本发明提供了一种钴掺杂硅/碳纳米复合材料的制备方法,包括以下步骤:S1、聚(二甲基硅烷)丁二炔的制备;S2、钴配位聚(二甲基硅烷)丁二炔的制备;S3、钴掺杂硅/碳纳米复合材料的制备;也就是通过将聚(二甲基硅烷)丁二炔与钴配位后热解得到。本发明提供的制备方法原料简单,易于操作。本发明还保护上述方法制备得到复合材料以及该材料在锂离子电池阳极材料中的应用,该纳米复合材料表现出优异的循环性能,在100mA g‑1下100次循环后容量为905mAh g‑1,在500mA g‑1下1000次循环后,容量为540mAh g‑1,并保持约1105mAh g‑1的高放电容量,电化学性能优异。
本发明提供了一种高耐侯性建筑用复合材料及其制备方法,涉及建筑材料技术领域,该建筑用复合材料的原料按重量份数计,包括:210‑320份水泥、300‑400份中砂、500‑780份石子、10‑12份憎水珍珠岩、32‑45份细白云母粉、12‑18份碳纤维、15‑20份椰壳纤维、15‑20份蟹壳、50‑60份粉煤灰、120‑180份水、1‑5份抗紫外线吸收剂和10‑20份无水乙醇。通过叫单、方便的制备方法,制备出的建筑用复合材料具有较高耐候性,使用寿命长,在高温、低温环境下,均能保持自身的良好特性,能够实现废物资源化利用,达到环保的要求。
本发明公开了一种新型耐候型木塑复合材料及其制备方法,取木粉20‑30份、聚丙烯60‑100份、二氧化钛4‑8份、稀土元素的盐2‑4份、钛酸酯偶联剂0.5‑2份、领苯二甲酸二辛酯2‑5份、乙烯‑乙酸乙烯酯共聚物8‑12份、偶氮二甲酰胺1‑3份、滑石粉2‑8份、硬脂酸锌1‑3份,采用钛酸酯偶联剂对木粉进行改性,以改性木粉和聚丙烯为主要原料,邻苯二甲酸二辛酯为塑化剂,乙烯‑乙酸乙烯酯共聚物为增容剂,偶氮二甲酰胺为发泡剂,滑石粉和硬脂酸锌为润滑剂,通过水热合成法制备H2Ti2O5•H2O纳米管并以其为纳米光吸收剂,通过共混的方式均匀分散在木塑复合材料中,然后通过双螺杆挤出成型得到木塑复合材料,使其获得优越的阻燃性能,产品无毒无害,不会造成环境污染等问题。
本发明公开了一种利用秋茄叶制备活性炭纳米铁复合材料的方法,它以活性炭为载体,采用秋茄叶提取液所含的多酚、黄酮、咖啡因等生物活性还原剂将亚铁离子还原为零价纳米铁。活性炭纳米铁复合材料将活性炭吸附性能和纳米铁强还原性有机地结合起来,提高了复合材料应用于印染废水处理的吸附和还原性能。本发明无需使用硼氢化钾或硼氢化钠等还原剂,生产成本低、对环境的危害小,制备的活性炭纳米铁复合材料克服了目前纳米铁在水中易失活和凝聚,难以回收和重复利用等缺点,具有较高的经济效益和环境效益。
本发明公开了一种耐候型木塑复合材料及其制备方法,取木粉20‑30份、聚丙烯60‑100份、二氧化钛4‑8份、钛酸酯偶联剂0.5‑2份、领苯二甲酸二辛酯2‑5份、乙烯‑乙酸乙烯酯共聚物8‑12份、偶氮二甲酰胺1‑3份、滑石粉2‑8份、硬脂酸锌1‑3份,采用钛酸酯偶联剂对木粉进行改性,以改性木粉和聚丙烯为主要原料,邻苯二甲酸二辛酯为塑化剂,乙烯‑乙酸乙烯酯共聚物为增容剂,偶氮二甲酰胺为发泡剂,滑石粉和硬脂酸锌为润滑剂,通过水热合成法制备H2Ti2O5•H2O纳米管并以其为纳米光吸收剂,通过共混的方式均匀分散在木塑复合材料中,然后通过双螺杆挤出成型得到木塑复合材料,使其获得优越的阻燃性能,产品无毒无害,不会造成环境污染等问题。 1
本发明公开了核壳结构的层层自组装型耐候木塑复合材料及其制备方法,以木粉和聚丙烯为主要原料,通过双螺杆挤出成型制备木塑复合材料,通过水热合成法制备稀土元素掺杂的H2Ti2O5·H2O纳米管并通过SiO2纳米粒子包覆的方式,以稀土元素掺杂的H2Ti2O5·H2O纳米管核心形成核壳结构,在保留H2Ti2O5·H2O纳米管对光的吸收屏蔽作用的同时,使其在“外壳”的保护下,消除或降低其光催化作用产生的负面影响,最后采用层层自组装的方式使其以纳米膜的形式包覆木纤维基复合材料表面,使其获得耐候性能。
本发明公开了一种石墨毡复合材料,包含有如下重量份的组分:石墨毡15‑20;预促进邻甲苯不饱和聚酯树脂75‑85;固化剂2‑3。本发明采用石墨毡作为复合材料的基底,其制备的材料在具备良好机械性能的基础上,还具有重量轻、耐高温、耐腐蚀、热导率低及良好的保温、隔热性能等优点,其相较于传统玻钎复合材料重量降低20%以上。同时,本发明还公开了一种石墨毡复合材料的成型方法,用于成型前述石墨毡复合材料,能适用于更加的轻量化及某些特定使用环境的特殊性能需求。
本发明公开了一种氧化石墨烯‑氢氧化钕复合材料、制备方法及其应用。本发明通过直接沉淀法与水热合成法制备氧化石墨烯‑氢氧化钐复合材料(Nd(OH)3/GO),通过SEM、XRD、FT‑IR等对Nd(OH)3/GO复合材料的结构进行表征,研究其结构与性质;用其吸附和去除溶液中的孔雀石绿(MG)和磷酸根离子(PO43‑)研究其吸附性能,通过在不同pH、时间、温度以及初始质量浓度等条件下对孔雀石绿(MG)和磷酸根离子(PO43‑)的吸附效果进行探讨,确定最佳吸附条件,通过对Langmuir等温吸附方程的拟合得到孔雀石绿和磷酸根离子的最大吸附量分别为635.6mg/g和509.8mg/g,吸附效果显著。
本发明公开了一种具有取向填料的聚合物复合材料及其制备方法。它包括至少一种聚合物基体,其特征是:该些种聚合物基体中至少有一种聚合物基体中填充有至少一种具有形状各向异性的填料;包含该些聚合物基体原料和形状各向异性填料的物料组成,通过分割-再层叠汇合的层倍增挤出方法制备成复合材料,在制备中该形状各向异性的填料在物料料流中得到取向。本发明将在基体中加入具有形状各向异性的填料和层倍增操作结合在一起,该形状各向异性的填料在物料被不断地分割-再层叠汇合时逐渐得到取向,使得该物料成为具有取向性填料的聚合物复合材料,因此它解决了背景技术存在的低效率、难控制、高要求等问题。
本发明公开了一种氧化石墨烯‑氧化铽‑氧化铁复合材料、合成方法及其在催化降解中的应用,通过直接沉淀法与溶剂热法相结合制得氧化石墨烯‑氧化铽‑氧化铁复合材料,通过傅立叶变换红外光谱、扫描电镜、X射线衍射光谱仪对该复合材料进行表征,研究其结构与性质,然后与氧化剂过硫酸氢钾共同作用催化降解孔雀石绿水溶液,分别探究其在不同浓度、不同pH值、不同温度、不同催化剂使用量的条件下,对有机染料孔雀石绿的催化降解能力,本发明方法合成工艺简单、条件温和,实验结果重现率高,可以得到性能稳定的产品。
本发明公开了一种天然纤维树脂复合材料及制备方法,它由主要包括以下的重量份配比的组分制备:水性树脂10~50份、非水性环氧树脂10~50份、天然纤维50~200份、水溶性硬化剂3~15份、相转移催化剂6~15份、填料50~150份和水100~200份。该天然纤维树脂复合材料高具有强度、低成本的特点。
本发明公开了一种利用红树植物秋茄胚轴提取液制备活性污泥氧化亚铜复合材料的方法,它以活性污泥为载体,将城市生活污水处理厂的活性污泥烘干后破碎,过筛后用硝酸浸泡,抽滤,烘干后备用,采用秋茄胚轴提取液所含有的多糖、氨基酸、维生素C等生物活性还原剂将铜离子还原为纳米氧化亚铜。活性污泥氧化亚铜复合材料将活性污泥吸附性能和氧化亚铜高的催化活性有机地结合起来,提高了复合材料应用于印染废水处理的吸附和还原性能。本发明无需使用硼氢化钠等化学还原剂,对环境的危害小,生产成本低廉,制备的活性污泥氧化亚铜复合材料克服了目前氧化亚铜回收难,容易形成二次污染等缺点,具有较高的环境效益和经济价值。
本发明公开了一种阻燃型竹塑复合材料及其制备方法,所述阻燃型竹塑复合材料由以下重量份数的原料制备而成:竹粉20‑30份、高密度聚乙烯60‑100份、二氧化钛4‑8份、稀土元素的盐2‑4份、硅烷偶联剂0.5‑2份、乙烯‑乙酸乙烯酯共聚物8‑12份、偶氮二甲酰胺1‑3份、聚乙烯蜡2‑8份、硬脂酸锌1‑3份。本发明以废弃竹粉和高密度聚乙烯为主要原料,通过水热合成法制备稀土元素掺杂的H2Ti2O5•H2O纳米管并以其为纳米阻燃剂,通过共混的方式均匀分散在竹塑复合材料中,然后通过双螺杆挤出一次成型得到竹塑复合材料,使其获得优越的阻燃性能,并且产品无毒无害,不会造成环境污染等问题。
本实用新型克服现有复合材料打印喷头挤出的材料复合不良导致打印质量差的缺陷,提出一种材料复合良好且打印质量高的用于复合材料的挤出型打印喷头。它包括喷头本体、第一加热块、第二加热块、包材通道、芯材通道,第一加热块设置在第二加热块上方,芯材通道竖直设置在第一加热块内且贯穿第一加热块,第二加热块顶部开设有混料腔,喷头本体竖直固定在第二加热块内且进料端延伸到混料腔内,包材通道水平设置在第二加热块内且包材通道与混料腔底部相通,芯材通道位于混料腔正上方且混料腔的直径大于芯材通道直径。两种耗材在进入到喷头本体之前在混料腔混合,包材在混料腔内各方的压力相等,使包材能够均匀地包裹在芯材外部形成包裹式复合材料。
本实用新型公开了金属复合材料表面修磨装置,包括箱体,所述箱体内壁的两侧均栓接有U型块,所述U型块的顶部螺纹连接有螺纹杆,所述螺纹杆的下端栓接有挤压块;本实用新型通过将金属复合材料放置两块U型块中,转动螺纹杆使挤压块与金属复合材料挤压固定,从而避免不能对体型金属复位材料进行限位固定,在进行修磨作业时,具有一定的局限性,提高了灵活性;本实用新型通过启动驱动机构与电机带动打磨盘对金属复合材料进行打磨,启动抽水器,将水箱内的水通过喷头管喷出,从而避免不便于对修磨后的材料表面进行清理,灰尘难以去除,残留的杂物会影响修磨效果,也对会引起粉尘造成环境的污染,提高了打磨效果。
本发明公开了一种氮掺杂碳包覆硅纳米颗粒复合材料及其制备方法,包括以下步骤:S1、将粒径为30~50nm硅纳米颗粒置于pH为7.5的Tris‑HCl缓冲溶液中,清洗,干燥,得到处理过的硅纳米颗粒;S2、将多巴胺盐酸盐加入pH为8.5的Tris‑HCl缓冲溶液中,溶解,得到多巴胺溶液;S3、将S1中得到的处理过的硅纳米颗粒加入S2中得到的多巴胺溶液中,分散均匀,接着在室温下,搅拌反应1~8天,然后分离、干燥,得到反应物;S4、在惰性气氛下,将S3得到的反应物在700~900℃煅烧1~2h,即得到复合材料。本发明还公开了上述复合材料在锂电池负极上的应用,本发明合成的复合材料具有优异的循环稳定性。
本发明公开了一种玻纤增强HIPS及PPO复合材料及其制备工艺,其中的玻纤增强HIPS及PPO复合材料,由以下重量份的原料制成:高抗冲聚苯乙烯50‑60份、聚苯醚30‑45份、二氧化硅13‑17份、无碱玻璃纤维4‑8份、防玻纤外露剂2‑6份、相溶剂4‑8份、热塑稳定剂1‑5份、纳米碳纤维2‑6份、增韧剂1‑2份、抗氧剂1‑2份、润滑剂3‑7份、阻燃剂2‑3份、紫外线吸收剂1‑3份、丙酮0.8‑1.2份、表面改性剂1.3‑1.7份、抗静电剂2‑4份,其中的玻纤增强HIPS及PPO复合材料的制备工艺,包括以下步骤:S1:按重量比依次称取各原料,备用。本发明设计合理,各原料与助剂之间能够充分混合均匀,通过各原料之间的粘和程度,使得制备的复合材料表面光滑,具备良好的阻燃、绝缘和抗老化性能。
本发明公开了一种力响应聚合物泡沫复合材料,其特征在于,其含有带皮聚合物泡沫颗粒及力响应聚合物;其中,所述的力响应聚合物,在其聚合物链上含有至少一种力敏团,和/或在聚合物中共混有至少一种力响应成分;在机械力作用下,所述力响应聚合物中的力敏团和/或力响应成分发生化学和/或物理变化,实现力响应;其中,所述的带皮聚合物泡沫颗粒,其由可发性聚合物(组成)或可发性聚合物前驱体(组成)通过直接发泡和/或3D打印制得,且具有表皮结构;其中,所述带皮聚合物泡沫颗粒与所述力响应聚合物以及其他可选组分复合形成所述复合材料。所述的复合材料具有密度低、轻便、隔热隔音、缓冲减震以及力响应特性,可广泛应用于制作包装材料、建筑材料、抗冲击防护材料、减震材料、缓冲材料、消音材料、保暖材料、形状记忆材料、电子电器材料、医疗用品等。
本发明公开了一种氧化石墨烯‑氢氧化铕‑氢氧化钴复合材料、合成方法及其在催化降解中的应用,通过直接沉淀法与溶剂热法相结合制得氧化石墨烯‑氢氧化铕‑氢氧化钴复合材料,通过傅立叶变换红外光谱、扫描电镜、X射线衍射光谱仪对该复合材料进行表征,研究其结构与性质,然后与氧化剂过硫酸氢钾共同作用的高级氧化技术催化降解胭脂红水溶液,分别探究其在不同浓度、不同pH值、不同温度、不同催化剂使用量的条件下,对胭脂红的催化降解情况,从而确定最佳催化降解条件。本发明产品催化效果显著,时间短,用量少,且加工处理后可多次循环使用,可作为绿色催化剂。
本发明提供了一种高强度高模量玻纤增强PBT复合材料,其特征在于,包含按重量份数计的下列组份:PBT50~70份、增韧剂5~10份、成核剂3~5份、玻璃纤维15~30份、偶联剂0.2~1;加工助剂0.5~1份;聚乙二醇2~8份、甲基纤维素2~12份、氧化铝1~5份、硬脂酸锌1~4份。本发明添加聚乙二醇、甲基纤维素、氧化铝、硬脂酸锌以及其他添加剂通过“协同增效”对原料创新,提高了最终产品强度和硬度,整体上提升了产品的综合性能,同时通过加工助剂和偶联剂对PBT、增韧剂之间的相容性进行改性,有效地消除了增韧剂对复合材料耐低温性能的影响,实现了PBT复合材料同时具有耐低温性能。
本发明公开了一种自组装型阻燃竹塑复合材料及其制备方法,以竹粉和高密度聚乙烯为主要原料,硅烷偶联剂为偶联剂,乙烯‑乙酸乙烯酯共聚物为增容剂,偶氮二甲酰胺为发泡剂,聚乙烯蜡和硬脂酸锌为润滑剂,通过双螺杆挤出一次性成型制备竹塑复合材料;通过水热合成法制备H2Ti2O5•H2O纳米管并用γ‑氨丙基三乙氧基硅烷对其进行改性以制成纳米管/γ‑氨丙基三乙氧基硅烷分散液,然后将处理后的竹塑复合材料在纳米管/γ‑氨丙基三乙氧基硅烷分散液和聚苯乙烯磺酸钠溶液中交替浸泡若干次,得到自组装型阻燃竹塑复合材料。本发明产品,H2Ti2O5•H2O纳米管是以纳米膜的形式附着在复合材料表面,使用较低含量的纳米阻燃剂即可达到很好的阻燃效果,有助于降低产品成本。
一种利用海蛎壳负载纳米Cu2O-TiO2光催化复合材料的制备方法,涉及一种光催化复合材料。先进行海蛎壳预处理;再制备纳米二氧化钛-海蛎壳复合材料;最后制备利用海蛎壳负载纳米Cu2O-TiO2光催化复合材料。采用溶胶-凝胶法与共沉淀法相结合来制备海蛎壳负载纳米Cu2O-TiO2光催化复合材料,海蛎壳通过活化后,具有更大的比表面积和表面吸附性,提高了光催化材料的光能吸收率,增强了海蛎壳的吸附能力,提高了光催化活性,解决了目前光催化材料应用于废水处理中存在的分离回收难度大、寿命短、光能利用率低等问题。此外,原材料价格低,可大幅度降低生产成本。
本发明公开了一种可持久释放挥发性物质的复合材料及其制备方法,该复合材料由主要包括以下的重量份配比的组分制备:水性树脂10~50份、天然纤维50~180份、水溶性硬化剂3~8份、相转移催化剂8~15份、填料50~150份、挥发性物质2~9份和水100~200份。本发明以天然纤维及普通高分子材料作为挥发性物质的载体,不仅制作简单、生产成本低,且能在自然状态下直接分解。
本发明公开了一种氮硫双掺杂多孔碳包覆二氧化锡复合材料及其制备方法,包括以下步骤:将酚醛树脂加入到有机溶剂中,搅拌溶解,接着加入二氧化锡颗粒,得到反应液;将2,5‑二巯基‑1,3,4‑噻二唑加入到有机溶剂中,混合溶解,接着加入反应液,加入十六烷基三甲基溴化铵,加入过硫酸铵‑甲醇‑水溶液,搅拌24h,旋蒸,得到反应物;S4、将S3中得到的反应物在120℃下反应24h,然后在保护气体氛围下于700~900℃下煅烧5h,即得到复合材料。本发明还提供了该复合材料在锂电池负极上的应用。本发明复合材料通过软炭层的缓冲和N、S元素的掺杂避免活性物质在充放电过程中发生粉化,显著提高了循环能力和速率能力。
本发明公开了一种自组装型耐候木塑复合材料及其制备方法,以木粉和聚丙烯为主要原料,邻苯二甲酸二辛酯为塑化剂,乙烯‑乙酸乙烯酯共聚物为增容剂,偶氮二甲酰胺为发泡剂,滑石粉和硬脂酸锌为润滑剂,通过双螺杆挤出成型制备木塑复合材料,以H2Ti2O5•H2O纳米管作为纳米光吸收剂并用γ‑氨丙基三乙氧基硅烷对其改性,将木塑复合材料在纳米管/γ‑氨丙基三乙氧基硅烷分散液和聚苯乙烯磺酸钠溶液中交替浸泡若干次,采用层层自组装的方式将H2Ti2O5•H2O纳米管以纳米膜的形式包覆在木塑复合材料表面,使得其获得较好的耐候性能,能够有效防止木塑复合材料在户外使用过程中发生光氧氧化而被破坏。
本发明公开了一种高刚性聚丙烯复合材料,其原料按重量的配方如下:聚丙烯50‑70份、多元醇20‑30份、棕榈蜡12‑16份、乙酰柠檬酸三丁酯12‑16份、无机填料5‑7份、硬脂酸钙5‑7份、碳纤维粉20‑25份、玻璃纤维粉8‑12份、分散剂3‑5份、偶联剂3‑5份、抗氧剂1‑3份、防静电剂1‑3份。本发明还公开了一种高刚性聚丙烯复合材料的制备方法。本发明能够使得该复合材料具有高刚性、低收缩以及低光泽的特点,还能够保证其的强度,先将各原料通过分散剂进行分散,然后利用偶联剂重新结合,有效提高了各原料之间结合的效率,保证了复合材料的质量。
本发明公开了一种层层自组装阻燃型竹塑复合材料及其制备方法,以竹粉和高密度聚乙烯为主要原料,硅烷偶联剂为偶联剂,乙烯‑乙酸乙烯酯共聚物为增容剂,偶氮二甲酰胺为发泡剂,聚乙烯蜡和硬脂酸锌为润滑剂,通过双螺杆挤出成型制备竹塑复合材料;制备稀土元素掺杂的H2Ti2O5•H2O纳米管并用γ‑氨丙基三乙氧基硅烷对其进行改性制成纳米管/γ‑氨丙基三乙氧基硅烷分散液,然后将竹塑复合材料浸泡于聚丙乙烯溶液中,并在纳米管/γ‑氨丙基三乙氧基硅烷分散液和聚苯乙烯磺酸钠溶液中交替浸泡,得到层层自组装阻燃型竹塑复合材料。本发明产品,H2Ti2O5•H2O纳米管是以纳米膜的形式附着在复合材料表面,使用较低含量的纳米阻燃剂即可达到很好的阻燃效果。
本发明公开了一种层层自组装型耐候木塑复合材料及其制备方法,以木粉和聚丙烯为主要原料,邻苯二甲酸二辛酯为塑化剂,乙烯‑乙酸乙烯酯共聚物为增容剂,偶氮二甲酰胺为发泡剂,滑石粉和硬脂酸锌为润滑剂,通过双螺杆挤出成型制备木塑复合材料,以H2Ti2O5•H2O纳米管作为纳米光吸收剂并用γ‑氨丙基三乙氧基硅烷对其改性,将木塑复合材料在纳米管/γ‑氨丙基三乙氧基硅烷分散液和聚苯乙烯磺酸钠溶液中交替浸泡若干次,采用层层自组装的方式将H2Ti2O5•H2O纳米管以纳米膜的形式包覆在木塑复合材料表面,使得其获得较好的耐候性能,能够有效防止木塑复合材料在户外使用过程中发生光氧氧化而被破坏。
本发明公开了一种用于板材改性的高分子复合材料及其制备方法,所述高分子复合材料的原料由以下重量份的组分组成:聚合物单体296份,改性剂20-40份,保护胶体6-12份,引发剂1.5-3.0份,水300-600份,以及用于调节pH值的酸溶液和碱溶液;所述聚合物单体为丙烯酸或丙烯酸酯类中的一种或它们的混合物;所述改性剂为硅烷偶联剂;所述保护胶体为聚甲基丙烯酸钠、聚乙烯醇、纳米纤维素或羧甲基纤维素钠中的一种;所述引发剂为过硫酸铵或过硫酸钾。本发明所述用于板材改性的高分子复合材料中可以与板材中的钙离子反应,并固化成耐水性能优异的防水层,是板材加工过程中的理想材料。
本发明提供了一种活性污泥及纳米铁铜复合材料的制备方法。本活性污泥及纳米铁铜复合材料的制备方法,包括以下步骤:1)活性污泥的预处理;2)液相还原溶液的制备;3)复合材料的制备;4)复合材料的干燥。本发明以活性污泥为载体,采用硼氢化钠液相还原法制备,该复合材料将活性污泥吸附性能和纳米铁强还原性有机地结合起来,充分发挥两种材料的优势。形成的铁铜二元金属体系,既提高纳米铁在空气中的稳定性,又增加纳米铁表面的活性吸附点,提高了复合材料应用于有机废水处理的吸附和还原性能。利用活性污泥的粒径分布范围宽,表面积大,絮体呈网状机构,是良好的载体,将活性污泥被废为宝,以废治废,具有较高的环境效益和经济效益。
中冶有色为您提供最新的福建漳州有色金属理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!