方法,属于高性能硬质合金制备技术领域。所述的添加氧化石墨烯/纳米Al2O3复合粒子的WC‑Co硬质合金所用原料和制备方法为:将纳米Al2O3制成胶体溶液,加入到氧化石墨烯悬浮液中超声混合1‑3h后快速冷冻,经真空冷冻干燥后制得氧化石墨烯/纳米Al2O3的复合粒子,之后添加到WC‑Co粉末中。最终混合粉末组成为:Co:6‑11wt%,氧化石墨烯/纳米Al2O3的复合粉末:0.05‑0.2wt%,余量为WC粉末。将混合粉末进行机械混合处理,球磨时间10min‑24h,球磨机转速为30‑1400rmin‑1;之后冷压成型后烧结制备WC‑Co硬质合金,烧结温度1300‑1450℃,压力为0‑60MPa,时间为5‑120min。通过上述方法可以制备得到性能优异的WC‑Co硬质合金,便于大规模的工业化应用和生产。
本发明公开了一种PDC钻头胎体材料制备方法,其特征采用将面心立方和体心立方相共晶结构的高熵合金加入到铸造碳化钨、单晶碳化钨粉末中,经过混合后加入琼脂糖溶胶形成料浆,然后注入模具后经过干燥而成型,最后加入铜基浸渍合金在真空炉中进行熔渗而形成含有均匀分布的面心立方和体心立方相共晶结构高熵合金的PDC钻头胎体材料。本发明克服了现有PDC钻头胎体材料制备方法存在的碳化钨与金属添加物难以均匀分散等问题,其硬度≥30HRC,抗弯强度≥600MPa,冲击韧性≥4J,综合力学性能优异。
本发明涉及一种改善制氟阳极性能的方法,属于制氟阳极材料技术领域。本发明的改善制氟阳极性能的方法包括:a.将煅后石油焦、煤沥青和碳纤维混合后预热或者分别预热后混合,得混合物料;b.将所述混合物料加热混捏,得到糊料;c.将所述糊料成型得到生胚;d.将所述生胚进行冷等静压,得炭胚;冷等静压的压力为20~100MPa,时间为5~15mins;e.将炭胚进行热处理与时效处理即得制氟阳极。本发明的方法将冷等静压技术与添加碳纤维耦合法相结合,制备得到的低电阻率制氟阳极的硬度高,电阻率低,综合性能很好,有助于提高其使用寿命及电解效率。
本发明公开了一种刀具材料的复合硬质合金的制备方法,该复合硬质合金材料由下列重量份数的组分制得:按如下重量份准备原材料:纳米碳化钛35-40份、纳米氮化钛5-15份、碳化钨7-9份、碳化铌5-8份、碳化硅3-7份、钴粉3-5份、氧化钇1-3份、碳化硼1-3份、铜粉1-5份。该方法包括如下步骤:备料、制备贫碳合金粉末、制备预烧结基体、渗碳处理和分步烧制。本发明制备的复合硬质合金强度高、韧性好、耐磨、热冲击性能好。
本发明公开了核电用Al2O3‑Gd2O3可燃毒物陶瓷材料及其制备方法,解决了现有技术中未见能够有效适用于核电运行环境下,并有效提高核电的安全性和经济性目的的Al2O3‑Gd2O3可燃毒物材料的问题。本发明包括(1)制备Gd(NO3)3和Al(NO3)3的混合溶液,制备饱和(NH4)2CO3溶液;(2)将饱和(NH4)2CO3溶液加入到混合溶液中反应,反应后获得沉淀物;(3)沉淀物清洗后烘干得到前躯体粉末;(4)将前躯体粉末放置到480~520℃条件下保温4~6h后取出研磨得到粉体;(5)粉体压制成型,再经过烧结后得到成品。本发明具有致密度高、强度高,适用于先进核电水冷动力堆,固有安全性高等优点。
本发明涉及一种添加石墨烯的Ti(C,N)基金属陶瓷的制备方法,属于金属陶瓷材料制备技术领域。所述的添加石墨烯粉末的Ti(C,N)基金属陶瓷材料所用原料为:混合粉末组成为:碳氮化钛粉末(1~5μm)40‑60wt%;钴粉和镍粉:10‑20wt%;碳化钨和碳化钼粉(0.5~3μm):10‑30wt%;石墨烯粉末:0.2‑2.0wt%,各组分重量百分之和为100wt%;将混合粉末按重量百分比称量后进行机械混合处理,球磨时间10min‑24h,球磨机转速为30‑1400r/min;球料比为5:1‑20:1,将混合粉末冷压成型后烧结制备Ti(C,N)基金属陶瓷,烧结温度1300‑1470℃,烧结压力为0‑60MPa,烧结时间为5‑120min。通过上述方法可以制备得到性能优异的添加石墨烯的Ti(C,N)基金属陶瓷,便于大规模的工业化应用和生产。
本发明涉及二氧化硅气凝胶生产技术领域,公开了一种规模化制备低成本二氧化硅复合气凝胶的方法,该发明通过偏铝酸钠改性后的水玻璃,通过高温活化处理,再与碱性液水溶液进行反应,得到含有氢氧化铝胶体的复合凝胶,通过氢氧化铝胶体的支撑,在常压干燥即可得到低成本二氧化硅复合气凝胶。本发明的优势在于原料便宜,并且不需要溶剂交换和表面改性,制备工艺简单、成本低,实现了规模化生产。且得到的二氧化硅复合凝胶具有良好的柔性。大大降低了生产成本,适合大规模工业化生产。
本发明公开了一种碳化钨包覆的复合硬质合金材料及其制备方法。该合金材料包括基体和碳化钨包覆层,所述基体由下列重量份数的组分制得:纳米碳化钛35-40份、纳米氮化钛5-15份、碳化铌5-8份、碳化硅3-7份、钴粉3-5份、氧化钇1-3份、碳化铝1-3份、钛粉1-5份。本发明的复合硬质合金材料强度高、韧性好、耐磨、热冲击性能好。
本发明公开了一种金属陶瓷模芯料,它包括成分基体TI(C.N),成分基体TI(C.N)包括按重量百分比为70‑80%TI(C.N)、8.1‑12.4%碳化钨粉末、2.1‑5.6%钴粉、1.8‑5.8%Ta(Nb)C粉末和9.1‑13.8%镍粉。本发明的有益效果是:解决硬质合金材料大大孔径、高温工作条件下,对于软材料拉拔挤压,寿命、质量不高的问题,提供一种制造工艺简单、提升了材料的硬度和耐磨性、成型出的模芯具有很高的使用寿命。
本发明公开了一种金属陶瓷胎体材料制造方法,其特征是先将球形铸造碳化钨和高熵合金粉末进行干式混合,并利用明胶溶胶形成金属陶瓷料浆,再注入石墨模具进行干燥形成金属陶瓷骨架预制件,最后进行熔渗,制备出了组织均匀且含有面心立方结构高熵合金相的金属陶瓷胎体材料。本发明克服了现有胎体材料制造方法存在的强韧性不足等问题,其力学性能优异,硬度≥25HRC,抗弯强度≥500MPa,冲击韧性≥5J。
本发明公开了一种复合硬质合金材料及其制备方法,该复合硬质合金材料由下列重量份数的组分制得:纳米碳化钛35-40份、纳米氮化钛5-15份、碳化钨7-9份、碳化铌5-8份、碳化硅3-7份、钴粉3-5份、氧化钇1-3份、碳化铝1-3份、钛粉1-5份。本发明的复合硬质合金材料强度高、韧性好、耐磨、热冲击性能好。
本发明公开一种碲化镉粉末的制备工艺,包括:取碲样、镉样,装入缩口石英管中,与真空系统连接,抽真空,火焰烧结密封,得到密封后的带料石英管,所述镉样为镉粒,所述碲样与所述镉样摩尔比1:1;所述密封好的石英管摇匀,放置于合成炉中加热,恒温,分段式降温,停炉,冷却,得到加热熔化合成反应物石英管;所述恒温过程多次摇动所述石英管。所述合成反应物石英管出炉,冷却清洗石英管外表面并晾干后,得到碲化镉块状半成品;所述碲化镉半成品球磨,筛分,得到碲化镉粉末。所述工艺过程对环境和对操作人员友好,制得的碲化镉粉末纯度高。
本发明公开了一种制备多孔生物医用金属、陶瓷或金属/陶瓷复合材料的方法,该方法基于二次造粒技术,即以窄粒度分布的金属微粉或/和陶瓷微粉为一级颗粒;以这些一级颗粒为原料,加入粘结剂,通过离心造粒的方法进行二次造粒,得到二级近球形颗粒;将筛分后的具有窄粒度分布的二级近球形颗粒以密堆积方式在具有特定形状和尺寸的模具型腔中成型,经高温烧结后得到具有特定多孔结构和组成的医用材料或产品。本发明与现有技术的多孔生物材料制备工艺方法相比,具有工艺简单、重复性好、易于实现批量生产,同时可制备梯度多孔结构、力学强度高的多孔生物材料等优点,尤其适用于承力部位骨缺损修复的骨移植材料。
本发明公开了一种Ni代Co硬质合金耐磨零件及其制备方法,粘接相为Ni,含量为8~10%,其余为超细WC。其生产工艺为混料,球磨,压制成型和真空烧制成型。该方法生产的耐磨件具有高的硬度,强度和良好的热导率,适合各种耐磨领域。
本发明公开了一种无钼Ti(C,N)基金属陶瓷耐磨耐蚀材料及其制备方法,其特征是采用超声分散处理的超细(W,Cr,V)C取代Mo2C作为Ti(C,N)基金属陶瓷中的必要添加剂,利用超细原料的烧结活性以形成Ti(C,N)和Ni之间的过渡环形相,改善润湿性。超细(W,Cr,V)C的引入还可以避免以Cr3C2、VC、WC等单一碳化物的形式添加而引起的各成分难以混合均匀的问题。本发明的无钼Ti(C,N)基金属陶瓷通过以钨代钼,不仅克服了钼对金属陶瓷耐腐蚀性的不利影响获得了高性能的耐磨耐蚀材料,还具有相对的资源优势。?
本发明公开了核电用TiO2‑Gd2O3可燃毒物陶瓷材料及其制备方法,解决了现有技术中未见能够有效适用于核电运行环境下,并有效提高核电的安全性和经济性目的的TiO2‑Gd2O3可燃毒物材料的问题。本发明包括(1)制备Gd(NO3)3和Ti(NO3)4的混合溶液,制备饱和(NH4)2CO3溶液;(2)将饱和(NH4)2CO3溶液加入到混合溶液中反应,反应后获得沉淀物;(3)沉淀物清洗后烘干得到前躯体粉末;(4)将前躯体粉末放置到500~550℃条件下保温5~7h后取出研磨得到粉体;(5)粉体压制成型,再经过烧结后得到成品。本发明具有致密度高、强度高,适用于先进核电水冷动力堆,固有安全性高等优点。
本发明所述烧结富铈稀土永磁材料,包含的组分及各组分的质量百分数如下:RE1为20%~28%,RE2为4%~15%,Fe为60.5%~70.5%,B为0.8%~1.2%,Tm为0.1%~5%;主相为Nd2Fe14B或(Nd, Pr)2Fe14B,主相晶粒周围分布有Ce,或Ce和La;所述RE1为Nd、Nd和Pr、以Nd为主的稀土元素、或者以Nd和Pr为主的稀土元素,所述RE2为Ce,或Ce和La,所述Tm为Co、Cu、Al、Ga、Nb、Zr、Mo、Mn、Cr中的至少一种。本发明还提供了上述稀土永磁材料的制备方法。本发明能解决用Ce、La部分替代Nd、Pr制备富铈稀土永磁材料对材料内禀磁性能的影响问题,同时降低稀土永磁材料的成本。
本发明公开了一种表层脱立方相的亚微梯度硬质合金及制备方法,亚微梯度硬质合金中包括Co粉、Ti(Cx,N1‑x)粉、(Wy,Ti1‑y)C粉、TaC粉、W粉和WC粉,通过气氛保护热处理降低亚微WC粉末及立方相碳化物等陶瓷原料粉末的吸附氧和化合氧,混合原料粉末氧含量的降低显著减少了梯度硬质合金的脱碳问题,同时可以控制立方相金属元素与N的含量比例,经过真空预烧结和压力终烧结处理,得到亚微梯度硬质合金,本发明制备亚微梯度硬质合金的方法对设备和工艺需要不高,且脱氧效果显著,降低了梯度硬质合金中的孔隙率并促进梯度硬质合金的强度和硬度,得到的亚微梯度硬质合金具有优良的耐磨性和韧性,适用于工业化生产。
本发明提供的制备铁基表面复合材料的铸造烧结法,是将陶瓷粉或/和可生成碳化物陶瓷的组分与易熔合金粉混匀,并按粉末冶金的成型方法制成压坯并固定于铸型表面,利用铸造浇注的高温钢水或铁水的热量,直接将压坯烧结在铸件母体上。本方法所用设备简单,生产工序少、成本低,能制备各种形状的铸件,烧结的表面复合层与母体的结合强度高,表面平整,厚度易于控制,是便于实现产业化的新型复合技术,同时也为零件表面强化提供了一条新的途径。
本发明适用于功能床垫领域,提供了一种生物能量保健床垫,所述床垫从上至下依次由远红外功能发射层、主体功能电能发射层和附属层三部分构成;所述远红外功能发射层从上至下依次包括调节层远红外竹炭纤维毯、远红外抗水拒油VE布料层、碧玺负离子纤维绵层;所述主体功能电能发射层从上至下依次包括多极永久磁石层、硅钢连接层、聚乙烯固定按摩装置层、环保EVA高分子-3D网状结构床垫主垫层、天然羊毛毡、氨基甲酸乙酯泡沫;所述附属层从上至下依次包括不织布层、聚酯绸层、织锦层和调节层抗菌除臭亚麻凉席,所述床垫对人体有着非常好的保健效果。
本发明提供一种含硼锆合金可燃毒物中空芯块的制备方法。该方法通过将碳化硼粒径<5μm的粉料与氢化锆-2粉混料、经钢模将混料压制成中空芯块坯体、并对中空芯块坯体进行脱氢烧结及对中空芯块坯体进行机加工,制备出含硼锆合金可燃毒物中空芯块产品。本发明制备方法制备出的含硼锆合金可燃毒物中空芯块,厚度小于2mm,其致密度达到95%以上,开口孔率小于2%,符合含硼锆合金可燃毒物芯块在反应堆中使用的相关技术要求,解决了含超硬材料粉料难于用钢模成型的技术难题,大幅度提高了含超硬颗料坯体的成型精度和原材料的利用率,与用橡胶模成型制备实心碳化硼锆合金可燃毒物芯块相比,原材料氢化锆的用量降低60%以上。
本发明公开了一种金属陶瓷密封环材料及其制备方法,其特征是将(W,Cr)C和(W,Ti)C粉末经过预球磨作为主要添加剂,并与Ni、Co、Ti(C,N)混合后用粉末冶金方法制备成金属陶瓷密封环。本发明的金属陶瓷密封环克服了目前存在的诸如添加Ti、Al、不饱和CK料而引起脆性大,Fe、Mo金属对耐腐蚀性能有不利影响,TaC等添加物价格昂贵等问题。
本发明公开了一种利用氢化钛粉树脂复合材料制备金属钛制品及方法,包括以下步骤:步骤1:将粘结剂加热熔融,与氢化钛粉末混合得到复合氢化钛粉体,其中氢化钛粉体的体积分数为50vol%~80vol%,粘结剂的体积分数为20vol%~50vol%;步骤2:将步骤1中的复合氢化钛粉体加热成型,得到生坯;步骤3:将步骤2中的生坯依次进行溶剂脱脂、热脱脂,得到脱脂坯体;步骤4:将步骤3得到的脱脂坯体高温烧结即可得到所需钛制品。本发明成型性能优良,制备工艺过程简单,有效降低了生产成本,容易实现钛及钛合金型材、板材、棺材、棒材及零件的规模化生产。
中冶有色为您提供最新的四川成都有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!