本发明涉及从含闪锌矿的矿石或精砂中回收锌的方法,该方法第一步是将所述矿石和精砂进行热处理,使闪锌矿转化成更容易在湿法冶金介质中化学浸蚀的物质,第二步是将所述物质进行浸提,其特征在于,所述热处理主要由热循环和快速冷却循环组成,所述热循环是在至少部分闪锌矿能转化成纤锌矿的条件下进行,而所述快速冷却循环是在至少部分纤锌矿能保持于低温的条件下进行。
用于制造在湿法冶金液-液溶剂萃取沉降槽中使用的分离栅(1)的方法,该分离栅由聚合树脂制成。该分离栅(1)通过滚塑制造为壳状一体件。该分离栅(1)是滚塑的壳状一体件。
一类适用于湿法冶金中萃取分离钇与其它稀土元素的中性磷型萃取剂,分子式为R1OCH2P(O)(OR2)2的烷氧基甲基膦酸二烷基酯,式中R1和R2均为C1-C12的直链或支链烷基,碳原子总数为C12-C28。该类新萃取剂从HBr-LiBr介质中萃取全部镧系元素的能力均高于钇,尤其是2-乙基己氧基甲基膦酸二(2-乙基己基)酯对于全部镧系元素对钇的分离因数(β=Ln/Y)值均可达2以上。此外该类萃取剂还具有组成单一,化学稳定性较好,萃取速度快,分相好,易于反萃等优点。
本发明涉及一种从含Li的起始材料中回收例如Ni和Co的金属的方法。特定地,所述方法涉及从含Li的起始材料中回收金属M,其中M包括Ni和Co,所述方法包括以下步骤:步骤1:提供包含锂离子电池或其衍生产品的所述起始材料;步骤2:去除大于(1)和(2)中的最大值的量的Li:(1)存在于所述起始材料中的Li的30%,和(2)为在随后的酸浸步骤中获得小于0.70的Li:M比率而确定的存在于所述起始材料中的Li的百分比;步骤3:使用相对量的贫Li产物和无机酸的随后的浸提,从而获得含Ni和Co溶液;和步骤4:使Ni、Co和任选的Mn结晶。由于湿法冶金加工期间的较低试剂消耗和较高Ni和/或Co浓度,本发明是一种生产适用于电池材料生产的晶体的有效且经济的方法。
本发明公开了一种多金属硫化矿的综合回收方法,该方法在多金属硫化矿原矿中添加适量石灰和氯化钾进行硫酸化焙烧,将焙烧工艺和湿法冶金工艺两者相组合,代替常规的浮选—精矿冶炼技术综合回收多金属硫化矿中的铜、锌、钴、硫、铁等的方法,克服了目前多金属硫化矿回收技术存在的精矿品质差、金属综合回收率低、资源利用率低的缺点,解决了偏远矿山运输量大、运输成本高等不足的问题,可获得高附加值的电解铜、电解锌、电解钴、硫酸钾等产品和铁精矿,铜和锌的综合回收率分别达到94%和92%以上,同时还可以综合回收钴、铁和硫酸钾,简化了生产流程,大大提高了金属的综合回收率、资源利用率和矿山的经济效益。
本发明属于金属资源回收与再利用技术,具体为一种高效分离与回收废弃线路板中贵金属的方法,实现电子废弃物资源化中经济效益与环境效益共赢等问题。首先采用机械处理技术将废弃电路板粉碎成颗粒,接着这些颗粒在高压静电作用下分离成金属与非金属物料,先后构建Fe-Cu高温液相分离系统和Cu-Pb相对低温液相分离系统;再利用废弃电路板中金属物料组元在液相分离系统中进行选择性分配规律,使贱金属、有色金属高效分离,几乎所有的贵金属富集到富Cu相中;然后结合湿法冶金技术,从浓缩了贵金属的少量富Cu物料中分离和提取贵金属,从而显著减少金属多组分分离与回收过程中化学试剂的用量,降低电子废弃物对生态环境的危害。
本发明涉及一种SCR废烟气脱硝催化剂的回收方法,采用湿法冶金的过程。SCR废烟气脱硝催化剂破碎后,进行预焙烧处理后,按比例加入NaOH溶液进行溶解。溶解后进行固液分离操作,然后对所得沉淀加入硫酸,经浸出、沉降、水解、盐处理、焙烧,可得到TiO2。对于第一次固液分离得到的溶液,滴加硫酸调节pH值,加入过量硝酸铵沉钒,进行第二次固液分离。将过滤得到的偏钒酸铵经高温分解,值得V2O5成品。对于第二次固液分离得到的溶液,加入盐酸调节pH值,再加入NaCl,得到钨酸钠,经精制、过滤、离子交换等工艺,分离杂质成分,再经蒸发结晶得钨酸钠产品。本发明的方法,工艺简单,设备通用,原料易得,价格低廉,且回收率高。
本发明公开了一种碲矿与催化剂熔烧富集碲的方法,其特点是将低品位碲矿研磨至平均粒径为254~211μm,将上述低品位碲矿∶催化剂=10000∶1~5重量比的原料加入带有搅拌器、温度计的混合釜中,使其搅拌分散均匀;将上述均匀分散的混合物100重量份,徐徐投入焙烧炉中,于温度500~800℃,焙烧10~60min,除去炉渣,收集焙烧过程中产生的烟气、粉尘,即为所需要的产品,碲含量为35~38.5wt%;再将上述碲含量为35~38.5%wt%的产品采用湿法冶金制备获得4N金属碲。
氨化p507对以轻稀土为主的离子吸附型稀土矿 进行溶剂萃取分组分离属于湿法冶金溶剂萃取。用 20-45%氨化1-1.7M p507-煤油,洗涤液和反萃 酸为0.8-5N HCl对以轻稀土为主的离子吸附型稀 土矿氯化物水溶液,其浓度为1-2M,在90-120级 分液漏斗中模拟串级萃取分组分离,经Nd-Sm, La-Ce,Tb-Dy分组分离得轻、中、重稀土三组分 别为Ce、Pr、Nd;Sm、Eu、Gd、Tb、Dy和Dy、Ho、Er、 Tm、Yb、Lu、Y富集物以及得纯度大于99.97%,收率 为大于99%的La2O3。
本发明涉及一种方法和装置,通过该方法和装置,来自金属的湿法冶金回收的液-液萃取中的水溶液进行提纯以除去有机萃取溶液液滴。水溶液在沉降槽中进行处理,它至少在一点处流过具有减小的截面的流动槽道区域,该流动槽道区域在槽的整个宽度上延伸。根据本发明,流动槽道布置在液滴聚结器的底部部分中,装置的上部部分主要为实心的。
本发明公开了一种用于催化三价铁水解沉淀的铁磁性催化剂及其制备方法和应用,铁磁性催化剂由活性氢氧化铁包裹磁性铁粉颗粒构成,其制备方法是将铁粉与含Fe3+溶液混合,调节体系pH至2以下,在搅拌作用下缓慢滴加碱液反应,即得稳定性好、可以促进溶液中三价铁离子快速、高效、选择性水解沉淀的铁磁性催化剂;该铁磁性催化剂可以广泛应用于湿法冶金工艺中的锌、镍或铜浸出液中铁的脱除,具有除铁效率高,锌、铜、镍等金属损失小,改善固液分离效果,使浸出液中铁离子残余浓度低于15mg/L等优点,且催化剂可重复利用,使用成本低,有利于广泛应用。
一种用于湿法冶金液-液萃取过程的溶剂萃取方法,在该方法中,分散体在沉降槽中从进料端向出料端水平流动的同时溶液相从分散体分离。分散体和溶液相的质量流被分为在沉降槽中从进料端向出料端流动的多个平行且相互分开的活塞流。沉降槽(1)包括多个细长的沉降槽部分(4),沉降槽部分相互分开并且彼此平行地并列,沉降槽部分(4)从进料端(2)延伸到出料端(3),形成多个相互分开的平行的活塞流通道。
一种含氟氨氮废水的处理工艺,该工艺针对钽铌湿法冶金产生的含氟氨氮废水,利用氨与水相对挥发度差异,采用以高效精馏为主要技术核心的氨-水分离技术,结合预处理技术,采用脱氟-除钙-强化解络合-分子精馏实现水中氟、氨的脱除,处理后外排水达到国家一级排放标准,同时回收浓度≥15%的高纯氨水供生产使用。通过实现对氨的资源回收,达到对含氨废水处理成本的收支平衡。达到了资源综合利用的要求,具有一定的经济效益。
本发明公开了一种阳极制备方法,包括如下步骤:以阀性金属为基体,经酸蚀刻后,依次在基体上形成无龟裂的阀型金属底层及无龟裂的复合贵金属表面层,即可制得无龟裂阳极。还公开了上述阳极制备方法制得的阳极在电镀、湿法冶金及金属箔制备中的用途。本发明方法提供的阳极采用特定有机溶剂的无龟裂的阀型金属底层及无龟裂的复合贵金属表层,有效延长了电极使用寿命,将其用于电镀、湿法冶金及金属箔制备中具有如下优点:槽电压比现行的钛基金属氧化物阳极下降0.05V~0.3V;使用寿命超过现行的钛基金属氧化物阳极长2倍以上。
本发明提供一种氧化钼矿的选矿富集方法,该方法包括:将硫化矿浮选尾矿矿浆进行弱磁选和强磁选、非磁性矿浆物料脱泥、浮选等几个步骤,最终得到品位较高的钼中矿,该钼中矿可作为湿法冶金提取钼酸铵产品的原料,使铜钼多金属混合共生矿中低品位难选氧化钼矿资源得到有效的综合回收利用。本发明提出的方法,可较广泛地应用于类似尾矿中低品位难选氧化钼矿资源的回收利用领域。
一种提取利用锡尾矿中的铁制备纳米磁性Fe3O4颗粒的方法,属于矿山尾矿综合利用及纳米磁性材料制备技术领域。采用湿法冶金工艺提取分离其中的铁元素,再以其为原料采用还原-化学共沉淀法制备得到纳米磁性Fe3O4颗粒,在提取过程中通过控制水解温度、陈化、二次沉淀等工艺参数,得到纯度较高的氢氧化铁沉淀,在纳米颗粒制备过程中,通过采用表面活性剂进行表面包覆,控制熟化时间,搅拌方式等工艺,可制得粒径小于10nm的纳米Fe3O4颗粒。本发明的优点在于:提取利用尾矿中的铁,得到单相的粒径细小均匀的纳米Fe3O4颗粒,可广泛应用于磁、催化、生物等领域,并使尾矿资源得到高效利用。
本发明涉及一种方法和装置,通过该方法和装置,可稍微溶于水溶液的有机溶液被清洗除去水夹带物和杂质。特别是,该有机溶液可以是与金属的湿法冶金回收结合使用的液-液萃取的有机萃取溶液。本发明的目的是从有机溶液中同时物理分离水液滴和化学除去杂质。这通过将待提纯的溶液传送给沉降槽来实现,该沉降槽通过至少一个流动板盒来进行截面。
本发明涉及一种汽车动力电池资源化回收利用系统,预处理系统包括分类和安全检测与处置;电池组拆解系统是采用机械破碎法将电池组拆解,将电池材料分类;电解液回收系统是利用电解液的物理特性经过物化进行分离、除杂和纯化浓缩;隔膜、正、负极材料回收系统将分类出的隔膜、正、负极材料分类回收;非金属材料回收系统将负极非金属电极材料富积回收;正、负极有价金属材料回收系统包括金属元素的浸出与纯化过程,是利用湿法冶金浸出工艺将正、负极材料中的有价金属回收;有价金属纯化系统是对混合电极材料浸出液采用湿法冶金技术分离和提纯金属,获得高纯度的单质金属或化合物;废气、水处理系统是对产生的挥发性气体、尘埃和废水处理。
本发明涉及一种提炼贵金属精矿的方法,至少将贵金属精矿(9)、反应气体(10)、助熔剂(11)和要处理的烟灰(12)一起送入悬浮熔炼炉(1)的反应段(3);在悬浮熔炼炉中,得到分离的相,锍(8)和炉渣(7);在悬浮熔炼炉中产生的炉渣送入电炉(2),以致得到金属化锍(14)和废炉渣(13),此后悬浮熔炼炉得到的锍(8)送去湿法冶金处理(15),以及送入电炉的炉渣与还原剂可能还与降低熔点或提高流动性的材料一起处理,得到的金属化锍(14)或者送去湿法冶金处理(16),或者返回悬浮熔炼炉(1)。
本发明涉及一种方法和设备,在湿法冶金的液—液萃取过程中使用该方法和设备将有机溶液萃取溶液去除夹杂的水溶液和杂质。该方法处理一种有机的萃取溶液,该萃取溶液带有来自水溶液的贵金属或贵重物质。该萃取溶液被一种酸性水溶液清洗。该酸性溶液以几股分开的支流排放入箱中。流动从水平转变为垂直的,并且分开的溶液的方向借助于几个尖栅栏(13、14)被偏转。有机溶液和水溶液以分开的支流被去除。沉淀器包括几个排放元件(12)用于有机溶液以及几个分别用于去除有机溶液和水溶液的抽吸元件(16、24)。
本发明涉及一种轻质碳酸镁制备工艺,尤其是涉及一种利用生石灰和湿法冶金过程产出的硫酸镁溶液生产轻质碳酸镁制备工艺,包括以下步骤:消化生石灰以便得到石灰乳;用石灰乳沉镁以便沉淀出结晶形式的硫酸钙和凝胶状的氢氧化镁;将硫酸钙与氢氧化镁分离以便得到硫酸钙和氢氧化镁浆料;向氢氧化镁浆料内通入二氧化碳以便得到碳酸氢镁溶液;加热碳酸氢镁溶液从而使碳酸氢镁分解生成碱式碳酸镁并释放出二氧化碳;和将碱式碳酸镁滤出并进行洗涤和干燥从而得到轻质碳酸镁。根据本发明的制备工艺简单,成本低,且能够处理湿法冶金产生的废液。
本发明涉及提供强大抽吸能力的混合器。所述混合器用于如下情况,其中待加工的溶液或浆液难以处理且旨在导入气体以将其均匀且有效地分散到所述溶液中。所述方法特别适合湿法冶金工艺,从而目的是将所述气体分散到所述溶液中并实现在微观级和宏观级上都有效的混合。
一种从提锗残渣中回收锗的方法,涉及湿法冶金技术领域,具体是对一种提锗后的蒸馏残渣进行湿法处理,进行二次提取锗的方法。本发明是通过洗涤提锗残渣进行脱酸、氢氧化钠加热预处理、浓缩碱处理溶液、氯酸钠氧化-盐酸蒸馏分离锗及二氧化锗制备等工艺步骤实现的。用本发明工艺方法来回收锗,从提锗残渣到四氯化锗的回收率可以达到75%以上,此提锗工艺的研究成功,对于解决此类残渣中锗的高效回收、充分利用稀有的锗资源、在减少残渣的堆存、保护环境等方面有十分积极的意义。
本发明涉及采用湿法冶炼的方法将高杂质低品位的铜渣副产物转化为氧化亚铜的一种工艺,属于湿法冶金技术领域。本发明的步骤为:使铜渣处于pH值1.0~2.0的硫酸环境中预浸出;预浸出渣在硫酸终点pH值1.0~3.0的环境中空气氧化浸出,然后加入CaCO3中和至pH值4.0~4.5;液固分离,氧化浸出渣加硫酸搅拌洗涤,洗涤终点pH值1~1.5,再加CaCO3中和至pH值4.0~4.5,洗涤液循环返回氧化浸出,氧化浸出液在有葡萄糖和NaOH的环境中还原,pH值为9.0~11.0,反应生成Cu2O沉淀。本发明的生产成本低,能耗低,效率高,工艺流程短,铜回收率高,工艺易操控。
中冶有色为您提供最新的有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!