本发明属于材料合成领域,具体涉及一种氟化氨基锂钾的合成方法。针对目前储氢材料领域通过添加金属阳离子以及卤素原子对金属‑氮‑氢体系影响的研究,本发明公开了一种氟化氨基锂钾的合成方法。所述方法是以氨基锂和氟化钾为原料,在氨气气氛下进行机械球磨反应,进而合成氟化氨基锂钾。本发明利用机械球磨的方法合成了新型物质氟化氨基锂钾,工艺简单,为目前储氢材料的研究提供了一种新的思路。
本发明提供一种锂电池传送装置,属于锂电池生产技术领域,包括底座,所述底座上部两侧设有横向滑轨,所述底座一端侧面安装有操作台,所述操作台上部设有升降电机,其特征在于,所述操作台后部两侧设有竖向滑轨,所述竖向滑轨内部嵌套有升降滑块,所述升降滑块上部固定连接有联动轴,所述联动轴上部设有升降链条,所述升降链条缠绕于链条转轴室中,所述链条转轴室侧面连接有升降电机。本发明通过保护座和存储座内缓冲环等减震结构实现对存放在存储座中的锂电池横竖向受力的充分缓冲吸收,确保传输的安全,防止锂电池损坏;通过升降电机改变传送带长度,横向伸缩电机绷紧传送带,以此达到根据传输空间变动传送带长度的目的,便捷锂电池传送。
本发明公开一种锂离子动力电池用电解液,其组成成分包括锂盐、有机溶剂和添加剂, 其中,所述的锂盐由LiODFB与LiPF6、LiClO4、LiBF4、LiAsF6、LiCF3SO3、LiN(SO2CF3)2、 LiBOB中的至少一种组成;本发明还公开了此电解液的制备方法,包括(1)将有机溶剂除杂 除水后混合;(2)混合有机溶剂内加入锂盐并搅拌均匀至溶液澄清、无沉淀,然后静置至 少半个小时,得到混合溶液;(3)混合溶液内加入添加剂并搅拌均匀后静置,得到所需电 解液。本发明改善了电池高温下的循环性能,并防止了电解液分解导致的气胀产生,可显著 提升锂离子动力电池在高温下的容量保持率的长寿命功能;同时,该电解液的制备方法简单 ,易于工业化生产。
本发明涉及锂电池隔膜材料技术领域,针对现有技术的锂电池易弯曲变形及隔膜界面处的内阻较大的问题,公开了一种隔膜及使用该隔膜的锂电池,一种隔膜,所述隔膜至少在一面上带有涂层,当隔膜两面都带有涂层的时候,分别为A面与B面,两面的涂层与基膜的粘附力存在显著的差异。所述隔膜及使用该隔膜的锂电池的制备方法,包括如下制备步骤:涂料制备;涂覆;制得电池结构等三个步骤,本发明的隔膜两面的涂层存在差异,这样形成的电芯结构不会限制正负极片本身存在的内应力和形变,从而避免了因为把正极、隔膜、负极直接粘结在一起而导致的电芯的形变和不平整,能够更好地匹配正负极的特性,从而进一步优化电池的容量发挥、循环寿命及安全性。
一种复合钼酸锂改性的Li2ZnTi3O8纳米碳球电极材料的制备方法,包括以下步骤:步骤一:制备纳米高分子球;步骤二:钼酸锂改性的Li2ZnTi3O8;步骤三:制备复合钼酸锂改性的Li2ZnTi3O8的纳米碳球电极材料。本发明公开的一种纳米碳球电极材料,克服传统电极材料电阻大的缺陷,钼酸锂改性的Li2ZnTi3O8具有较高的电导率和电化学稳定性,可以使得纳米碳球电极材料的电容增大纳米碳球电极材料具有较大的比表面积,有利于电子离子的传输。本发明公开的制备方法简单,制备的电极材料电阻率低,为超级电容器材料提供了高的比电容,并且容易操作,设备要求低,具有很好的应用前景。
本发明公开了一种准固态锂电池及其制备方法,该准固态锂电池包括负极、正极和隔膜,还包括弥散于负极、正极与隔膜三者表面与三者空隙间的准固态电解质;该准固态电解质包括聚合物相,和分散在聚合物相内的陶瓷电解质、锂盐与阻燃性有机溶剂;该聚合物相由复合的丙烯酸酯类单体经原位聚合而成;复合的丙烯酸酯类单体包括星状丙烯酸酯类单体和链状丙烯酸酯类单体。本发明公开的准固态锂电池即解决了液态电解液减低电池安全性的问题,还避免了对固态的聚合物电解质的溶解导致的电池循环性能下降的问题。从而具备优异的安全性能、高电导率以及优异的循环稳定性能。
本发明公开了一种硫化锂粉体的合成方法,该合成方法包括如下步骤:(1)在惰性气氛保护下,将硫化硅与氧化锂均匀混合,转移至反应器并密封;(2)将反应器内的混合物加热保温反应一定时间;(3)待反应结束后降至室温,将固体产物从反应器中取出,溶剂法回收过量的硫化硅;(4)溶剂法分离剩余固体产物即得到硫化锂粉体。本发明所述的硫化锂粉体的合成方法具有工艺简单、成本低、易于工业化的生产特点。
本发明提供了一种钛、钒离子共掺杂的磷酸铁锂材料及其制备方法,它将锂源、铁源、磷源与掺杂剂按离子的摩尔比Li+∶铁离子∶Ti4+∶V5+∶PO43-=1∶1-x-y∶x∶y∶1称量,加入碳源和混合介质,采用液相球磨混合均匀,置于氮气或氩气气氛中,升温至350-450℃进行预烧结,保温4-6小时,升温至650-750℃进行煅烧,保温8-12小时;冷却至室温,研磨,即得钛、钒离子共掺杂的磷酸铁锂材料,通式为LiFe1-x-yTixVy(PO4)/C,其中0.005≤x≤0.01,0.005≤y≤0.02,0.01≤x+y≤0.03。本磷酸铁锂材料有更高的放电比容量,更优越的倍率放电性能和循环稳定性,材料结晶完美、粒径较小。本发明制备方法工艺简单、能耗低,所得材料电化学性能优越、可调控性强,便于进行工业化大生产。
本发明涉及一种锂离子电池用注液和安全两用阀。目前所采用的安全阀一旦打开电池也随之报废,注液孔也无法实现二次加液。本发明包括阀体和阀芯,顶盖与阀体的顶端连接,阀体的圆筒部分的内壁攻有螺纹,底盖部分的中心沿轴向开有注液孔;压盖设置在阀体的圆筒部分内,沿轴向开有一级排气孔,底面开有凹槽;顶盖沿轴向开有二级排气孔,顶盖与压盖之间设置有圆柱形的电解液吸收垫;阀芯设置在压盖的凹槽与注液孔之间。本发明的两用阀具有可恢复功能,能大大提高锂离子电池的安全性,防止电池出现鼓壳现象,并能有效延长电池的工作寿命,还可以实现二次加液。
本发明公开了一种醇铝水解法制备氧化铝包覆富锂锰基材料的方法及其应用,所述方法包括:将富锂锰基材料粉体分散在醇铝/醇溶液中,在搅拌下逐渐加入水,使醇铝水解形成凝胶包覆在富锂锰基材料粉体表面;反应产物经过过滤、干燥、煅烧,制备得到氧化铝氧化铝包覆富锂锰基材料。本发明提供了所述氧化铝包覆富锂锰基材料作为锂离子电池正极材料的应用。本发明方法操作简便、容易控制、成本低、适于工业化生产,且能够有效地在富锂锰基材料粉体表面形成均匀致密的氧化铝包覆层,所得的氧化铝包覆富锂锰基材料具有良好的循环稳定性和倍率性能,可作为锂离子电池的正极材料,广泛应用于高性能锂离子电池领域。
本发明公开了一种基于高斯过程回归的锂电池剩余使用寿命预测方法,包括如下步骤:1)监测和采集电压变化数据进行处理,同时采集锂电池的剩余使用寿命数据作为电压数据的标签值;2)构建高斯过程回归算法模型,针对小样本数据和互相关联的特征等生成对应的一系列符合联合正态分布的随机变量,构建数据与标签值之间的非线性映射,完成建模过程;3)使高斯过程回归算法生成的相关联合变量对其进行映射和充分训练,并将训练得到的高斯过程回归模型用于锂电池剩余使用寿命的预测。本发明将高斯过程回归算法引入锂电池剩余使用寿命预测领域,利用其较低的模型复杂度和较高的小样本拟合能力,提高锂电池剩余使用寿命的预测准确率。
本发明提供一种锂电池储能运营效益影响因子分析方法,包括建立锂电池储能系统数学分析模型,该分析模型,考虑在锂电池储能系统投运之后,以储能系统的电池健康度、系统能量损耗率、放电深度作为影响运营效益的关键指标。本发明构建了一个用于分析锂电池储能系统运营效益影响因子的数学模型,通过控制变量法,找出核心影响因子,指导锂电池储能系统的运维工作。该模型不仅能够提高运维工作的效率,带来运营的高收益,还可帮助储能系统更稳定地投运,缓解电网压力,为企业带来经济效益和社会效益的双重提升。
本发明公开了一种基于液态型金属氯化物正极的锂电池,属于锂电池技术领域。锂电池内部腔体被固态电解质隔膜分割为两个独立的腔室;一侧的腔室中注有有机电解液,且有机电解液连接金属锂负极;另一侧的腔室中注有金属氯化物溶液作为液态正极,且金属氯化物溶液连接正极集流体;所述的金属氯化物不包括碱金属氯化物和碱土金属氯化物。本发明的原材料价格便宜且丰富,电池装配简单,适合于大规模工业化生产;且液态正极材料理论容量高,从而极大提高新型的锂电池理论能量密度。
本发明涉及新能源锂电池生产领域,尤其涉及一种锂电池电芯底部胶纸的粘贴装置。一种锂电池电芯底部胶纸的粘贴装置,该装置包括机架组件、胶纸定长切割装置和胶纸粘附装置;胶纸定长切割装置固定设置在机架组件,安装于第一工作台正上方,用于切割出定长的胶纸,以供胶纸粘附装置粘贴在电芯上,胶纸粘附装置固定设置在机架组件,与胶纸定长切割装置相衔接,用于将贴纸粘附在电芯的底部;该装置完成了方形锂离子电芯贴底部胶纸,提高了自动化水平,使方形锂电池的生产更加智能化。
本发明涉及一种层状化合物(WTi2)AlC2及其制备方法和电化学应用以及利用该化合物制备的锂离子电池负极材料,该物质经过HF酸处理后得到(WTi2)C2,可用作锂离子电池负极材料。本发明所述的锂离子负极材料是由WC和Ti2AlC利用高温固相反应法制得的一种四元化合物(WTi2)AlC2,该化合物再经HF酸处理后得到(WTi2)C2粉末,该粉末涂覆于金属衬底上可直接成为锂离子电池的负极。本发明制备方法工艺简单、成本低廉,可进行大面积制备,实现大规模生产。制得的锂离子电池充放电循环性能稳定且寿命可靠。
本发明公开了一种基于泡沫镍生长的石墨烯为负极的锂离子电池制作过程。目前的硅基、钛基、锡基和过渡金属氧化物作为锂离子电池负极,主要循环稳定性比较差等问题,并在嵌、脱锂的过程中存在严重的体积效应。本发明首先利用化学气相沉积技术,在泡沫镍上生长完多层石墨烯,利用冲片机将其冲切成一定尺寸的圆形负极薄片,按照支撑体、圆形负极薄片、隔膜、圆形正极薄片、支撑体的顺序依次放入电池外壳内部,并用压片机压合电池外壳和盖帽,完成锂电池制作过程。本发明提供的基于泡沫镍生长的石墨烯为负极的锂离子电池,工艺成熟,制作简单,电池能量密度高,可以实现充放电性能和循环寿命的显著提升,易于工业推广使用。
本发明公开了一种锂离子电池均衡模块,包括至少两个基本电池单元;各个基本电池单元串联使用;基本电池单元包括至少两个串联的锂离子电池和与锂离子电池并联的均衡蓄电池;充电时,在接近预设最高电压值时,抑制锂离子电池在充电末期电压快速上降,均衡各个基本电池单元之间的电压;放电时,在接近预设最低电压值时,抑制锂离子电池在放电末期电压快速下降,均衡各个基本电池单元之间的电压。本发明通过以均衡蓄电池作为能量载体与锂离子电池并联,无需关联SOC估算系统,即可达到充放电过程中各基本电池单元之间电压均衡的目的,不仅提高有效容量,而且增加锂离子电池的使用寿命,降低成本。
本实用新型涉及一种汽车用锂离子电池壳体的正负极隔离结构。汽车用锂离子电池的片状正、负极连接端子之间的距离通常比较近,导致汽车用锂离子电池的正极和负极在装配、测试、维护和维修等过程中容易出现短路的情况。本实用新型的特点在于:包括隔离墙、左侧端板、右侧端板和壳体顶板,隔离墙的底部、左侧端板的底部和右侧端板的底部均固定在壳体顶板上,隔离墙上设置有隔离墙过线槽,隔离墙的两端分别固定在左侧端板和右侧端板上,壳体顶板上设有铜条支撑固定台,左侧端板上设有左过线槽,左过线槽和铜条支撑固定台分别位于隔离墙的两侧,右过线槽和铜条支撑固定台分别位于隔离墙的两侧。本实用新型能有效隔离汽车用锂离子电池的正极和负极。
本申请公开了一种基于磁传感的锂离子电池电荷状态非接触监测装置及方法,其原理在于锂离子电池充放电过程中的过渡性金属离子在外加偏置磁场的作用下被磁化,其磁矩方向会沿磁场方向排列,从而产生磁性变化,而且不同过渡性金属离子的磁矩大小不同,其被磁化后产生的磁性强度变化也不同。本申请可以对锂离子电池电量以及充放电过程中的化学反应过程进行直接监测,并且不需要将待测锂离子电池接入监测电路。本申请还提供了一种基于本方法的锂离子电池监测方案,该方案所使用监测装置小型便携,适用于锂离子电池的商业应用和实验研究。
本发明提供了一种AGV智能仓储机器人BMS三元锂电池浅放放电过程中动态容量修正方法,属于智能机器人领域。它解决了传统锂电池容量计算方法误差较大、可靠性差的问题。本AGV智能仓储机器人BMS三元锂电池浅放放电过程中动态容量修正方法提出了一种含三元锂电池AVG机器人现场搬运货物时最小间断时间情况下修正SOC的方法,发挥BMS所具有的采样运算功能,提出了包含使锂电池使用寿命最久、AGV连续可靠工作为目标的容量修正方法,运用放电过程中电流调整因子对动态容量进行修正,可以及时准确地获得锂电池组剩余容量、降低AGV用电失误率,在保证BMS计算可靠性、AGV运行安全性的情况下,还可以增加电池组寿命。本发明具有降低AGV用电失误率和增加电池组寿命的优点。
本发明是一种基于石墨烯的锂离子电池负极及其制备工艺,本工艺通过制备石墨掺杂石墨烯为活性物质的负极浆料,在铜箔上涂覆制备得到锂离子电池负极。该工艺采用了一种新型聚苯乙烯-聚异戊二烯-聚苯乙烯嵌段聚合物粘结剂,对石墨烯有极高粘结力,并可提供高弹性,提高基于石墨烯的锂离子电池负极性能,得到的高能量密度型负极在0.2C充放电时具备410?mAh/g能量密度,功率型负极在5C充放电时具备310?mAh/g能量密度。该工艺原料经济易得,工艺简单、环保。
本发明提供了一种高倍率长寿命锂离子电池正极材料TiN体相掺杂LiFePO4的生产方法。它包括以下步骤:第一步为将铁粉电化学腐蚀形成铁源,第二步为混料,烘干,破碎筛分过程,将铁源、磷源、锂源、碳源、掺杂物或掺杂物原料、乙醇在搅拌磨中搅拌均匀,泵出浆料后在真空干燥箱中烘干,烘干后块状前驱体粉碎处理;第三步为磷酸铁锂焙烧,制得锂离子电池正极材料;所述掺杂物为TiN。本发明提高了磷酸铁锂的电导率,从而极大地提高了磷酸铁锂的倍率充放电能力,提升了材料循环性能和倍率性能。
本发明涉及一种锂离子电池技术领域,为解决传统的锂电池液态电解液容易出现循环寿命低,安全性能较差等缺点,本发明提出一种凝胶电解液锂离子电池的制作方法,所述的凝胶电解液锂电池包括壳体、正极片、负极片、凝胶电解液、隔膜组成,本发明改善目前液态电解液锂离子电池的不足,提供了一种安全性能较高,循环性能较好的凝胶电解液锂离子电池。
本发明公开了一种高性能锂吸附剂的制备方法,采该方法包括以下步骤:(1)在1L三口烧瓶中加入100-500mL去离子水,并调节pH=3-7;(2)在40-70℃下,将25-150克有机铝加入烧瓶中,水解得到活性氢氧化铝;并在水解0.5小时后,逐滴加入3倍以上有机铝的锂盐溶液或锂盐固体,反应1-2小时所得产物为LiCl·2Al(OH)3·xH2O活性物质;(3)将得到的含有氢氧化铝活性物质过滤,并用95%乙醇洗涤两次,得到固体沉淀物和滤液;(4)、将固体沉淀物在30-70℃下烘干。本发明有益的效果:本发明所制备的氢氧化铝活性物质,从根本上解决了传统利用固相混合制备氢氧化铝活性物质反应不均的问题,并且吸附速度快,具有较大的比表面积,吸附剂寿命较长。
本发明公开的圆柱型锂离子电池负极盖帽,包括盖板和铜螺柱,铜螺柱中部具有圆柱形凸环,底部为正方体,盖板铆合于铜螺柱的圆柱形凸环和正方体之间,在盖板与圆柱形凸环间有不锈钢垫片,在盖板与不锈钢垫片以及铜螺柱的接触面上有塑料垫片,盖板上设有防爆口,圆周形盖板上部直径大于下部直径形成环形台阶。采用该锂离子电池负极盖帽组装的大容量锂离子电池壳体力学强度高、散热性好,使用安全,并提高了电池之间联接的可靠性。
本实用新型公开了一种锂电转换控制系统,包括固定板、连接槽、正极连接块、负极连接簧、锂电池组、支撑板、开关、控制器、转换器、信号转换模块、端子、晶体管、稳定电阻、电感器、稳压模块、指示灯、保护电路、连接板、底座、安装孔、指示牌和底板,所述底板的上表面固定连接有固定板,所述固定板的上表面开设有连接槽,所述连接槽的内侧壁固定连接有正极连接块。该锂电转换控制系统,通过转换器和晶体管的配合,能够对锂电进行转换,提高转换率,通过稳定电阻稳定该电路的电流,避免该锂电转换系统出现波动,提高该电路的稳定性,通过电感器稳定该电路的输出电量和接收电量,进一步的加强该电路的稳定性,提高该系统的转换率。
本实用新型公开了一种锂电充电器。它包括壳体,壳体上设有用于放置锂电电池包的凹槽,凹槽内设有充电接口、电压信号采集接口以及温度信号采集接口,凹槽底部设有风机,壳体上还设有交流输入接口、高压整流滤波电路、电压变换电路、开关模块和控制器,交流输入接口与高压整流滤波电路的输入端电连接,高压整流滤波电路的输出端与电压变换电路的输入端电连接,电压变换电路的输出端与开关模块的输入端电连接,开关模块的输出端与充电接口电连接,控制器分别与电压信号采集接口、温度信号采集接口、风机、开关模块的控制端电连接。本实用新型能够在锂电电池包温度异常或锂电电池包的单体电池电压异常时停止充电,保护锂电电池包充电安全。
本发明涉及一种锂电池模块配组方法,其包括针对锂电池模块的采集数据曲线配组步骤和计算数据曲线配组步骤,采集数据曲线配组是将待配组的锂电池模块的采集数据曲线与基准曲线之间的相关系数和欧式距离进行一一对比,两者差值在允许偏差范围内的锂电池模块组成新的一组锂电池模块;计算数据曲线配组是将待配组的锂电池模块的计算数据曲线与基准曲线之间的相关系数和欧式距离进行一一对比,两者差值在允许偏差范围内的锂电池模块组成新的一组锂电池模块。本发明提供的锂电池模块配组方法,能将一致性较高的锂电池模块组使用同一辆电动汽车中,可以提高该电动汽车内锂电池模块组使用性能,使其寿命变长。
本发明公开了一种锂离子动力电池评估及再利用方法,包括以下步骤:S1:将锂离子动力电池在一定条件下搁置若干天;S2:对锂离子动力电池进行实际容量测试;S3:对锂离子动力电池进行直流内阻测试;S4:依据S2、S3的测试结果对锂离子动力电池进行分组归类,分为功率老化组和能量老化组;S5:对能量老化组中的锂离子动力电池进行再利用。本发明对锂离子动力电池进行实际容量损失和直流内阻评估,根据测试数据将电池进行分组,将功率老化组的锂离子动力电池与超级电容器通过升压变换器并联,进行锂离子动力电池的二次利用,显著改善了电流峰值荷载能力,延长了锂离子动力电池二次使用寿命,有利于提高经济价值。
中冶有色为您提供最新的浙江杭州有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!