一种基于电化学‑热耦合模型的预测锂电池循环寿命的方法,包括以下步骤,1)获取锂电池的物性参数和电化学参数,并对电池进行充放电循环测试;2)利用步骤1)获得的参数信息,建立电化学‑热耦合模型,并对模型进行有效性验证;所述电化学‑热耦合模型是一个准二维电化学模型和一个三维热模型的耦合模型;3)验证模型的有效性;4)确定经验寿命函数;5)得到最终的寿命函数。本发明通过构建电化学热耦合多物理场模型,对仿真计算得到的寿命曲线进行函数拟合得到了具有快速响应、预测能力强、适用范围广的电池寿命预测方法。
一种纳米片状锂离子电池正极材料氟磷酸钒锂的制备方法,包括以下步骤:(1)将钒源、磷源、还原剂溶于水中;(2)水浴中搅拌;(3)调节pH至2-12;(4)将溶液移入到聚四氟乙烯罐中,置于热解罐中于220-280℃加热反应15-25h,冷却至室温;(5)过滤,真空烘干;(6)置于玛瑙研钵中研磨,然后在非氧化气氛下烧结,冷却至室温,得结晶态磷酸钒前驱体;(7)将结晶态磷酸钒前驱体与锂源、氟源混合,研磨均匀;(8)置于管式烧结炉中,在非氧化气氛下烧结,冷却到室温,即成。本发明所得正极材料微观形貌为厚度均达到纳米级的片状结构,碳均匀包覆在纳米片的表面,材料形貌特殊,表现出优异的电化学性能。
本实用新型公开了一种高纯锂盐生产过程中氢氧化锂溶液的储存装置,包括密闭储罐,所述密闭储罐上设有带有阀门的进料管和出料管,所述密闭储罐上还设有呼吸口,所述呼吸口连接有呼吸管,所述呼吸管上设有二氧化碳吸收装置。本实用新型通过在储罐的呼吸管上设有二氧化碳吸收剂装置,从而可以避免氢氧化锂溶液储存过程中吸收空气中的二氧化碳,进而避免由此引起的产品碳酸根超标或者吸收过多导致的管道堵塞问题的产生,能够稳定生产出合格的电池级乃至高纯级氢氧化锂产品。
本发明涉及锂离子负极材料技术领域,公开了一种石墨烯/氧化锌包覆实心碳球锂离子负极电极片制备方法及其扣式锂离子电池。本发明在石墨烯/氧化锌材料中引入实心碳球,将石墨烯优越的导电性能和孔隙结构丰富的实心碳球结合,二者产生协同作用,一方面氧化石墨烯和实心碳球之间可发生聚合反应,从而实心碳球与石墨烯之间有键合作用,可形成均匀的石墨烯‑实心碳球复合结构,另一方面实心碳球的存在还阻止了石墨烯片层的重新堆叠,有效地降低了石墨烯的团聚。
本发明属于锂离子电池技术领域,尤其涉及一种锂金属电池正极,包括正极集流体和正极活性物质层,所述正极活性物质层由正极浆料复合在所述正极集流体的至少一表面而成,所述正极浆料包括包覆有第一固态电解质颗粒的正极活性物质、第二固态电解质颗粒、导电剂和粘结剂。本发明通过采用第一固态电解质颗粒对正极活性材料包覆,提高了正极活性物质的热稳定性。本发明在正极浆料中添加有第二固态电解质颗粒,填充到第一固态电解质颗粒包覆的正极活性物质之间的空隙中,在注入液态电解液之后,可以减少正极活性物质层和集流体吸附液态电解液的比例,从而提高锂金属电池的热稳定性和安全性。
本发明公开了一种以磷酸铁为原料用纳米陶瓷研磨分散机制备锂离子电池正极材料LiFePO4的方法:先准备作为原料的锂源、磷酸铁和碳源,对原料采用纳米陶瓷研磨分散机把混合料磨成纳米级别,经干燥后将得到的混合料进行一次烧结或二次烧结,得到锂离子电池正极材料LiFePO4。本发明制得的LiFePO4粒径D50在1~6μm,比表面积在15~25m2/g,振实密度≥1.5g/cm3。本发明的工艺简单易控、生产成本低,得到的产品成分均匀、物化性能及电性能均优良。
本发明涉及锂离子负极材料技术领域,公开了一种石墨烯/实心碳球锂离子负极电极片制备方法及其扣式锂离子电池。本发明在石墨烯材料中引入实心碳球,将石墨烯优越的导电性能和孔隙结构丰富的实心碳球结合,二者产生协同作用,一方面氧化石墨烯和实心碳球之间可发生聚合反应,从而实心碳球与石墨烯之间有键合作用,可形成均匀的石墨烯‑实心碳球复合结构,另一方面实心碳球的存在还阻止了石墨烯片层的重新堆叠,有效地降低了石墨烯的团聚。本发明通过二次升温煅烧,避免快速加热会导致已经分散开的石墨烯再次结合成较厚的石墨,更有利于实心碳球和石墨烯二者之间复合产生协同作用。
本发明公开了一种适用于干燥锂离子电池正极材料的真空干燥机,包括筒体,筒体上设有搅拌装置,搅拌装置包括搅拌驱动机构,搅拌驱动机构的输出端连接一伸入筒体内的搅拌轴,搅拌轴的下端安装有搅拌桨,搅拌桨包括沿搅拌轴的周向设置的第一搅拌桨、第二搅拌桨和第三搅拌桨,第一搅拌桨上开有通孔,第二搅拌桨的下沿设有第一开口槽,第三搅拌桨的下沿设有第二开口槽,且从搅拌轴的轴线至第一开口槽的距离与至第二开口槽的距离不相等。本发明的真空干燥机通过设置第一搅拌桨、第二搅拌桨和第三搅拌桨,并在其上分别设置通孔、第一开口槽和第二开口槽,该真空干燥机用于干燥锂离子电池正极材料颗粒时,可有效提高搅拌分散均匀性、提高干燥效率。
本发明公开了一种浓度渐变的球形富锂正极材料的制备方法。本发明具有如下的技术效果,采用控制结晶共沉淀法制备一种浓度渐变的球形富锂正极材料,其Mn浓度从球形颗粒内心到表层逐渐增加,Ni和Co的浓度由球形颗粒的内心到表层逐渐降低。该材料不仅具有富锂正极材料高比容量的特点,而且通过Mn浓度渐变而获得更加优异的循环寿命及热稳定性,可满足电动汽车等领域对动力电源的使用需求。该制备工艺简单易控,原材料成本低廉且环境友好,可进行大规模产业化,具有很好的应用前景。
本发明涉及一种锂离子电池电解质盐草酸二氟硼酸锂(LiODFB)的制备方法。该方法包括草酸锂和三氟化硼乙醚在碳酸二甲酯(DMC)等溶剂中催化合成得到含草酸二氟硼酸锂和四氟硼酸锂(LiBF4)的液相混合物和少量未反应的草酸锂固体,过滤后蒸发结晶,得到粗产品LiODFB。粗产品LiODFB经过重结晶后符合锂离子电池电解质盐的要求。收集过滤后的母液和结晶母液,加入草酸和催化剂,催化转化得到主要含LiODFB的液相混合物,再返回到蒸发结晶。该工艺流程成本低廉,制备得到的草酸二氟硼酸锂(LiODFB)的纯度达到99.9%以上,产率在90%以上,操作方便,具有良好的经济效益和环境效益,适合工业化生产。
本发明属于锂离子电池材料领域,具体公开了一种表面包覆焦磷酸锂锂离子电池三元材料的制备方法,调控包含磷酸二氢锂、锂离子电池三元材料的原料溶液的pH为11~12,反应后经固液分离、洗涤、干燥得前驱体;将得到的前驱体在含氧气氛下450~550℃下保温退火,制得表面包覆有焦磷酸锂的锂离子电池三元材料。本发明还包括采用所述的制备的方法制得的三元材料以及其应用。本发明将所述的pH以及退火温度控制在所述的范围内,可以出人意料地获得具有良好晶相且稳定的焦磷酸锂包覆材料,该材料相比于非晶态可表现出更优异的电学性能,例如明显改善循环性能和倍率性能。
本发明提供了一种富锂锰基锂离子电池正极活性材料及制备方法,材料的结构通式为Li[Lix/3Mn2x/3M1-x]O2-2y(RO)y或Li[Lix/3Mn2x/3-M1-x]O2-1.5y(RO)y,其中M为过渡金属元素,其中0< x< 1,0< y< 0.1, RO为-3或-4价态的含氧弱酸根的复合阴离子;制备方法为所述前驱体沉淀物中加入固体含氧弱酸根盐化合物、锂源固体化合物,经研磨混合后;经两步热处理,得到目标产物。本发明材料可以抑制在循环过程中层状材料向尖晶石方向的转变,从而提高材料的循环性能;并且因缩短了Li+的扩散路径,提高材料的倍率性能。制备这种材料的方法与现有制备工艺的兼容性强,掺杂引入的方法简单。
本发明公开了一种以草酸亚铁为铁源用纳米陶瓷研磨分散机制备锂离子电池正极材料LiFePO4的方法:先准备用作原料的草酸亚铁、锂源、磷源和含掺杂金属元素化合物;对原料进行混合打浆、干燥,得到粉状前驱体;将粉状前驱体进行预烧;对预烧后的产物进行二次配料,再采用纳米陶瓷研磨分散机把混合料磨成纳米级别,经干燥后将得到的混合料进行烧结,得到锂离子电池正极材料LiFePO4。本发明制得的LiFePO4粒径D50在0.5~6μm,比表面积在15~25m2/g,振实密度≥1.5g/cm3。本发明的工艺简单易控、生产成本低,得到的产品成分均匀、物化性能及电性能均优良。
本发明公开一种钼/钴氧化物‑碳复合材料及其制备方法、锂离子电池负极极片和锂离子电池,首先选择钼盐和钴盐两种过渡金属盐为原料;然后采用滴加的方式将钴盐溶液和柠檬酸溶液依次加入钼盐溶液中,可使三种物质混合的更充分;接着通过中温水浴形成凝胶,中温水浴可加速凝胶的形成,而干燥是为了去除凝胶中的水分以便于下一步的进行;最后通过焙烧使柠檬酸分解、碳化形成无定形碳,同时使凝胶分解形成钼氧化物和钴氧化物,并使该钼氧化物和钴氧化物分散在所述无定形碳中。本发明提供的制备方法工艺简单,成本低,制得的材料具有高容量、高倍率性能以及长循环寿命,解决了现有锂离子电池负极材料容量低、倍率性能差、寿命短的技术问题。
本发明公开了一种从废金属锂电池回收锂的方法,包括以下步骤:S1准备原料:将废旧金属锂电池进行剥壳,S2破碎:将剥去外壳后的金属锂电池在保护气氛中进行破碎,S3沉淀:将破碎后的废旧电池投入反应器内加入凝絮剂,S4过滤:将沉淀的溶液和沉淀后的废渣进行过滤,S5分离:将S3中加入磷酸二辛酯和乙基己基磷酸单‑2‑乙基己酯进行分离。本发明采用氢氧化钠和阴离子阳离子混合树脂对锂溶液进行提纯,目的是为了避免在回收锂的过程使用烘烤或低温烘烤,其次提高了锂的回收率,另外,利用废金属锂电池来回收锂,节约了稀有资源,采用磷酸二辛酯和乙基己基磷酸单‑2‑乙基己酯的方式对锂进行回收,过程中安全性高。
本实用新型属于锂离子电池技术领域,尤其涉及一种软包锂离子电池用极耳,包括导电线材以及包裹导电线材的热熔绝缘筒,导电线材的两端外露出热熔绝缘筒。本实用新型将传统极耳的金属带替换成为导电线材,将传统极耳金属带上的极耳胶替换为包裹导电线材的热熔绝缘筒,热熔绝缘筒能够保护导电线材,同时具有绝缘性,而且能够与电池的外壳热熔实现极耳与电池外壳的密封,稳固导电线材使得导电线材在装配的过程中不易脱焊,也无需使用胶纸保护和固定导电线材的焊接位置。另外,本实用新型的极耳可通过导电线材直接连接极片和终端设备,只需焊接两次,能够显著降低电池的内阻,也提高生产了效率;而且不会增加电池厚度,能够提高电池的能量密度。
本发明涉及一种新型锂离子二次电池用负极材料—SiC。含有此活性物质的材料与锂片制成的锂离子二次电池的特征在于其充电电压平台和放电电压平台分别为0.6V和0.4V,理论比容量高达2680mAh/g,具有良好的充放电循环性能和环境友好无污染等特性。SiC是一种具有应用前景的高容量、高安全新型锂离子电池负极材料。
本发明具体涉及用于锂离子电池的磷酸铁锂/膨胀微晶石墨/碳复合材料的制备方法,将可溶性的锂化合物、铁化合物和磷酸盐按照适当比例加入去离子水中配制溶液,然后加入柠檬酸和膨胀微晶石墨。然后把表面附着有铁化合物的碳基置于混合液中浸渍数天,取出浸渍后的碳基烘干,然后在保护气氛下进行高温煅烧一段时间,后取出冷却;重复上述步骤,最后再依次低温碳化处理和高温合成处理,在基体表面得磷酸铁锂/膨胀微晶石墨/碳复合电极材料。本发明制备复合材料使用了廉价易得的膨胀微晶石墨替代石墨烯为原料,得到的复合材料具有优异的电化学性能,在保持充放电比容量不降的情况下,具有更好的循环稳定性,经济效益高,适合工业化应用。
本发明公开了一种锂电池、锂电池薄膜正极材料及其制备方法,该制备方法包括:氟化亚铁与碳纤维混合在不锈钢球磨罐中球磨,得到复合材料;将所述复合材料添加到PEO溶液中,加入导电剂一起搅拌,经干燥处理,得到薄膜正极材料。通过将氟化亚铁与碳纤维球磨混合,氟化亚铁均匀地吸附在碳纤维上,得到FeF2@CF复合材料,将复合材料、导电剂和PEO溶液混合后并搅拌,对得到的复合材料浆料经干燥处理,可得到薄膜正极材料;该方法简单可控,重复性极高,可大批量制备,成本低;而且通过FeF2@CF复合材料在PEO溶液中的均匀分散,干燥后得到的薄膜正极材料当中,复合材料周围被PEO紧紧包裹,在充放电过程时,抑制了正极材料的体积形变,提高了电化学性能。
本实用新型公开了一种粗级碳酸锂与粗级磷碳酸锂砂浆泵,包括支架,所述支架的上端固定连接有泵壳,所述泵壳的下端固定连接有出料管,所述出料管的右端固定连接有泄压装置,所述泵壳的内部设置有凸轮装置,所述泵壳的上端固定连接有进料管,所述进料管的上部设置有腔体,所述腔体内部通过电动机轴安装有齿轮。该实用新型粗级碳酸锂与粗级磷碳酸锂砂浆泵采用凸轮装置不仅能够输送砂浆,而且能够有效避免砂浆内颗粒导致的卡泵现象,延长了砂浆泵的使用寿命;采用泄压装置能够在砂浆泵遇到堵塞情况时自动泄压,保证了工作的继续进行;采用齿轮可以碾碎较大的颗粒,防止对砂浆泵造成损坏。
本发明公开了含三维互穿复合碳材料的锂硫电池正极材料及制备方法、含其的正极极片和锂硫电池。该复合碳材料具有三维互穿网络结构,是由碳纳米管和ZIF‑67衍生分级孔碳多面体内部互穿而成,以活化处理的碳纳米管为骨架,在其表面生长ZIF‑67,经高温烧结将ZIF‑67碳化为分级孔碳多面体。锂硫电池正极活性材料的制备方法包括:按质量比1:4称取上述复合碳材料和单质硫,均匀分散于CS2溶液中,搅拌至溶剂挥发完全,采用熔融法将混合物中的单质硫渗入到碳结构内部。正极极片由质量比为8:1:1的上述正极活性材料、超导碳、粘结剂组成。锂硫电池主要由该正极极片、隔膜、电解液和锂金属负极组成。
本发明公开了一种柔性锂金属电池亲锂碳纳米纤维骨架材料及其制备方法与应用。该骨架材料为柔性四氧化三钴纳米晶修饰的亲锂碳纳米纤维骨架,四氧化三钴纳米晶均匀锚定在碳纳米纤维表面,纤维直径大约为200~800nm,骨架材料内部结构三维连通,在0~180°内弯折,具有良好的柔性和机械加工性能,可以缓解锂负极在循环过程中产生的体积膨胀,循环过程中基本保持原有尺寸,并有做柔性器件的潜力。当其匹配柔性正极,组装的软包器件表现出良好的机械性能。在负极面容量N/正极面容量P之比为2.3的严苛条件下,采用该骨架匹配14mg cm‑2的高面载量LiFePO4正极组成的锂金属电池,可稳定循环440圈后仍能保持88.6%的比容量。
本实用新型公开了一种锂离子电池制备用电解液锂盐浓度调装置,涉及锂电池技术领域,包括浓度调节箱,所述浓度调节箱内部底面上活动连接有转轴一。本实用新型通过设置电机、转轴一、转轴二、固定块、卡块、滑动块、连接杆以及连接块之间的相互配合能够带动设置的搅拌杆一以及搅拌杆二进行转动,进而能够加快有机溶剂与电解液之间的充分混合,进而能够达到对电解液内部锂盐浓度进行调节的效果,通过设置的螺栓座能够使得侧面清洁块的安装过程变得更加方便,通过设置的侧面清洁块能够实现对浓度调节箱内部侧面的清洁过程。
本发明公开了一种含硼酸锂的锂离子电池电解液的制备方法,包括如下步骤:S1、选择第一溶剂对硼酸锂进行加热混合预处理形成含硼酸锂的混合溶液,其中第一溶剂为碳酸乙烯酯、碳酸甲乙酯、碳酸二乙酯、碳酸丙烯酯或碳酸二甲酯中的一种或多种;S2、制备电解液:通过计算往搅拌釜中加入第二溶剂、含硼酸锂的混合溶液以及添加剂,混合均匀后再加入六氟磷酸锂,混合均匀后灌装入库;本发明还提供了三种含硼酸锂的锂离子电池电解液的配方;采用硼酸锂预处理的方法具有不占用搅拌生产时间、缩短生产工序、不影响罐装时长、生产效率高的优点,其预处理中升高温度溶解硼酸锂的方式,可以提高硼酸锂的溶解速率和在溶剂中的稳定性,保证电解液的优秀品质。
一种使用磷酸铁(Ⅲ)锂制备磷酸铁锂(LEP)的方法,按Li3Fe2(PO4)3和铁源中铁的摩尔比=(1.01‑1.05):1配入原料,同时按总配料量的8‑15%配入碳源、掺杂金属氧化物,得到配料;然后把配料加入到球磨机中进行球磨,球磨过程使用永磁铁除铁,将除铁后的物料进行常规干燥,再在惰性气体保护下进行烧结,烧结制度分为转化温度430‑470℃,修正温度720‑780℃,固化温度为640‑680℃,然后冷却到95℃以下出炉,再经常规的破碎和包装得到磷酸铁锂产品。本发明工艺流程短,得到的磷酸铁具有产物均匀性好、纯度高等特点,电性能优越。
本发明涉及锂离子电池领域,公开了一种锂离子电池用隔膜的制备方法,方法包括:将PE层膜浸渍于多巴胺溶液中反应,水洗、干燥,得到聚多巴胺修饰的PE层膜;将聚多巴胺修饰的PE层置于两层PP层之间,热复合辊压,得到PP/PE/PP层膜;在PP/PE/PP层膜的两端面分别涂敷PVDF浆料、陶瓷浆料,干燥,得到PP/PE/PP复合隔膜。本方法通过采用聚多巴胺对PE层进行表面改性,改性后的聚多巴胺修饰的PE层能够改善锂离子电池的循环性能,通过在PP/PE/PP两侧端面分别涂覆陶瓷涂覆层以及PVDF涂覆层,陶瓷涂覆层可以提升隔膜的热稳定性,提升锂离子电池的安全性能。
本发明公开了一种钛酸锂包覆的锂镍锰氧的制备方法,包括:1)将Ni、Mn及M加入纯水中,配置成总摩尔浓度为1.0~3.0mol/L的混合溶液。2)在混合溶液中加入络合剂溶液,调pH值至9~12,得到悬浮溶液。3)氧化悬浮溶液,固体离心分离,干燥,得到前驱体粉末。4)将第一Li源化合物及前驱体粉末混合,进行第一次烧结,得到LiNi(0.5-x)Mn(1.5-y)M(x+y)O4。5)将LiNi(0.5-x)Mn(1.5-y)M(x+y)O4、第二Li源化合物、TiO2粉末,加纯水,干燥,得到混合固体材料。6)将混合固体材料进行二次烧结,得到的锂镍锰氧包覆电极材料。制备的锂镍锰氧包覆电极材料能够有效提高电极材料的循环性能及倍率性能。
本发明公开了一种锂离子电池的柔性负极与制备方法及锂离子电池,柔性负极包括碳系导电薄膜与柔性导电基底,碳系导电薄膜制备于柔性导电基底上,碳系导电薄膜的厚度为10nm~1μm,碳系导电薄膜为纯碳膜,碳系导电薄膜包括导电炭黑、石墨类、碳纳米管、C60,或者其不同比例的混合物。该柔性导电基底上制备的碳系导电薄膜适用于多种形式的锂离子电池,具有普遍适用性,且电化学稳定性高,从而使电池的安全性得以显著提升;大大降低了电池的质量,同时使锂电池更加便携。
本实用新型提供一种软包锂电池极耳及软包锂电池,包括金属片和极耳胶,所述极耳胶包覆在所述金属片上,所述金属片包括包覆所述极耳胶的第一部分,以及位于第一部分两端的第二部分和第三部分,所述金属片的第一部分表面设有凹点。本实用新型通过在软包锂电池极耳的金属片表面设置凹点,在极耳胶和金属片热压复合的过程中,熔融状态下的极耳胶会向金属片表面的凹点内渗透,提升软包锂电池的电芯极耳的金属片表面与极耳胶的封装强度,降低电芯电解液泄露的风险。
本发明公开了一种利用低浓度含锂溶液制备氢氧化锂的方法,该方法是将胶凝剂与氢氧化钠和/氢氧化钾通过溶解、低温处理、交联获得胶球,再利用胶球实现低浓度含锂溶液中的锂吸附富集和转化,吸附锂离子的胶球经煅烧可以获得氢氧化锂产品;该方法实现了直接从低浓度含锂溶液中制备氢氧化锂产品,且锂回收率高,与传统方法相比,无需高温浓缩结晶过程,且沉淀过程无需加温,简化了工艺过程,缩短了工艺时间,降低了能耗,大大提高了氢氧化锂制备效率。
中冶有色为您提供最新的湖南有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!