使用热压罐制备[45/-45]4s、[0/90]4s和[0/45/-45/90]2s三种铺层方式的CFRP层合板,然后在室温下与Al胶接制备出单搭接试样。使用电子万能试验机、数字图像相关法(DIC)和扫描电子显微镜(SEM)等手段测量胶接接头的拉伸载荷-位移曲线和应变分布并观察断口形貌。基于试验数据分析不同铺层方式下CFRP-Al单搭接接头的拉伸性能,研究了铺层方式对CFRP-Al单搭接接头胶接性能的影响和铺层方式胶接接头的破坏机制。结果表明,在拉伸过程中[45/-45]4s试样出现塑性变形阶段其拉伸位移最大,而[0/45/-45/90]2s和[0/90]4s试样的拉伸位移较小且发生了脆性断裂。铺层方式从[45/-45]4s到[0/45/-45/90]2s再到[0/90]4s,试样的极限载荷和纤维束断裂数量增加、层间剪切力减小、应变集中程度和分层破坏程度降低。
以不同石墨化度的中间相沥青基碳纤维为基底磁控溅射构筑Cf/Al界面,研究了不同石墨化度Cf/Al界面微观结构的演变,并与聚丙烯腈碳纤维比较揭示了Cf/Al界面的损伤机制。结果表明:随着石墨化处理温度的提高中间相沥青基碳纤维的石墨微晶尺寸增大、取向度和石墨化度提高,Cf/Al界面的反应程度降低和碳纤维损伤减少。不同石墨化度Cf/Al界面的损伤决定于初始缺陷的数量和后续裂纹在碳纤维内部的增殖和扩展。在2400℃和2700℃石墨化处理使裂纹更容易在中间相沥青基碳纤维石墨微晶片层间扩展,去除镀层后纤维损伤比聚丙烯腈碳纤维分别高5.19%和3.70%;在3000℃石墨化处理后,化学惰性较大的中间相沥青碳纤维使界面反应产生的缺陷数量大幅度减小,去除镀层后纤维的损伤比聚丙烯腈碳纤维低1.85%。
用水热法合成了不同长径比的钛酸钡纳米线(BaTiO3 nanowires (BTN)),用聚乙烯吡咯烷酮(PVP)调节其表面化学能和静电力(标记为P-BTN)。将P-BTN加入聚间苯二甲酰间苯二胺(PMIA)基体中制备出P-BTN含量(质量分数)为10%的介电复合材料P-BTN/PMIA。研究了合成温度对BTN长径比的影响、P-BTN对P-BTN/PMIA复合材料介电性能和电学性能的影响以及P-BTN/PMIA复合材料在不同温度下的介电性能和电学性能。结果表明:随着BTN合成温度的提高其长径比明显增大,从130℃时的7.2增大到250℃时的46;随着PMIA复合材料中P-BTN长径比的增大其介电常数从6.6增大到9.8,其介电损耗在整个频率范围内小于0.025并保持了良好的绝缘性能;在-20℃-200℃复合材料P-BTN-250-10介电常数和介电损耗保持稳定。高长径比的BTN更利于提高耐高温聚合物基复合材料的介电常数,进而提高其储能密度。
先合成反应型BBDMP30-clay有机化粘土和非反应型CPDMP30-clay有机化粘土,然后以其为纳米增强体分别制备了两种界面强度不同的环氧树脂/粘土纳米复合材料。用透射电子显微镜(TEM)、拉伸实验表征这两种环氧树脂/粘土纳米复合材料并进行动态力学分析(DMA),研究了界面强度对其力学性能的影响。结果表明:这两种纳米复合材料具有几乎相同的无规剥离结构,反应型BBDMP30-clay比非反应型CPDMP30-clay能更有效地提高材料的热/机械性能。粘土质量分数为3.5%时BBDMP30-clay可使纳米复合材料的拉伸强度提高250%,而CPDMP30-clay只能使材料的拉伸强度提高190%。BBDMP30-clay使纳米复合材料的玻璃化转变温度(Tg)提高了6.5℃,而CPDMP30-clay只能使材料的Tg提高2.5℃。这些不同都可归因于这两种纳米复合材料界面强度的差异。
先用水热法合成氧化石墨烯(GO)/苯甲酸钠(Sb)复合成核剂(GO-Sb),然后用熔融共混法制备尼龙6(PA6)/GO-Sb纳米复合材料,研究了分别添加GO和Sb、同时添加GO-Sb对PA6纳米复合材料的形态、力学和热性能的影响。结果表明:GO与Sb之间存在静电相互作用和π-π共轭,Sb的加入能促进PA6中γ晶的形成。GO-Sb作为异相成核剂均匀分散在PA6中, 使PA6纳米复合材料的结晶温度、结晶度和热变形温度提高。PA6-GO-Sb(100/0.05/0.25)纳米复合材料的拉伸强度和冲击强度分别比纯PA6提高了69.9%和157.1%。PA6-GO-Sb(100/0.05/0.25)纳米复合材料的拉伸强度、冲击强度和弹性模量分别比PA6-GO-Sb(100/0.3/0)纳米复合材料提高了13.6%、186.4%和52.6%。与纯PA6(k=0.238 W/m·k)相比,PA6-GO-Sb(100/0.3/0)纳米复合材料(k=0.536 W/m·k)的热导率提高了125.2%,PA6-GO-Sb(100/0.05/0.25)纳米复合材料(k=0.854 W/m·k)的热导率提高了258.8%。
基于电沉积技术的方法在电极表面构建聚苯胺(PANI)/海藻酸膜,直接构建PANI/海藻酸修饰电极,结合了海藻酸的阳极电沉积和苯胺的电化学聚合,具有条件温和以及后处理简便的特点。PANI/海藻酸膜呈现出与PANI类似的深绿色,其不仅可以稳定的存在于电极表面,而且还可以从电极表面取下来作为独立的膜材料。X射线衍射、红外光谱以及扫描电镜的测试结果均表明利用电沉积技术在电极表面制备得到了PANI/海藻酸膜。电化学性能分析结果表明,与PANI修饰电极相比,PANI/海藻酸修饰电极的电荷转移电阻更小,具备更高的电化学电容、更好的电荷储存能力和循环稳定性。
选用正硅酸乙酯(TEOS)和甲基三甲氧基硅烷(MTMS)为前驱体,用溶胶-凝胶法制备不同C/Si(原子比,下同)比的SiOC气凝胶,再用大气喷涂法将其喷涂在柔性陶瓷纤维隔热毡中制备出SiOC气凝胶/柔性陶瓷纤维复合材料。C/Si比,是影响SiOC气凝胶/柔性陶瓷纤维复合材料性能的主要因素。随着C/Si比的提高SiOC溶液的凝胶时间延长且更易浸入隔热毡,材料的密度和热导率先降低后提高。C/Si比为0.67的材料热导率最低,其室温热导率为0.026 W/m·K,1000℃时的热导率为0.174 W/m·K。与未改性的隔热毡相比,其热导率显著降低,尤其是在高温下热导率降低47%;同时,这种材料还具有优异的耐高温和抗氧化性能,在1200℃空气中静烧1 h后试样的质量损失只约为1%,静烧3 h后约为5%,随着C/Si比的提高其质量损失随之提高;同时,SiOC气凝胶复合材料还具有良好的疏水性能、柔性和回弹性。
使用重金属污泥制备免烧砖。使用CaO钙源优化配置复合胶凝材料的组分,并调控胶凝浆体中的水化产物和未水化相。先基于免烧砖原料的配合比计算复合胶凝体系的钙硅比(Ca/Si)并控制其值为0.8~1.2,设计添加CaO的免烧砖实验方案。使用核磁共振(NMR)、透射电镜-能谱等手段和PCAS分析软件,研究了CaO使高硅复合胶凝材料性能提高的机理。结果表明:随着高硅胶凝体系Ca/Si比在0.8~1.2范围内的提高,免烧砖的力学性能先提高后降低,Ca/Si比的最佳值为1.0,CaO也有一个最佳调控值。随着Ca/Si比的提高7 d试样的吸水率先降低后提高,28 d试样的吸水率线性降低。随着Ca/Si比的提高,试样中平面孔径大于200 μm的孔隙率递减,分形维数先减小后增大;对于孔径小于200 μm的孔结构,随着Ca/Si比的提高孔径为200~200 μm的孔减少,孔径小于200 nm的孔增多,孔的体积呈减小的趋势。复合胶凝体系能抑制污泥免烧砖70%以上的重金属浸出量。
将纳米ZnO粉末和Al粉球磨后冷压成Al-ZnO预制块,然后将其加到Al-Zn-Cu熔体中进行Al-ZnO原位反应,制备出纳米Al2O3颗粒增强Al-Zn-Cu基复合材料。能谱面扫描分析和透射电镜观察结果表明,复合材料由纳米Al2O3颗粒和Al2Cu析出相两种颗粒/析出相组成。纳米Al2O3颗粒通过异质形核和晶界钉扎,细化了Al-Zn-Cu合金晶粒组织和Al2Cu析出相。原位纳米Al2O3颗粒的生成提高了基体合金的拉伸性能,轧制+热处理使Al2O3/Al-Zn-Cu复合材料的拉伸强度比相同处理的基体合金提高约100%,总伸长率提高约98%。
以植酸(PhA)为原料,采用热解法制备含磷石墨烯(PhA-G),并以硅树脂(SiR)为成膜物制备含磷石墨烯/硅树脂(PhA-G/SiR)复合防腐蚀涂层。通过拉曼光谱和XPS分析含磷石墨烯的结构,通过SEM、TEM和AFM观察含磷石墨烯的形貌,通过接触角、吸水率、电化学阻抗谱、极化曲线和盐雾实验等研究复合涂层的耐蚀性能。结果表明:相比于纯SiR涂层和氧化石墨烯/硅树脂(GO/SiR)复合涂层,PhA-G/SiR复合涂层对金属的保护作用更好;当含磷石墨烯添加量为3%(质量分数)时,PhA-G/SiR复合涂层表现出较好的疏水性和优异的防腐蚀性能,其接触角为103.5°,吸水率为3.72%;腐蚀电流密度为3.53×10-10 A/cm2,电化学阻抗值达到3.82×107 ?·cm2,耐盐雾达到960 h。
先以氧化石墨烯和三氯化铁为原料并用高温水热法制备还原氧化石墨烯/ Fe3O4(rGO/Fe3O4)复合物,再用其改性环氧树脂制备出rGO/Fe3O4/环氧树脂复合材料,研究了(rGO/Fe3O4)复合物的添加对其性能的影响。结果表明,(rGO/Fe3O4)复合物的添加量为30%的复合材料其冲击强度达到27 kJ/m2,比纯环氧树脂的冲击强度提高了58.8%。在环氧树脂中添加rGO/Fe3O4复合物,使其吸波性能显著提高。rGO/Fe3O4复合物的添加量为20%的复合材料,其反射率在小于-10 dB的频率范围为7.7~12.3 GHz,有效吸收频宽达4.6 GHz,覆盖了整个X波段。随着石墨烯含量的提高rGO/Fe3O4/环氧树脂复合材料达到最小反射率的位置向低频位置移动,控制rGO和Fe3O4的相对含量可调控这种复合材料的吸波性能。
以天然棉纤维为模板用一步热解法在氮气气氛中原位制备纳米铜碳复合材料(NCCC),再以浸泡了硫酸铜的棉纤维为热解碳源、以商业纳米铜和微米铜为铜源原位制备了碳包覆纳米/微米铜。使用TEM、XRD和Raman等手段对其表征,研究了这种材料的稳定性。结果表明,NCCC是一种典型的具有碳包覆纳米铜核壳结构的材料;用原位热解法制备碳包覆金属纳米/微米材料,进一步证实棉纤维热解气氛为碳源及原位还原剂。验证了碳包覆材料的抗氧化性:碳壳的形成使NCCC暴露在空气中180 d或水中35 d后仍保持铜和氧化亚铜的物相组成;受碳壳保护的商业纳米铜,暴露空气中120 d仍未氧化。
采用粉末冶金法,通过“湿法混合”、放电等离子烧结和热挤压相结合的三步工艺分别制备了石墨烯纳米片(GNP)增强铜基复合材料(GNP-Cu)和GNP-Ni增强铜基复合材料(GNP-Ni/Cu)。通过物相组成和显微组织表征,并结合致密度、电导率和力学性能测试,结果表明:GNP和Ni的含量(质量分数)分别为0.2%和1.5%的GNP-Ni/Cu复合材料,其显微硬度和屈服强度比纯Cu分别提高了38%和50%、比0.2GNP/Cu复合材料分别提高了14.0%和11.6%。这些结果表明,Ni的添加改善了GNP与Cu的界面结合,使GNP-Ni/Cu复合材料的力学性能显著提高。GNP的载荷传递强化和热失配强化以及Ni的
用两步水热法合成了BiOCl-RGO复合材料。先在乙二醇和去离子水的混合溶液中合成直径约为400 nm、由纳米片构成的微球状单一BiOCl样品,在此基础上引入RGO载体制备出BiOCl-RGO纳米复合材料。使用Raman光谱、XRD、XPS等手段表征样品的物相构成,用SEM和TEM观测其微观形貌,通过降解甲基橙评定样品的光催化性能。结果表明,水热温度显著影响复合材料的光催化性能,在140℃制备的BiOCl和石墨烯结合的样品具有最高的光催化性能。
在醋酸体系中用原位聚合法将石墨烯(RGO)与不同比例的苯胺(ANI)合成RGO/PANI一次掺杂态产物,用氨水解掺杂后再掺杂醋酸制备出RGO/PANI二次掺杂态产物。使用红外光谱、紫外光谱和扫描电镜等手段表征产物的结构和形貌并用电化学技术测试其防腐性能。结果表明,RGO与ANI质量比为1:10时生成的一次掺杂态产物形貌最好,防腐效果最佳;RGO表面生长的聚苯胺长度为300~650 nm,直径为70~100 nm,产物的缓蚀效率可达73.19%;RGO/PANI二次掺杂态产物为石墨烯/醋酸掺杂态聚苯胺;醋酸掺杂可明显改善产物的结构和形貌并提高其缓蚀效率,缓蚀效率可达到80.21%,防腐性能优异。
在5% H2+95% N2气氛下,还原CoFe2O4纳米粒子制备了CoFe2O4-Co3Fe7纳米粒子;以焙烧黄麻纤维得到的多孔碳纤维为碳源用水热法将CoFe2O4纳米粒子负载到多孔碳中,制备出CoFe2O4/多孔碳。使用X射线衍射仪、扫描电子显微镜、透射电子显微镜、拉曼光谱仪、同步热分析仪等手段对材料进行表征,并使用矢量网络分析仪测量了复合材料的电磁参数和微波吸收性能。结果表明,CoFe2O4-Co3Fe7纳米粒子和CoFe2O4/多孔碳的微波吸收性能明显优于CoFe2O4纳米粒子。CoFe2O4-Co3Fe7纳米粒子的有效频宽(反射损耗<-10 dB的频率宽度)可达4.8 GHz。CoFe2O4/多孔碳的有效频宽可达6 GHz,覆盖了整个Ku波段(12~18 GHz)。这些材料优异的微波吸收性能,可归因于合适的介电常数、大的介电损耗、多孔结构以及介电损耗和磁损耗的协同作用。
以纳米管(MWCNTs)和纯钛为原料,用微波烧结法原位合成TiC增强钛基复合材料,研究了这种材料的组织和性能并探讨了TiC增强相的生成机理。结果表明,微波烧结时MWCNTs与Ti原位生成TiC增强相。MWCNTs的添加量(质量分数,下同)低于1%时TiC呈现颗粒状且分布均匀,Ti基体致密;MWCNTs的添加量高于1.5%时TiC呈树枝晶形貌,Ti基体的组织粗化使复合材料出现较多的孔洞。MWCNTs的添加使材料由粘着磨损为主转变为磨粒磨损为主。随着MWCNTs添加量的提高,复合材料的显微硬度先提高后降低。MWCNTs添加量为1%的复合材料显微硬度最高(约为527HV)、耐磨性能最好(摩擦系数约为0.35)。与纯钛相比,TiC增强钛基复合材料的显微硬度提高了1.2倍,摩擦系数降低了0.4。
先水热合成MoS2/CoFe2O4纳米复合吸波材料,再通过合理的物料配比并使用无水葡萄糖作为碳源和还原剂,使MoS2/CoFe2O4复合材料在氮气氛中还原为MoS2/CoFe/C三元纳米复合材料。对这种复合材料的形貌、相结构及电磁参数进行表征、模拟分析其最佳匹配厚度和吸波性能,研究了碳源浓度对复合材料的组成和性能的影响并根据弛豫理论讨论其吸波机制。结果表明,厚度为3 mm的这种复合材料在12.4 GHz处的最低反射损耗可达-42.9 dB;厚度为4 mm时低于-10 dB的频带宽度可达7.1 GHz。
以碳纳米球(CNSs)为核、六氯环三磷腈(HCCP)和氨基二苯砜(DDS)为桥梁和接枝剂制备一种碳纳米球基氮-磷-硫复合阻燃剂(CNSs-H-D)并表征其形貌结构和热稳定性,研究了这种复合阻燃剂对环氧树脂(EP)的阻燃性能和机理。结果表明:合成的CNSs-H-D是直径为80 nm的球状颗粒,热稳定性优异;CNSs-H-D添加量(质量分数)为5%的CNSs-H-D/EP,其LOI从EP的20.0%提高到27.5%,阻燃等级为V-2级,热释放速率峰值和火灾危险性指数比EP分别降低16.8%和42.2%;CNSs-H-D可显著提高EP的热稳定性和成炭性,CNSs-H-D/EP的初始分解温度比EP高40℃,高温残炭量提高了144.7%。CNSs-H-D/EP具有典型的凝聚相阻燃机理,其炭层的致密性和连续性好,初始失重温度比纯EP的炭层高190℃,800℃的剩余质量高达94.5%。
基于化学气相沉积制备三维多孔多壁碳纳米管(MWNTs)海绵,在其内均匀填充聚二甲基硅氧烷(PDMS)制备出碳纳米管/聚二甲基硅氧烷复合薄膜。复合PDMS的碳纳米管海绵保持着自身的三维结构,成为导电网络和力学骨架;均匀填充的PDMS使复合薄膜具有较高的拉伸性能。碳纳米管与聚二甲基硅氧烷之间的协同作用,使MWNTs/PDMS复合薄膜具有良好的力学强度(3.7 MPa)、拉伸性(207%)和弹性。MWNTs/PDMS复合薄膜对应变有稳定可靠的响应,应变为10%、20%、50%、80%和100%时电阻变化率(△R/R0)分别为0.9%、1.4%、2.3%、3.5%和4.6%,灵敏因子(GF)为别为0.09、0.07、0.046、0.044和0.046。MWNTs/PDMS复合薄膜的性能具有良好的稳定性,不受拉伸速度和循环次数影响。同时,MWNTs/PDMS复合薄膜还保持了碳纳米管和PDMS的疏水能力。
在650℃不同压力下将熔融的LiF-NaF-KF盐(46.5%-11.5%-42.0%,摩尔分数,FLiNaK)浸渗入2D C/C复合材料中,测试2D C/C复合材料的增重率、密度和力学性能的变化并用X射线断层扫描(X-ray CT)和扫描电子显微镜(SEM)观察FLiNaK熔盐的分布,研究了FLiNaK熔盐浸渗对2D C/C复合材料力学性能的影响。结果表明,FLiNaK熔盐分布在2D C/C复合材料开放的孔隙中、纤维束中和相邻层的裂缝中;随着浸渗压力的提高2D C/C复合材料的增重率增大、压缩强度和弯曲强度提高。FLiNaK熔盐浸渗产生的“二次增密”作用和2D C/C复合材料中残余应力的耦合效应,使其力学性能提高。
采用优化的SLM成形参数,用激光选区熔化(SLM)增材制造技术制备了三维Ni-Cu合金。使用三维Ni-Cu合金基底材料用化学气相沉积法(CVD)制备Ni-Cu合金/石墨烯复合材料,研究了CVD法生长反应温度对石墨烯结构的影响并分析其原因。结果表明,石墨烯层的厚度随着反应温度的提高而减小。与未生长石墨烯的样品相比,在100℃石墨烯复合使复合材料的热扩散系数提高了12.5%。用SLM增材制造技术和金属模型结构设计成形三维Ni-Cu合金,实现了对石墨烯片层取向的控制,结合CVD法优化在Ni-Cu合金表面生长石墨烯工艺可调控石墨烯的结构。
以氧化石墨烯和乙酰丙酮镍为原料,用溶剂热法合成了三维多孔RGO@Ni纳米复合材料。采用X射线衍射(XRD)和X射线光电子能谱(XPS)表征了材料的晶体结构和组成,根据拉曼谱分析了材料内部的石墨化程度和结构缺陷,用扫描电镜(SEM)和透射电镜(TEM)观察了材料的形貌和微观结构。结果表明,当RGO@Ni纳米复合材料的填充量(质量分数)为25%时在最小反射损耗(RLmin)和最大有效吸收带宽(EAB)方面显示出优异的EMW吸收性能;厚度为2.2 mm的RGO@Ni纳米复合材料其RLmin为-61.2 dB,而在2.5 mm匹配厚度下覆盖的EAB范围最广,为6.6 GHz(10.5~17.1 GHz)。这种复合材料优异的微波吸收性能,归因于协同效应的增强和特殊的多孔结构。
使用热重分析仪测定尼龙66(PA66)和两种不同玻纤增强尼龙66复合材料(GF/PA)的热分解曲线,用Kissinger法和Crane法研究了PA66和GF/PA的热分解动力学。结果表明:PA66、GF/PA-1和GF/PA-2的热分解反应级数分别为0.949、0.912和0.921,表明均为一阶热分解过程;热分解活化能分别为218.65 kJ/mol、121.81 kJ/mol和132.23 kJ/mol,表明玻纤的加入显著降低了PA66的热分解活化能。在加热速率相同的条件下两种GF/PA达到最大热分解速率的温度都比PA66的低,表明玻纤虽然改善了PA66的性能,但是加快了PA66的热分解过程,说明存在着“灯芯效应”。
用磁控溅射法在ITO玻璃基底上制备Ti-Co合金薄膜,对其阳极氧化处理制备出钴掺杂TiO2纳米管阵列薄膜,研究了钴掺杂对纳米管阵列薄膜的形貌、结构、吸收光谱以及光催化还原性能的影响。结果表明:钴掺杂TiO2纳米管阵列薄膜为锐钛矿相,管状阵列的管径均一、排列规整。钴掺杂使薄膜形成(001)择优取向。随着钴掺杂量的提高,薄膜吸收可见光的能力提高。钴含量(原子分数)为0.19%的薄膜光催化性能最优,可见光照150 min后对Cr(VI)的还原率可达98.4%。
使带有环氧基团的三缩水甘油基对氨基苯酚(TGPAP)分别与溴代正丁烷(BB)、2-溴乙醇(BE)反应,合成了反应型粘土有机修饰剂溴化(正定烷基)双环氧基(4-环氧醚基)铵(TGPAPB)和溴化(2-羟乙基)双环氧基(4-环氧醚基)铵(TGPAPE)。用这两种修饰剂改性粘土,分别制备出具有相同反应官能团但与环氧树脂的相容性略有不同的两种有机化粘土(B-Clay和E-Clay)。再用“粘土淤浆复合法”制备出两种环氧树脂/粘土纳米复合材料,研究了两种反应型有机修饰剂对纳米复合材料的结构和性能的影响。结果表明:带有羟基的E-Clay以高度无规剥离形式均匀分布在环氧树脂基体中;而B-Clay则形成了无规剥离/插层混合结构。两种粘土均参与固化反应在环氧树脂基体和粘土片层间产生了较强的界面作用力,从而显著提高了纳米复合材料的拉伸强度。粘土质量分数为3%的两种纳米复合材料,其拉伸强度分别达到32.4 MPa(E-Clay)和28.0 MPa(B-Clay),比对应的纯环氧树脂聚合物分别提高了76.47%和52.51%。同时,这两种纳米复合材料的玻璃化转变温度(Tg)也略有提高。
研究了铜含量和烧结温度对Fe-Cu基粉末冶金复合材料摩擦磨损性能影响。结果表明,Cu含量为20%~60%,随着Cu含量的提高耐磨性能先随之提高,Cu含量为40%时耐磨性能达到最优值,平均摩擦系数最小为0.172,磨损量为0.007 g;随着Cu含量的进一步提高耐磨性能反而降低。烧结温度为1096~1296℃时,随着烧结温度的提高耐磨性能随之提高,温度达到1196℃时耐磨性能达到最优,平均摩擦系数最小为0.123,磨损量为0.0018 g;烧结温度再提高耐磨性能反而降低。在最优工艺烧结过程中液相Al分别与Fe和Cu基体生成固溶体,使材料的密度和强度提高。MnS分解后,Mn与Fe基体生成固溶体,部分C也与Fe基体生成固溶体,两者促进了合金的固溶强化。其余的单质C,使合金的润滑性能提高。烧结后,Cu晶粒组织变得均匀细小,在Fe基中以网状形式存在。以上各组元的特殊作用使Fe-Cu基复合耐磨材料具有优异的耐磨性能。
采用氧气介质阻挡放电(DBD)等离子体处理PBO纤维表面,用以改善PBO纤维与双马来酰亚胺(BMI)树脂之间的界面粘结性能。结果表明,用氧气等离子体处理PBO纤维能大幅度提高PBO/BMI复合材料的层间剪切强度(ILSS)值,最佳处理条件为功率30 W/m3、时间24 s,ILSS值从43.9 MPa提高到62.0 MPa。经过氧气DBD等离子体处理的PBO纤维其表面的氧含量明显提高,氮含量变化不大,甚至在过度处理时降低;官能团-O-C=O基团的含量从0提高到3.16%,-C-O-的含量也明显提高;在氧气DBD等离子体处理后的PBO纤维表面产生大量凹凸不平和沟壑,使纤维表面的粗糙度提高。而表面氧含量的提高和表面形貌与粗糙度的变化,是PBO/BMI复合材料ILSS值提高的重要原因。单丝拉伸实验结果表明,适当的DBD等离子体处理不会对PBO纤维表面产生不良影响,不影响其在复合材料中的作用。
通过模板法与物理混合法相结合,成功制备了三维网络结构的BaTiO3(BTO)/Fe3O4/三聚氰胺泡沫异质结构复合材料。采用扫描电镜和X射线衍射对样品的表面形貌和晶体结构进行了表征。使用矢量网络分析仪测试了该样品在2~18 GHz频率范围内的复介电常数和复磁导率,并根据测量数据计算了反射损耗值。随后,使用COMSOL多物理场仿真软件进行有限元分析,研究了该复合体系的吸收机制和吸波性能。研究结果表明,成功引入了BTO和Fe3O4形成的大量异质界面到三维网络结构碳中,构建了异质结构。B
新型氮化碳/钨酸铋/cu复合光催化材料的制备技术领域.本发明属于光催化技术领域,涉及合成一种新型的g-cn/biwo/cu三元复合光催化材料,并将其用于可见光及太阳光下催化降解水体有机污染物。背景技术.随着社会经济的快速发展和城市化进程的加快,大量有机污染物进入地表水体,严重影响水体的景观及使用性能,并且不利于水生生物的生长繁殖。目前,处理地表水中有机污染物的治理方法多种多样,但传统的处理方法,如生物处理法和化学氧化法存在处理效果差,投资成本高以及容易产生二次污染等缺点。今年
中冶有色为您提供最新的其他有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!