本发明涉及一种Z型异质结Cu2O_ 石墨烯_ α‑Fe2O3纳米管阵列光催化剂材料及其制备方法。包括如下步骤:1、在纯铁片上通过两次阳极氧化法制备α‑Fe2O3纳米管阵列(FNA);2、通过电化学循环伏安法将氧化石墨烯沉积在步骤1中所制备的FNA表面,并被还原为石墨烯(G),得到G/FNA复合材料;3、以恒电位法在含铜盐水溶液中,将Cu2O纳米颗粒沉积在步骤2中所制备的G/FNA的表面,形成三元Z型异质结Cu2O/G/FNA光催化剂。本发明中石墨烯层作为电子传递介体能有效引导FNA上的光生电子按Z型路径迁移,并与Cu2O上的光生空穴猝灭,这样既促进光生电子‑空穴对的空间分离,又使复合材料保留了较高的氧化还原能力。该光催化材料不但具有较好的光催化性能,而且表现出其良好的光催化稳定性。
本发明公开了一种GaN基功率器件的栅极结构及其制作方法。栅极结构包括依次设置的介质层、第一过渡层、第二过渡层和堆叠栅电极层,在第一过渡层和第二过渡层之间还设置有一层以上的功函数层,功函数层包括基础材料层,在基础材料层上设置有一个以上的窗口,窗口内填充有复合材料,复合材料至少由形成基础材料层的基础材料与功函数调节材料复合形成;基础材料选自金属化合物,功函数调节材料选自金属材料。本发明实施例提供的GaN基功率器件的栅极结构功函数层内的功函数调节材料元素分层分布和/或图形化分布控,能有效调制GaN基功率器件的栅极区域电流和电场密度分布,解决引入功函数层带来的不利影响,使器件达到热平衡以及能够提高器件的击穿电压。
本发明公开了一种调控纳米TiO2-CeO2的形貌呈球型、哑铃型、片型的方法,所述方法包括:将Ce(NO3)3?6H2O配成溶液后,转至水热釜反应,反应结束后再加入钛酸酯,混和均匀后再转至水热釜反应,反应结束后分离固体产品,干燥后450℃煅烧即得到纳米TiO2-CeO2粉体。本发明的优点是:在常规制备CeO2–TiO2纳米复合材料的体系中,通过改变加料的量和方式以及反应的温度,使所得产品可控地呈现球型、哑铃型、片型形貌,所述方法无论是从理论上研究控制纳米材料形貌的机制,还是实际应用中简单快捷地制备不同功能的纳米材料,都具有重要意义。
一种石墨掺杂聚席夫碱/铁氧体复合隐身材料,该材料由石墨、聚席夫碱,铁氧体复合制得。石墨的质量占整个复合材料的12%-19%,聚席夫碱的质量占整个复合材料的18%-25%,余量为纳米铁氧体。该材料具有优异的吸波性能,同时具有吸收频带较宽、成本低廉、制备简单、密度低的优点,作为电磁波吸收材有着广阔的应用前景。?
本发明公开了一种紫外光固化聚苯胺/Fe3SO4吸波涂层。所述紫外光固化聚苯胺吸波材料是以聚氨酯丙烯酸酯为基体材料,聚苯胺/Fe3SO4复合材料均匀分散到基体材料中并加入单体稀释剂及光引发剂等助剂组成。该材料不仅能在2-18GHz有良好吸收电磁波的效果且形成的涂膜厚度可缩减至2mm以下,涂层固化时间小于2分钟且具有较好的涂层性能。
本发明基于复合材料蜂窝板结构设计了一种可调节吸声性能的蜂窝结构,其设计步骤如下:根据双层微穿孔板理论模型进行计算得出穿孔率对结构吸声性能的影响;设计了一种可以通过控制外接电压改变调节板位置的形状记忆聚合物复合材料驱动臂;数值仿真和计算找到比较适宜调节的穿孔率调节范围。本发明设计方法原理简单,只需在传统的蜂窝结构中部分添加该结构就可以起到可调节吸声峰值的特点。实用性强,易操作推广。
一种基于真空负压法的钢筋混凝土柱类构件加固工艺步骤是,在待加固钢筋混凝土柱上下涂好密封胶,依次铺上碳纤维布、涤纶脱模布和导流乙烯网布;再铺上真空袋,设置树脂注入口和抽气口,打开真空泵抽真空,当树脂容器内的乙烯基树脂流满真空袋时,让内部树脂浸润纤维,乙烯基树脂充分固化后,撕去涤纶脱模布后完成加固。本发明通过乙烯基树脂的流动及渗透实现利用纤维增强复合材料布加固钢筋混凝土柱,本方法加固钢筋混凝土柱的纤维增强复合材料布可根据需要进行纤维层数控制,且能够较好的贴合加固面,适用于不同曲率曲面混凝土柱加固,可以整体成型并且无胶液滴漏,其工艺简单、容易操作、无环境污染、成本较低,且加固后的界面力学性能优异。
本发明提供一种CdS/TiO2介孔复合光催化材料的制备方法。本发明以钛酸四正丁酯TBOT、Cd(NO3)2·4H2O、Na2S·9H2O为主要原料采用蒸发诱导自组装(EISA)的方法一步制备出硫化镉/二氧化钛介孔复合光催化材料。并利用模拟太阳光对所制备出的材料进行性能测试,通过降解甲基橙、玫瑰红、双酚A、孔雀石绿等有机染料和污染物来证明该材料超常的光催化性能。循环五次降解甲基橙后,光催化活性仍保持不变。该复合材料属于无机光催化材料,该复合材料性能稳定,光催化活性较高,并且抗化学和光腐蚀,在光解水、杀菌、制备太阳能敏化电池和环境保护等方面有重要意义。
一种碳纳米管包覆二氧化锡复合材料的制备方法,将氯化亚锡用去离子水溶解,并加入少量的盐酸,备用;取两端开口纳米管,装入烧瓶中进行脱气,按复合负极材料中20~30wt%碳含量,将备用之溶液移入烧瓶内,在超声波的作用下分散,常温、负压搅拌48~60h,然后于100℃~150℃回流3h,自然冷却至室温,分离出固体物,去离子水洗涤;60℃烘箱中干燥,研磨;置于管式炉中在氮气保护气下400℃~600℃煅烧2h。本发明合成方法简单,成本低;所合成复合材料结构稳定,粒径小且均匀,粒径大小可以控制在4~6nm,材料热稳定性好;作为锂离子电池负极材料具有容量大、循环性能稳定,使用寿命长等特点。
一种通过原位合成法在多壁碳纳米管表面可控负载金属铂的方法,方法步骤为:(1)把10.0mg的多壁碳纳米管和10.0mg的乙酰丙酮化铂加入20.0ml的三甘醇中,用超声波仪器对其超声处理20min;(2)通过无氧加热,最后制得Pt/MWNTs纳米复合材料。本发明的优点是:制备过程简便、高效,所制得的产品不仅可用于直接甲醇燃料电池阴、阳极催化剂,同时还可应用于其它燃料电池阴、阳极催化剂,以及气体重整、污染物治理、有机物裂解、有机物合成等许多领域。?
本发明公开了一种柔性高导热聚合物纳米复合膜,采用h‑BN导热填充剂,以HDPE为基体;其制备是:将h‑BN与HDPE经过物理预混合后,经过双螺杆挤出机熔融共混以增加h‑BN在HDPE中分散性,利用单螺杆挤出机对h‑BN‑HDPE复合材料进行挤出并冷却拉伸制片;最后对该复合材料进行热拉伸处理诱导层状h‑BN在HDPE中取向。其中,填充剂的含量决定其柔性和导热性能,而填充剂的含量又取决于其在聚合物基体中的分散性。本发明制备的聚合物纳米导热复合膜具有超高的导热率、散热能力佳、柔性佳、可大批量生产、综合性能优良,可制成各种元器件,在电子封装领域、LED照明系统、汽车以及航空航天等行业中具有广泛的应用前景。
本发明公开了一种具有原位检测功能的桥面板制备装置及其制备方法,包括具有原位检测功能的复合材料面层,泡沫夹芯层,格构腹板,在桥面板的面层层间植入碳纳米管界面传感器,所述的碳纳米管界面传感器与桥面板通过真空辅助成型工艺整体一次性成型,利用格构腹板提高复合材料面层与芯材的整体性,提高桥面的力学性能,传统混凝土,钢结构材料建造的桥面板具有自重大,易腐蚀等缺点。本发明具有轻质高强,耐盐耐腐蚀,降低结构维护费用,可工厂化生产,现场拼装等优点,可广泛应用于各类桥梁工程中。
本发明提供一种壳聚糖修饰的铁氧体填充多壁碳纳米管/聚噻吩复合吸波材料的制备方法。本发明先采用混酸氧化法制备铁氧体填充的碳纳米管,分析铁氧体填充碳纳米管的结构,经壳聚糖修饰后,然后再与噻吩单体通过原位聚合,制备出壳聚糖修饰的铁氧体填充多壁碳纳米管/聚噻吩复合材料。该复合材料复合了铁氧体、碳纳米管、导电高聚物的吸波优点,具有良好的电磁性能,在微波吸收领域具有重要的应用价值,能够满足现代工程领域中的吸收频带宽、重量轻、厚度薄、吸收强和物理机械性能好等新要求。
本发明提供一种NiCuZn铁氧体包覆DBSA改性的碳纳米管-聚噻吩复合吸波材料的制备方法。本发明先采用十二烷基苯磺酸(DBSA)对多壁碳纳米管进行改性,并以该改性碳纳米管、Ni(NO3)2·6H2O、Cu(NO3)2·3H2O、Zn(NO3)2·6H2O、Fe(NO3)3·9H2O为原料,采用水热合成法制备出NiCuZn铁氧体包覆DBSA改性的碳纳米管复合材料,然后再与噻吩单体通过原位聚合,制备出NiCuZn铁氧体包覆DBSA改性的碳纳米管-聚噻吩复合吸波材料。该复合材料具有良好的电磁性能,在微波吸收领域具有重要的应用价值。
本发明提供一种石墨烯增强Mg‑Al‑Zn合金的制备方法,属于金属材料制造技术领域。一种石墨烯增强Mg‑Al‑Zn合金的制备方法,包括以下步骤:在熔铸条件下,利用高能超声将镁石墨烯中间颗粒分批加入镁合金熔体中,之后迅速降温浇注得到熔铸坯料;接着将熔铸坯料放入真空熔炼炉中进行熔炼,利用交流电产生的电磁力对增强相进一步分散,接着保温,然后迅速喷铸得到喷铸坯料;接着将喷铸坯料在真空热处理炉中进行热处理,最终在合适的工艺参数条件下得到高性能复合材料。本发明工艺稳定,环保安全,制备的复合材料组织明显细化,石墨烯与基体界面结合良好,分布也较为均匀,其综合力学性能得到较大提高。
本发明公开了一种超声波传感器的制备方法,包括以下步骤:建立压电层的三维模型。制备用于制作所述压电层的压电陶瓷浆料。采用3D打印机按照所述三维模型以所述压电陶瓷浆料为材料打印形成压电层实体;对所述压电层实体进行高温烧结得到陶瓷基体。向所述陶瓷基体的间隙及所述陶瓷基体的外侧填充聚合物以形成半成品压电复合材料。打磨所述半成品压电复合材料以形成所述超声波传感器。本发明实施方式的超声波传感器的制备方法采用3D打印快速成型工艺具有无需模具、较少的机械加工、无需机械切割、可以随时调整设计、不受形状限制,进而避免因切割陶瓷而导致超声波传感器产生裂纹。
本发明提供一种SDBS修饰的锰锌铁氧体填充的碳纳米管-聚苯胺复合吸波材料的制备方法。本发明采用重铬酸钾氧化开口在线填充-高温法获得锰锌铁氧体填充的碳纳米管,经十二烷基苯磺酸钠(SDBS)修饰后提高其分散能力,再与苯胺单体采用原位聚合法制备出SDBS修饰的锰锌铁氧体填充的碳纳米管-聚苯胺复合材料。该复合材料具有良好的电磁性能,在国防隐身、民用电磁防护、微波屏蔽等领域具有重要的应用价值。
本发明涉及一种多涂层结构红外隐身材料,其制备过程首先是将Fe3O4@聚苯胺复合材料与聚氨酯以5~7∶4的质量比混合均匀,采用压缩空气法即喷涂法,涂覆于基板表面形成湿膜,重复涂覆2~3次,湿膜涂层厚度为40~60 um。待Fe3O4@聚苯胺湿膜涂层固化后,再将Al粉与聚氨酯以5~7∶4的质量比混合均匀后,涂覆于Fe3O4@聚苯胺涂层表面再次形成湿膜,重复涂覆Al层2~3次,即得Fe3O4@聚苯胺/Al的聚氨酯多涂层结构红外隐身材料,其中Al粉的聚氨酯涂层厚度为40~60 um。本发明制备工艺简便,Al@Fe3O4@聚苯胺核壳红外隐身材料密度小、红外反射率低、透明度高,具有良好的物理、机械和化学性能。
本发明公开了一种制备酶标抗体的新方法。由于酶联免疫吸附测定法在实际应用中经常存在一些不可避免的问题,特别是基于共价结合的酶标抗体的繁琐制备。因此,本发明将抗体与具有过氧化物酶催化活性的金属有机框架(MOF)结合形成双功能的MOF/抗体复合材料,该双功能的MOF/抗体复合材料能够应用于比色免疫分析法。MOF非但不影响抗体对抗原的捕获能力,而且能使抗体免受高温和生物降解影响,增强了抗体的稳定性。更重要的是,在比色免疫分析实验中,具有过氧化物酶催化活性的MOF可起信号放大作用,提高检测灵敏度。本发明的方法具有操作简便、成本低和效率高等优点。
本发明提供一种SDBS修饰的锰铜钴铁氧体填充的碳纳米管-聚吡咯复合吸波材料的制备方法。本发明采用本发明采用湿化学填充法制备出锰铜钴铁氧体填充的碳纳米管,经十二烷基苯磺酸钠(SDBS)修饰后提高其分散能力,再与吡咯单体通过原位聚合法制备出SDBS修饰的锰铜钴铁氧体填充的碳纳米管-聚吡咯复合材料。该复合材料具有良好的电磁性能和导电性能,综合性能练好,在国防隐身、民用电磁防护、微波屏蔽等领域具有重要的应用价值。
本发明涉及一种C形HfC纳米片增强碳化硅纤维毡及其制备方法,包括步骤:将Hf3[Al(Si)]5C7材料用CaF2和H2SO4混合得到的低共熔混合盐溶液对Al和Si原子选择性刻蚀,之后过滤、洗涤,得到含有Al的HfC纳米片;然后与聚二甲基硅烷加入二甲苯中进行不熔化处理,得到不熔化聚碳硅烷纤维;将不熔化聚碳硅烷纤维分别制备成短纤维和聚碳硅烷原丝,并和聚酰亚胺溶液混合,制备得到不熔化聚碳硅烷纤维毡,之后烧结,得到C形HfC纳米片增强碳化硅纤维毡。本发明制备得到的C形HfC纳米片增强碳化硅纤维毡耐腐蚀性强,高温下性能稳定,且在X波段具有较好的电磁波吸收性能,可作为结构吸波材料应用于复合材料中。
本发明涉及一种二氧化硅气凝胶复合绝热材料及其制备方法,该制备方法包括以下步骤:将乙醇、酸催化剂、水和有机硅混合进行水解反应,得到水解液;将水解液和碱催化剂混合进行缩聚反应,得到溶胶;将纤维、亲水型二氧化硅粉体和功能助剂混合,得到预混料;将预混料采用针刺设备制成预制体;在真空条件下,将预制体浸渍在溶胶中,静置,密封老化,得到凝胶复合材料;将凝胶复合材料进行超临界干燥,得到二氧化硅气凝胶复合绝热材料。上述方法可大大减少有机硅的用量,降低生产成本,且制备的材料具有的较好的绝热性能和抗压抗拉性能。
本发明提供了一次还原整形二次液相包覆法制备单晶高压实磷酸铁锂,通过使用锂源、铁源、磷源、少量碳源在液相体系下经过一次粗磨、一次细磨、一次喷雾、一次烧结得到磷酸铁锂前驱体,然后将得到的磷酸铁锂前驱体再次与碳源在液相体系下经过二次粗磨、二次细磨、二次喷雾、二次烧结得到最终的磷酸铁锂/碳复合材料。由于经过两次粗磨以及两次细磨,对原材料以及前驱体均达到一定整形的目的,所制备的磷酸铁锂/碳复合材料碳包覆质量高、一次颗粒大小均匀、表面光滑,同时表现出较好的加工性能、电化学性能以及更高的压实密度。
本发明公开了一种抗菌聚乳酸纳米纤维及其制备方法和应用,属于生物医用材料技术领域。本发明通过层层组装的方法,将聚乳酸纳米纤维在多巴胺水溶液中浸泡,形成表面含有聚多巴胺的聚乳酸纳米纤维,然后再浸入氧化锌水分散液中浸泡,形成氧化锌包覆的聚乳酸纳米纤维;通过多次重复上述浸泡过程,可以获得不同氧化锌含量的聚乳酸纳米纳米复合材料。该方法简单、易行,得到的聚乳酸复合材料具有很好的抗菌性能及良好的生物相容性。
本发明提供了一种在三维多孔洋麻杆碳上生长类石墨烯片层结构的方法,该方法使具有类石墨烯片层结构的共价有机框架(COF)直接生长在三维多孔洋麻杆碳(3D‑KSC)的孔壁上,得到三维多孔洋麻杆碳/共价有机框架复合材料(3D‑KSC/COF)。利用该方法制备的三维多孔洋麻杆碳/共价有机框架复合材料既具有类似石墨烯片层结构形状,又能保持3D‑KSC的三维孔状结构及良好的导电性和热稳定性。
本发明公开了一种硼硫共掺杂石墨烯氮化碳的制备方法及对Hg2+的检测应用,属于光学传感技术领域。将硼酸、二硫化钼与三聚氰胺按一定比例在管式炉中高温煅烧,煅烧后的产物超声后离心分离,合成硼硫共掺杂的石墨烯氮化碳复合材料。硼硫共掺杂的石墨烯氮化碳先与Hg2+结合,再通过静电作用和π?π共轭作用接近卟啉,Hg2+与卟啉分子作用形成平面外“Sat”复合物从而使卟啉环变形,加快了钴离子从背面进入卟啉空腔形成金属钴卟啉的速度。金属钴卟啉的形成使得卟啉的荧光减弱,随着Hg2+浓度的增加,卟啉的荧光逐渐减弱。基于此原理,可实现环境中Hg2+的快速、灵敏、选择性检测。
本发明提供了一种防撞击高刚度壁板结构,包括蒙皮和型材,其特征在于,在蒙皮上布置型材,型材与蒙皮之间采用复合材料缝合技术进行连接,型材与蒙皮之间可自由选择是否增加芯材,蒙皮边缘采用复合材料缝合技术对蒙皮自身进行缝合,缝合完成后,整体固化成型得到整体壁板。
本发明公开了一种高衰减玻璃钢的超声测厚方法,包括:选取一标样,获取标样的厚度d1和声速c1;选取与待测厚高衰减玻璃钢制品的材料和工艺条件相同的一试样,获取试样的厚度d2;利用同一套脉冲发射接收仪和超声换能器,在测量参数不变的条件下,分别测量标样和试样的始波起跳点和一次波第一个波峰处的时间差Δt1和Δt2,通过公式:得到获取试样的声速c2,t为超声波在超声换能器中传播的时间,并测量待测厚高衰减玻璃钢制品的始波起跳点和一次底波第一个波峰处的时间差Δt3,通过公式:获取待测厚高衰减玻璃钢制品的厚度d3。在无法检测到二次波的情况下,仅测量始波与一次波即可确定待测厚高衰减玻璃钢制品的厚度,对玻璃钢等复合材料制品现场测厚有指导意义。
一种碳纳米管掺杂聚席夫碱/铁氧体复合隐身材料,由碳纳米管、聚席夫碱,铁氧体复合制得,碳纳米管的质量占整个复合材料的7%-18%,聚席夫碱的质量占整个复合材料的8%-35%,余量为纳米铁氧体;该材料具有优异的吸波性能,同时具有吸收频带宽、成本低廉、制备简单、密度低的优点,在吸波材料、抗静电材料,电磁屏蔽材料等方面有着广阔的应用前景。
中冶有色为您提供最新的江西南昌有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!