本发明提供了一种废旧磷酸铁锂电池中高效回收锂的方法,该方法将废旧磷酸铁锂电池焙烧分选,得到含锂正极粉料,含锂粉料在氧化条件下与含钙碱性溶液反应,将铁和磷酸根转换为不溶于水的化合物,将锂转换为溶于水的氢氧化锂,过滤后得到氢氧化锂溶液,可用于进一步制备氢氧化锂或者碳酸锂产品;该发明摈弃了废旧电池回收过程中常规采用的湿法酸浸,避免了强酸的使用,因此避免了大量高盐废水的产生;该工艺选择性浸出锂元素,从源头上避免了铁杂质进入浸出液的问题,最终获得的锂产品纯度高,而且流程短,化学药剂来源广泛,工艺条件简单,可一步法得到高纯锂产品,极大的提高了废旧磷酸铁锂电池的回收效率,具有良好的工业应用前景。
本发明针对机械法处理线路板过程中存在的不同组分混杂、分离不彻底、能耗高、破碎设备磨损大的缺点,提供一种线路板水热处理分离方法,其核心是使处理后线路板中环氧树脂脆化,失去粘接能力,经破碎后获得颗粒状或片状的铜箔与丝状的玻璃纤维。铜箔可以进一步用于回收贵金属,玻璃纤维可以用于回收阻燃剂,然后可以作为建材增强材料、树脂增强材料和催化剂载体等使用。
一种用于连续吸附交换设备的自密封阀系统,包括凸型水塞系统和凹型水塞系统;所述凸型水塞系统的一端与所述凹型水塞系统的一端密封连通;所述凸型水塞系统的另一端与所述凹型水塞系统的另一端分别连通到固定阀中的水道和活动阀中的水道,或者所述凸型水塞系统的另一端与所述凹型水塞系统的另一端分别连通到活动阀中的水道和固定阀中的水道。本发明的自密封阀系统,能有效克服传统连续离子交换床吸附过程中易出现偏流现象,避免造成部分树脂空置浪费,提高了树脂的使用效率;解决了现有技术中在解吸、再生过程中化学试剂的用量多,浪费严重,废液排放量大,运行的周期较长,连接的管路及阀门多,操作繁琐等问题。
本发明涉及一种自高硅酸性液中分离回收硅的方法。高硅酸性液中的硅以硅溶胶形式存在,由于其呈胶状、粘度大,导致硅与浸出液的分离异常困难,严重影响了酸法处理高硅矿物的工业化进程。本发明提出将高硅酸性液在高温保温一定时间,使硅溶胶长大及其部分脱水,从而改变硅溶胶的过滤性能,使硅容易从酸性液中过滤除去,对硅溶胶滤饼干燥并洗涤后,生产的初级产品中二氧化硅含量大于95%。
本发明涉及一种具有封闭循环的湿法电解还原清洁回收铅的方法,利用电化学原理,通过建立封闭的电解液循环、活化剂对含铅物料的活化和高效阳极的催化析氧作用来实现固液两相一步还原反应将废铅蓄电池或铅蓄电池生产厂的含铅废料直接转化为金属铅的一种方法。这是一种新型的环保节能型湿法电解还原铅方法,可以进行大规模产业化应用的新技术。
本发明涉及一种从海绵铜渣中生物氧化回收铜和富集贵金属的工艺。海绵铜渣中的铜以复杂难溶的砷硫化物形式存在,采用化学氧化浸出,存在浸出剂用量大、成本高、铜浸出率低、贵金属富集比低等缺点。本发明利用生物氧化浸出海绵铜渣,铜的浸出率能达到92%以上,同时渣中金银铂钯的富集比能得到有效提高。该方法具有金属资源回收率高、投资成本低、反应条件温和、不产生废气、不引入氯离子、对环境友好等特点。
本发明涉及一种多组分金属物质的物理分离方法和装置,属于物质分离科学领域。将含有多组分金属及金属间化合物的原料加入真空电子束炉中的坩埚内,抽真空;采用电子束熔炼的方法进行加热,金属粒子被汽化,形成金属蒸汽;利用持续的射频空心阴极放电的方法,电离形成的金属蒸汽,使其形成低温等离子体;在等离子体周围施加正交的磁场,不同金属离子的质荷比不同,在相同的正交磁场内形成不同的路径,以此分离不同金属;在坩埚周围设置金属离子接收板,收集不同种类金属离子飞出后形成的金属粉末。整个过程是物理分离过程,环境友好,易于实现自动化工业生产。
公开一种除去稀土沉淀物中硫酸根的方法,包括:形成溶液步骤,将预处理的稀土沉淀物配制成含硫酸根离子和稀土离子的溶液;沉淀步骤,以草酸盐为沉淀剂添加到所述溶液中进行沉淀反应,得到沉淀物;及提纯步骤,用盐酸将所述沉淀物溶解,然后以碳酸盐为沉淀剂进行二次沉淀。本发明的方法有效地提高了稀土氧化物的纯度;简化了稀土沉淀物纯化的工艺流程;降低了能耗;避免了废渣固体废弃物的产生。
公开一种稀土氧化物的提纯方法,形成溶液步骤,配制含硫酸根离子和稀土离子的溶液;沉淀步骤,以草酸盐为沉淀剂添加到所述溶液中进行沉淀反应;干燥焙烧步骤,将制得的沉淀物经过洗涤干燥后,焙烧得到粗制稀土氧化物;及除去硫酸根步骤,用酸性溶液洗涤所述粗制稀土氧化物。本发明的稀土氧化物的提纯方法,利用草酸盐作为沉淀剂,对含稀土离子的溶液进行沉淀处理,过滤、干燥、焙烧后获得粗制稀土氧化物粉体,然后用酸性溶液洗涤处理该粗制稀土氧化物得到除去硫酸根的稀土氧化物粉体。本发明的提纯方法有效地提高了稀土氧化物的纯度;简化了稀土沉淀物纯化的工艺流程;降低了能耗;避免了废渣固体废弃物的产生。
本发明公开了一种从高铁锌精矿酸浸液中回收铟的方法。该方法包括以下步骤:(1)将高铁锌精矿酸浸液置于还原槽中,加热至95~98℃,向其中加入锌精矿,搅拌,使得含高铁锌精矿的酸浸液中三价铁离子的质量体积比含量达到200mg/L以下;(2)用2mol/L的硫酸溶液和2mol/L的氢氧化钠溶液调节所得溶液的pH值为1.5~2.0,然后以P204为有机相进行萃取;(3)萃余液返回萃取体系回用,富铟液用15~20%的盐酸溶液进行反萃,反萃液经中和水解净化除杂后,再用铝板置换可得到海绵铟,海绵铟经进一步电解提纯后得到精铟。本发明的方法克服了采用铁屑还原铁离子的排渣量大、采用锌来还原铁离子的成本较高、以及硫酸亚铁的结晶产生阻塞管道的问题,且确保了铟的萃取率。 1
本发明公开一种废旧电子产品处理的系统和方法。该系统包括:预处理单元、分离单元、混合单元、热解单元、油气分离净化单元和电石生产单元。利用该系统处理废旧电子产品的方法包括以下步骤:(1)预处理:废旧电子产品拆解和破碎;(2)分离:预处理产物细破碎、分选分离得到非金属产物;(3)混合:非金属产物与钙基原料混合;(4)热解:混合后产物热解生成高温油气和固体含碳物,收集高温油气,固体含碳物出料;(5)油气分离净化:高温油气分离得到不凝气,不凝气经处理得热解气;(6)电石生产:固体含碳物在电石炉反应得到电石。本发明将废旧电子产品的回收和电石生产耦合,实现废旧电子产品的资源化回收利用且降低了电石生产成本。
本发明公开一种废旧的电子产品处理的系统和方法。该系统包括:预处理单元、分离单元、热解单元、混合单元、油气分离净化单元和电石生产单元。利用该系统处理废旧电子产品的方法包括以下步骤:(1)预处理:废旧电子产品拆解和破碎;(2)分离:预处理产物细破碎、分选分离得到非金属产物;(3)热解:非金属产物热解生成高温油气和固体含碳物,收集高温油气,固体含碳物出料;(4)混合:固体含碳物与钙基原料混合;(5)电石生产:混合后产物在电石炉反应得到电石。本发明将废旧电子产品的回收和电石生产耦合,实现废旧电子产品的资源化回收利用且降低了电石生产成本。
本发明涉及一种自吸式多通道相分散萃取装置:萃取罐内安装轴壁上带进料口的空心转轴及固定于转轴中部或底端的液相分散器,转轴和马达相连,液相分散器为一侧壁上有出料口的空心圆柱体,其腔体与转轴的空腔相通,液相分散器的上面或下面固定安装一个、二个或多个套筒,能在较低转速下产生负压,将轻相/或重相均匀地分散于另一相中,避免了乳化现象,可在两相界面清晰的情况下连续操作,解决了混合溶剂相分离难的问题。
一种从废旧电路板中提金的方法,具体步骤为:在碘化钾溶液中加入氧化剂和缓蚀剂,配置成碘化钾溶液混合液;把线路基板浸泡在碘化钾溶液混合液内,在10~80℃的条件下,反应3-5分钟,并且伴有搅拌,然后用清水清洗线路基板,所得的清洗液流入碘化钾溶液混合液中获得清洗混合液,然后将清洗混合液过滤、并经离子交换吸附杂质离子后再加入还原剂,经过还原反应得到海绵金。本发明采用无毒的碘化物浸金的方法,实现了较高的浸金率,实现了电子废弃物的无害化、减量化和资源化处置,并且处理费用较低;本发明中使用后的碘化物溶液,经过还原后能够再继续回收利用,并且再次浸金的效果不变,能够进一步减少环境污染,降低处理费用。
本发明公开了一种处理线路板的方法和系统,该方法包括:(1)将线路板进行破碎处理;(2)将经过破碎处理的线路板在辐射管旋转床中进行热解处理,以便分别得到高温油气和固体混合物;(3)将所得到的高温油气进行第一分离处理,以便分别得到热解油和热解气,并将热解气供给至辐射管旋转床的燃烧器作为燃料;(4)将烟气与所得到固体混合物接触,以便对固体混合物进行活化处理,以便将固体混合物中的热解炭化物转化为活性炭;以及(5)将所得到的活化处理产物进行第二分离处理,以便分别获得活性炭、金属和无机玻璃纤维。根据本发明实施例的处理线路板的方法可以实现线路板的回收处理资源和能源的最大化利用。
本发明提供了一种废旧锂离子电池回收方法及装置。该方法包括以下步骤:步骤S1,将混有石英砂的废旧锂离子电池进行破碎处理,得到混合物;步骤S2,在氮气或惰性气体的保护下,将混合物进行热解反应,得到固态剩余物和热解气;步骤S3,收集破碎处理过程中产生的烟气和热解气,形成待处理混合气;步骤S4,依次对待处理混合气进行物理吸附、碱吸收。利用本发明提供的方法处理废旧锂离子电池,能够有效解决破碎废旧锂离子电池时容易起火、处理过程中存在有毒气体排放的问题,使电池的处理更加安全、简便、绿色。
本发明涉及金属离子萃取技术领域,具体地,涉及一种改进的聚合物基三液相体系萃取金属的方法。该方法包括以下步骤:在含多种待萃金属离子的水溶液中,加入成相聚合物和经EDTA修饰的聚合物、无机强电解质盐和与水不互溶的有机溶剂,调节混合溶液pH值,充分混合、离心分相,得到上中下三层共存的液-液-液三相体系,不同金属离子由于与EDTA结合能力的差异分别富集到上、中或下相中。本发明充分发挥了有机溶剂相和EDTA修饰的聚合物的金属萃取性能的协同,通过在不同液相间的差别分配,大大提高了广谱萃取剂和配位剂的萃取选择性,在环境样品分析测试和资源回收方面具有广阔的应用前景。
本发明公开了一种处理褐铁型红土镍矿的方法,其包括以下步骤:(1)原矿熟化:将褐铁型红土镍矿原矿进行破磨,处理后的矿含水5~30%,加入浓硫酸并混匀后进行熟化焙烧,得到熟化料;(2)熟化料选择性常压浸出:将步骤(1)得到的熟化料在200~600rpm搅拌转速下直接进行常压水浸,浸出矿浆经浓密分离,得到浸出液和浸出渣,浸出渣经浓密洗涤得洗涤液和富铁渣,洗涤液返回水浸工序;(3)富铁渣磁化焙烧—磁选:将步骤(2)得到的富铁渣配入富铁渣干基重量的3~20%的煤进行磁化焙烧,所得焙砂进行水淬、球磨和磁选,得含铁63%以上的铁精粉。本发明的工艺可操作性强、浸出选择性好、铁综合利用率高。
本发明公开了一种从硫酸镁溶液中回收镁的工艺,包括以下步骤:A)将硫酸镁溶液与氨水混合,以得到含有氢氧化镁沉淀和残余硫酸镁的浆液;B)过滤含有氢氧化镁沉淀和残余硫酸镁的浆液,分别得到氢氧化镁沉淀和滤液;和C)用氢氧化钙和/或氧化钙对所述滤液进行苛化,得到含有氢氧化镁沉淀和硫酸钙的浆液,并生成氨;D)向所述含有氢氧化镁沉淀和硫酸钙的浆液中通入二氧化碳,以对氢氧化镁进行碳化生成碳酸氢镁,分离硫酸钙;以及E)将分离出硫酸钙后的碳酸氢镁溶液进行加热,使得碳酸氢镁分解,生成碱式碳酸镁沉淀和二氧化碳。根据该工艺,能够高效地从硫酸镁溶液中回收氢氧化镁和碱式碳酸镁。
本发明提供了一种铂族元素特效树脂,其是聚多巴胺包被的载体树脂上连接有聚合物分子刷,所述聚合物分子刷包括式(i)和式(ii)所示的单元结构:其中Q为含有N原子和S原子的杂环基,W为芳基或杂芳基,n为0‑6的整数。本发明制备得到的用于对树脂修饰的聚合物具有分子刷的结构,一方面,通过分子刷的特定化学结构和空间结构,能够更有效地对样品中的铂族元素完成选择性吸附。使用本发明聚合物修饰后的铂族特效树脂,对铂族元素,铱(Ir)、钌(Ru)、铑(Rh)、铂(Pt)和钯(Pd),能够进行选择性地吸附,并且检测的精度和回收率很高。
本发明公开了一种槽塔组合式连续萃取装置及萃取方法,属于液液萃取分离技术领域。塔体由3~30级不锈钢材质的混合澄清萃取槽自下而上堆垛串联而成。混合澄清萃取槽末端侧壁外部设与澄清室连通的轻相提升器;澄清室底部连有重相导流管;重相导流管与气体导管连通;重相导流管下方设置静态混合器。高压气体由塔体底部泵入,由U形气体导管吹入轻相提升器,高速气流产生的负压可使轻相提升器内的轻相抽提至后一级混合澄清萃取槽。轻相由下而上逐级提升。该装置级效率高于现有传统塔式设备,可实现轻重两相在大相比或大流量比条件下操作。塔体内无运动部件,轻重两相的混合依靠静态混合器实现,结构简单,故障率低,维修方便。
本发明涉及一种从废旧磷酸铁锂电池中回收碳酸锂的方法,属于废弃资源综合利用领域的固体废弃物资源化新技术。具体包括充电、拆解、分离、真空水解、过滤、二氧化碳沉淀、分离烘干,最后的到产品。其特征是:利用废旧磷酸铁锂电池锂化石墨中锂活性增加的特点,通过水解制备氢氧化锂,沉淀制备碳酸锂的方式得到碳酸锂粉体。在整个回收过程中未使用强酸和强碱,具有绿色环保的特点。
本发明公开了一种水合氧化物有价元素浸出时脱硅的方法。该方法包括以下步骤:S1,对水合氧化物渣进行脱水处理和渣的散碎处理;S2,干化蚀变,向水合氧化物渣中加入硫酸和水,通过控制硫酸的浓度、水的添加量、反应温度及搅磨强度实现第一次生成过滤性硅聚沉体;S3,添加水使在第一次生成过滤性硅聚沉体与未完全反应块料二次反应生成过滤性硅聚沉体;S4,添加助溶剂提高体系离子强度强化可溶硅的聚沉行为,然后稀释至设定固液比,进行固液分离。应用本发明的技术方案,不仅可以实现矿渣中有价元素浸出,同时抑制了杂质硅元素的浸出。
一种利用室温离子液体回收红土镍矿生物浸出液中镍离子的工艺,它包括以下步骤:(1)室温离子液体与红土镍矿生物浸出液按体积比1∶50~100混合,并充分搅拌后静置分层,浸出液中鳌合金属离子的有机溶剂部分可富集于室温离子液体相中,并将镍、铁、钴等金属离子转移至室温离子液体相;(2)分离室温离子液体相后,逐次加入浓度为2~3MOL/L,体积为室温离子液体相的1~1.5倍的稀盐酸对萃取液进行逐级反萃,实现对不同金属离子回收的目的。本工艺操作简单,无乳化现象,萃取效率高,操作时间短,容易实现多级组合,具有高效、经济和对环境友好的优势,本发明建立了红土镍矿生物浸出液高效萃取新工艺,充分利用低品位原生氧化镍矿资源,提高矿产资源综合利用水平,降低环境污染,提高经济效益。适用于我国现有红土镍矿矿山的开发利用。
本发明提供一种红土镍矿制粒堆浸提镍钴方法,它包括以下步骤:1)原矿破碎、筛分,-100目制粒;2)制粒和固化:按比例加入粘结剂、硫酸溶液,在圆盘制粒机中进行制粒,复合粘结剂为腐植酸钠和水玻璃的混合物,加入量为矿量的1~5%,硫酸的浓度为5~10%,使粒团的含水率达到10%~16%,粒团粒度为5~20mm。为了保证粒团有适宜湿强度,制好的粒团在入堆前先固化。3)筑堆,4)喷淋,按一定的酸度和喷淋强度进行喷淋,按酸浓度3~20%、喷淋强度5~80L/m2.h进行循环喷淋或滴淋,当浸出液中的镍离子浓度达1~3g/L、Fe?10~30g/L时,酸取出得到含镍钴的浸出液。本发明的工艺简便,流程短,投资小,能耗低,矿石渗透性好,镍、钴浸出率较高。
本发明涉及一种电解锰电解后续工段重金属废水减量、再用和循环的方法,包括以下步骤:制液、电解、出槽、钝化、清洗;所述出槽步骤时,对出槽阴极板表面进行刷沥,将挟带的电解液刷沥回电解槽中,实现第一次减量;所述钝化步骤时,对阴极板表面进行刷沥,将钝化液刷沥回钝化槽中,实现第二次减量;所述清洗步骤时,利用多级清洗装置,采用多层次的方式进行清洗,实现第三次减量,清洗完成后再利用收集装置将清洗水收集起来,经过集中处理后,再返回至制液步骤,实现废水循环利用。本发明的方法可以减少废水的产生,降低废水源头产生量,也可以实现水资源多次利用,降低清水消耗总量,通过相应废水处理装置实现废水循环于主工艺。
本发明提出了一种从硫酸镁溶液中回收镁离子的方法,其包括以下步骤:(a)将硫酸镁溶液与氯化钾混合,并使所述硫酸镁溶液中的硫酸镁与所述氯化钾反应,以便得到含有硫酸钾镁的混合物;(b)对所述含有硫酸钾镁的混合物进行冷却,使得所述硫酸钾镁形成晶体;(c)分离所生成的硫酸钾镁晶体,并且得到沉镁后液。该方法操作简单,耗能低,无二次污染。通过该方法可以获得纯度、产率高的硫酸钾镁肥。
本串联自吸式多通道相分散萃取装置,其特征在于:将两个自吸式相分散搅拌器串联成一体;位于液相分散器上面或下面套筒的开口方向相同或相反;液相分散器2可由一敞口朝下的转筒和螺纹连接于转筒底部的底盘组合而成,有效地解决了三相萃取一步法工艺中相分离困难的问题,有效的避免乳化现象,设备投资小、易操作,电机转速要求低,动力消耗低,对溶液的剪切力也低,有利于蛋白质等生物物质活性的保持。
本发明公开了一种综合回收废旧锂离子电池正极材料的方法,属于锂离子电池材料回收技术领域。本发明先将废旧锂离子电池拆分、破碎筛选得到的正极材料粉料与一定量的煤粉、焦粉等含碳固体还原剂,及适量浓硫酸混合均匀,然后在100‑300℃条件下反应熟化一段时间后得到固体熟料,将固体熟料用水或稀硫酸进行浆化浸出,得到含有用元素的浸出液,从浸出液中回收锂、钴、镍、锰、钒等。本方法无需焙烧活化工序,能耗低、环境污染少;使用源广价廉的试剂,成本低;采用浓硫酸熟化反应条件,有用元素回收率高。
中冶有色为您提供最新的北京有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!