合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 复合材料技术

> 磁性多孔RGO@Ni复合材料的制备和吸波性能

磁性多孔RGO@Ni复合材料的制备和吸波性能

697   编辑:中冶有色技术网   来源:刘佳良,陈平,徐东卫,于祺  
2024-04-10 13:18:30
电子信息产业、医疗产业和雷达技术的飞速发展给人类带来了便利,但是过量的电磁波辐射严重污染了环境 因此,亟待研发高性能“轻、薄、宽、强”的微波吸收材料[1~4]

在微波吸收材料中,石墨烯有超高比表面积、特殊的微观结构和较强的化学稳定性等优点,是首选的新型轻质吸波材料[5] 但是,单纯的碳材料介电常数较大,不利于阻抗匹配 同时,纳米碳材料在制备过程中容易团聚,在基体中的分散性也比较差 将磁性纳米粒子与三维石墨烯复合可调节其电磁参数、提高阻抗匹配程度和改善分散程度,制备出高性能、多功能化的复合型吸波材料[6~8]

金属镍粒子的价格低廉,具有高磁导率、高饱和磁化强度及较高的温度稳定性,可用于制造吸波材料 但是,单一的磁损耗机制不能使其具有极高的吸波性能[9] 鉴于此,本文以氧化石墨烯和乙酰丙酮镍为原料,用一步溶剂热法制备具有协同作用的磁性多孔RGO@Ni复合材料,并深入研究其吸波性能

1 实验方法1.1 实验用原材料

石墨(粒径8 μm),高锰酸钾(KMnO4),浓硫酸(H2SO4),乙酰丙酮镍(AANi),聚乙烯醇(PVA),十六烷基三甲基溴化铵(CTAB),乙二醇(EG)

1.2 测试用仪器

用Max-2400型X射线衍射仪分析晶体结构,X射线源为Cu靶(λ=0.15406 nm),扫描范围在10o~80o内,扫描速度10°/min 使用SENTERRA R200型拉曼光谱仪测量样品的拉曼光谱,激光的波长为633 nm,扫描范围为400~4000 cm-1 使用X射线光电子衍射仪(ESCALAB 250Xi型)分析样品的表面化学元素组成和化学状态 用XFlash 5030型扫描电镜(SEM)和Tecnai F30透射电子显微镜(TEM)观察材料的形貌及微观结构

使用Aglilent 8720ET型矢量网络分析仪测试样品的电磁参数(ε, μ),频率范围为1~18 GHz 测试时将吸波粒子与石蜡基体混合均匀,使用同心轴模具制成内径为3.04 mm、外径为7.0 mm、厚度约为3.00 mm的空心环状样品

1.3 氧化石墨烯的制备

采用改进的Hummers法制备氧化石墨烯(RGO):将50 mL浓H2SO4倒入冰水浴内的500 mL三口烧瓶中,缓慢加入2.0 g鳞片石墨后搅拌30 min 然后将6.0 g的KMnO4分批缓慢加入,使整体温度低于10℃在冰水浴条件下反应2 h;随后移入35℃水浴锅中继续搅拌3 h,缓慢滴加100 mL去离子水后在95℃反应30 min 最后滴加100 mL去离子水和15 mL双氧水终止反应 将产物自然冷却到室温,用5%的稀盐酸洗涤下层溶液后再用去离子水洗至中性 将此溶液超声处理2h后进行冷冻干燥,得到黄色氧化石墨烯粉末

1.4 RGO@Ni复合材料的制备

先在冰水浴状态下超声处理将GO粉末分散在乙二醇(EG)中,制备出GO悬浮液(5 mg/mL) 然后在超声处理下将1.5 g AANi溶解在40 mL EG中,并充分搅拌以形成均匀的绿色溶液 然后在机械搅拌条件下将0.5 g CTAB,1 g PVA和自制的40 mL GO/EG溶液添加到上述溶液中,使其均匀混合 将所得溶液转移到不锈钢反应釜(150 mL)中,使其在200℃反应14 h 最后,将产物自然冷却到室温并用去离子水充分洗涤,最后将其冷冻干燥得到多孔磁性RGO@Ni复合材料

为了进行对比实验,在相同的条件下不添加GO和AANi制备纯Ni和RGO 合成工艺流程,如图1所示

图1



图1合成多孔磁性RGO@Ni复合材料的示意图

Fig.1Schematic illustration for the formation of the porous magnetic RGO@Ni nanocomposites

2 结果和讨论2.1 结构和物相组成

用XRD、Raman光谱和XPS等手段表征材料的结构特征 用XRD测量鉴定样品的相结构和结晶度

图2给出了纯RGO、纯Ni和RGO@Ni复合材料的XRD谱图 可以看出,RGO谱中在2θ=24°附近出现较宽的特征衍射峰,对应于RGO的(002)平面,证明GO被成功还原成RGO RGO@Ni的XRD谱中在44.7°,51.9°,76.5°处出现特征衍射峰,分别对应于金属镍的(111)、(200)、(220)晶面(JCPDS No.04-0850) 谱图中窄而尖的峰表明Ni是高度结晶的,说明合成出的Ni纯度很高 与纯Ni相比,在RGO@Ni样品的衍射谱中可观察到19.7°(d=0.455 nm)处的衍射峰 以上数据表明,在溶剂热反应的条件下GO被还原成RGO,AANi被还原成Ni纳米粒子,说明已经合成出RGO@Ni复合材料

图2



图2GO、RGO、Ni以及RGO@Ni复合材料的XRD谱图

Fig.2XRD patterns of RGO, Ni microspheres, RGO@Ni nanocomposites

拉曼光谱可用于检测碳材料的石墨化程度和内部结构缺陷 石墨、GO以及RGO@Ni复合材料的拉曼光谱图,如图3所示 从图3可见,三条曲线均在1350 cm-1和1590 cm-1附近处出现特征峰,分别对应于D和G波段 D带对应于碳原子无序诱导或晶格结构中的缺陷;而G波段可归因于碳原子sp2杂化的面内拉伸振动,代表材料近似石墨结构的程度[10~13] 值得注意的是,D和G谱带的面积强度比(ID/IG值)与碳原子晶体的缺陷有关 ID/IG值越高,则缺陷程度越高,石墨化程度越低[10~13] 随着反应的进行,与原始石墨(ID/IG=0.78)相比,GO的ID/IG值(1.34)显著增大,表明碳骨架结构中有更多的缺陷 值得注意的是,RGO@Ni复合材料的ID/IG(1.13)值小于GO,表明在还原过程中产生了新的sp2结构域,并且碳原子晶格缺陷得到了还原,有利于改善阻抗匹配,产生更多的极化中心使电磁波衰减

图3



图3石墨、GO和RGO@Ni复合材料的拉曼谱图

Fig.3Raman spectra of graphite, GO, RGO@Ni nanocomposites

用X射线光电子能谱(XPS)表征了GO和RGO@Ni的表面化学组成和元素价 如图4a所示,在RGO@Ni纳米复合材料的XPS低分辨率总谱中出现特征峰,表明样品完全由Ni,O和C元素组成 在全谱中未检测到其他元素,与XRD表征结果一致,表明合成出的材料比较纯 Ni 2p的高分辨率光谱,如图4b所示 图中的两个明显的峰值分别位于855.9 eV和873.6 eV,对应于镍的Ni 2p3/2和Ni 2p1/2(0价) 尤其是在861.5 eV和879.7 eV处也出现了与Ni2+的Ni 2p3/2和Ni 2p1/2相对应的峰,表明生成了Ni-O键,也证明镍在空气中其表面有一层致密的氧化膜[14] RGO@Ni纳米复合材料的光谱,如图4c所示 分峰拟合结果表明,位于结合能为284.7、286.2和288.5 eV的三个峰分别归因于C-C/C=C,C-O-C和O-C=O基团 GO的C 1s光谱如图4d所示,位于结合能为284.8、286.9和288.7 eV的三个峰分别归因于C-C/C=C,C-O-C和O-C=O基团 显然,与GO C 1S的光谱相比,RGO@Ni的C-O-C和O-C=O基团的峰值明显减少,表明在溶剂热反应中含氧基团部分消失了,进一步表明GO已经还原为RGO

图4



图4RGO@Ni的XPS全光谱、RGO@Ni的Ni 2p光谱、RGO@Ni的C 1s频谱以及GO的C 1s光谱

Fig.4XPS full spectrum of RGO@Ni (a), Ni 2p spectrum of RGO@Ni (b), C 1s spectrum of RGO@Ni (c) and C 1s spectrum of GO (d)

2.2 微观结构

用扫描电镜(SEM)和透射电镜(TEM)表征了RGO@Ni复合材料的形貌和微观结构 图5a~b给出了样品的SEM照片 所制备的RGO@Ni纳米复合材料显示出三维(3D)多孔网络结构,由随机取向褶皱的三维石墨烯纳米片和具有约900 nm粒径的Ni颗粒组成 更重要的是,可以清楚地看到,在复合系统中有大量的微米级孔隙,较大的表面积有利于衰减电磁波 此外,从TEM照片(图5c~d)可清楚地观察到约900 nm尺寸的Ni球,进一步表明合成出了RGO@Ni纳米复合材料 高分辨率TEM(5d)图像显示出条纹间的间距为0.20 nm,与Ni粒子的(111)平面相对应,与图2中的XRD结果一致

图5



图5RGO@Ni的SEM照片和TEM照片

Fig.5SEM (a, b) and TEM (c, d) of RGO@Ni

2.3 吸波性能

最小反射损耗(RLmin)和有效吸收带宽(EAB),是评价吸波性能的重要标准 根据传输线理论,由给定频率范围内各厚度下的相对磁导率和介电常数,可计算材料的反射损耗(RL):

πZin=Z0μrεrtanhj2πfdμrεrc

(1)

RL=20logZin-Z0/Zin+Z0

(2)

其中,Zin、Z0、εr、μr分别为吸波材料的输入阻抗、空气的固有阻抗和相对复介电常数和磁导[15];其中c、f、d分别为真空中的光速、电磁波频率和涂层厚度[10,15]

图6a~c给出了在1~18 GHz范围内,填充剂含量(质量分数)为25%不同厚度的Ni、RGO和RGO@Ni复合材料的三维反射率图像 可以看出,厚度从2 mm增大到5 mm纯Ni粒子和纯RGO的电磁波反射损耗值在1~18 GHz范围内都未达到-10 dB,说明单一损耗机制的吸波粒子性能不高 而纳米复合材料其EMW的吸收性能大大提高,可归因于RGO和Ni之间的协同作用 显然,随着厚度的增加反射损耗的峰值从高频转移到低频 这种现象可以用四分之一波长公式

tm=nλ4=nc4fmεrμr(n=1,3,5,…)

(3)

图6



图6Pure Ni、RGO以及RGO@Ni.的三维反射率图像和2.2 mm处Ni、RGO和RGO@Ni的RL值

Fig.6Three-dimensional representation of RL values for pure Ni (a); RGO (b); RGO@Ni (c) and RL values for Ni, RGO, RGO@Ni at 2.2 mm (d)

解释,式中c为光速,εr和μr是分别复介电常数(εr)和复磁导率(μr)的模量 由式(3)可知,随着厚度的减小谐振频率增大,当试样厚度等于入射电磁波的四分之一时试样上下表面反射的电磁波相位相反,干涉相消,因此电磁波吸收最少 当厚度从2 mm增大到5 mm时,有效电磁波吸收带宽可实现13.5 GHz(4.5 GHz~18 GHz)的覆盖 由图6可见,频率为14.4 GHz时RGO@Ni的RLmin值为-61.2 dB,最大有效吸收带宽(EAB)为6.6 GHz,覆盖范围从10.5 GHz到17.1 GHz

2.4 电磁参数

材料的电磁波(EMW)吸收性能与相对复磁导率(μr=μ′-jμ″)和相对复介电常数(εr=ε′-jε″)有关[16] 图7给出了Ni,纯RGO和RGO@Ni复合材料在1~18 GHz范围内的相对复介电常数和相对复磁导率 图8a~b给出了各个样品的介电常数实部(ε′)和介电常数虚部(ε″) 由于共振和介电弛豫,RGO和RGO@Ni的ε′和ε″值表现出对频率的明显依赖性,随着频率的提高呈现降低的趋势 重要的是,在RGO@Ni的ε″值的图像中出现多种共振峰,可归因于偶极极化和界面极化引起的极化损耗[17] 偶极极化通常是多孔RGO@N复合材料中的残留缺陷和官能团导致偶极子重定向引起的;石墨烯和Ni之间的电荷转移导致在Ni和多孔石墨烯层的界面处形成电偶极子,从而产生界面极化损失

图7



图7纯N、纯RGO和RGO@Ni复合材料的介电常数

Fig.7Relative complex permittivity and relative complex permeability (a) real part (ε′); (b) imaginary part (ε″); (c) real part (μ′) and (d) imaginary part (μ″)

图8



图8介电损耗正切、磁损耗正切(tanδμ)、Cole-Cole半圆(ε′对ε″)以及1~18 GHz频率范围的C0值

Fig.8dielectric loss tangent (tanδε) (a), magnetic loss tangent (tanδμ) (b), Cole-Cole semicircles (ε′ versus ε″) (c~e) and C0 versus f in the range of 1~18 GHz (f)

除介电损耗外,磁损耗也是影响电磁波吸收的关键因素 图7c和d给出了Ni、纯RGO和RGO@Ni复合材料在1~18 GHz范围内的磁导率实部图(μ′)和磁导率虚部(μ″)曲线 可以看出,RGO@Ni复合材料的μ′值随着频率的提高呈现降低的趋势 在1~18 GHz范围内的共振峰,可归因于磁矩运动松弛作用

2.5 介电损耗和磁损耗

图8a和b给出了Ni、RGO和RGO@Ni复合材料在1~18 GHz频率范围内的介电损耗角正切tanδε和磁损耗角正切tanδμ曲线 可以看出,在整个频率范围内RGO@Ni的tanδε值远高于tanδμ值,表明介电损耗是影响RGO@Ni复合材料微波吸收性能的主要因素 在tanδε和tanδμ的图像中出现多重共振峰,表明RGO@Ni复合材料具有多种磁损耗机制 总之,强介电损耗和弱磁损耗之间的协同效应,对微波吸收有重要的影响

根据Debye偶极弛豫[17]理论,ε"与ε'的关系为

(ε'-εs-ε∞2)2+(ε")2=(εs-ε∞2)2

(4)

其中εs为静态介电常数,τ和ε∞分别为极化弛豫时间和高频极限处的相对介电常数 若介电损耗只与Debye偶极松弛有关,则ε"对ε'作图所得的Cole-Cole环应该是标准的半圆形状,纯Ni、RGO、RGO@Ni的ε"对ε'作图所得的曲线如图8c~e所示 与纯RGO或纯Ni相比,在RGO@Ni曲线中可清楚地观察到多个Cole-Cole半圆,即材料中存在多个松弛现象 这表明,Debye偶极弛豫是低频域中的主要介电损耗机理;而RGO@Ni的Cole-Cole半圆是不规则的,表明在RGO@Ni纳米材料中还可能有其他损耗机制,使其发生了扭曲,例如Maxwell-Wagner弛豫现象、偶极极化或界面极化 因此可以确定,RGO@Ni复合材料的多重介电损耗机制可提高材料的电磁波吸收性能

除了介电损耗,磁损耗是影响电磁波损耗的另一个关键因素 材料的磁损耗主要与磁滞、自然共振、涡流效应、畴壁位移以及交换共振等有关[19] 在1~18 GHz范围内磁滞损耗、畴壁共振可忽略不计

图8b给出了三种材料在1~18 GHz范围内的磁损耗正切值图像 从图中可见,在低频(1~6 GHz)范围内出现共振峰,对应于材料的自然共振 从tanδμ图像中可以看出,三种样品在高频处也出现多组共振峰,根据Aharoni理论可归因于Ni纳米粒子和空间电荷等引起的交换共振 在交流磁场作用下磁性物质中产生涡流,使材料产生涡流损耗 根据趋肤效应[20],涡流损耗为

πC0=μ"(μ')-2f-1=2πμ0σd23

(5)

其中μ0为真空中的磁导率,σ为材料的电导率,d为材料的厚度 根据趋肤效应,如果材料的磁损耗主要来自涡流损耗,则涡流系数C0保持恒定,并且其值在1~18 GHz的频率范围内接近零[21] 但是,如图8f所示,RGO@Ni的C0值在1~6 GHz频率范围内波动很大,表明磁损耗与涡流损耗无关 在低频范围,独特的多孔结构以及碳材料和金属颗粒之间的相互作用可能抑制了涡流损耗,从而增强了对电磁波的吸收 此外,RGO@Ni的C0值在6~18 GHz的频率范围内基本上恒定,表明高频的磁损耗主要来自涡流损耗

2.6 阻抗匹配和衰减常数

电磁波在传播过程中入射到材料内部,在入射面发生电磁波反射和透射 为了使材料更有效地吸收电磁波,入射的电磁波应该尽可能多地进入材料内部而不是发射到表面,这需要较好的阻抗匹配 同时,在透射过程中进入材料内部的电磁波应该完全衰减掉而转换成其他形式的能量,也要求满足衰减匹配 因此,阻抗匹配(Z)和衰减常数(α)是确定材料优异吸收特性的两个重要因素[22],可分别由

Z=Zin/Z0=(μ"2+μ'2)/(ε"2+ε'2)

(6)



πα=2πfc×(μ"ε"-μ'ε')+(μ"ε"-μ'ε')2+(μ'ε"+μ"ε')2

(7)

得到 其中f为电磁波频率,c为光速,ε′、ε″、μ′和μ″分别为材料相对介电常数的实部、虚部、相对磁导率的实部和虚部 图9给出了Ni、RGO和RGO@Ni复合材料的衰减系数和阻抗匹配系数 从图9可见,在阻抗匹配优异的条件下,RGO@Ni在1~18 GHz内呈上升的趋势,Zin与Z0之比越接近于1代表材料的阻抗匹配性能越优异,因此其最佳吸波性能(RLmin)出现在高频 远大于Ni纳米颗粒和RGO纳米片的阻抗匹配,说明多种损耗机制使材料的透射能力有很大的提高 而RGO@Ni具有中等衰减能力,高于Ni纳米颗粒但低于RGO 因此,出色的阻抗匹配和合理的衰减常数可大大提高材料的电磁波吸收性能

图9



图9Ni、RGO和RGO@Ni复合材料的衰减系数和阻抗匹配系数

Fig.9Attenuation constant and Impedance matching ratio of Ni、RGO and RGO@Ni composites

由此可见,RGO@Ni复合材料优异的电磁波吸收特性主要由以下因素决定:(1)RGO@Ni泡沫独特的3D多孔结构引起多次反射和散射,导致电磁波在受限的空隙中传播很长的距离,并将其转换为热能或其他类型的能量 (2)在RGO与Ni之间有大量界面,从而引起界面极化 这种界面极化与RGO上的缺陷引起的偶极极化相关,从而使微波能量衰减 (3)在1~18 GHz频率范围内的磁损耗,由自然共振、交换共振和涡流损耗确定 更重要的是,介电损耗和磁损耗之间的协同作用不仅抑制了涡流效应,而且得到合适的复介电常数,使微波更容易进入吸收体而增大电磁波损耗,从而实现更高的电磁波(EMW)吸收性能

3 结论

以氧化石墨烯和乙酰丙酮镍为原料用一步自组装溶剂热法可制备具有多孔结构的三维(3D)RGO@Ni纳米复合材料 与纯Ni纳米晶体和石墨烯相比,RGO@Ni纳米复合材料在最小反射损耗(RLmin)和最大有效吸收带宽(EAB)方面显示出优异的EMW吸收性能 RGO@Ni纳米复合材料在2.2 mm厚度下的RLmin为-61.2 dB,在2.5 mm的匹配厚度下覆盖的EAB范围最广,为6.6 GHz(10.5~17.1 GHz) RGO@Ni纳米复合材料优异的微波吸收性能,可归因于多重极化弛豫的协同效应和特殊的多孔结构

参考文献

View Option 原文顺序文献年度倒序文中引用次数倒序被引期刊影响因子

[1]

Liu T, Pang Y, Zhu M, et al.

Microporous Co@CoO nanoparticles with superior microwave absorption properties

[J]. Nanoscale, 2014, 6: 2447

DOIURLPMID [本文引用: 1] " />

Natural cotton was selected as a cheap and renewable carbon source to fabricate novel carbon networks with porous three-dimensional conductive frameworks composed of numerous unique hollow carbon fibers by pyrolysis, and outstanding electromagnetic interference (EMI) shielding effectiveness (SE) of approximately 26.9-46.9 dB was observed for the samples ( approximately 0.3 mm in thickness) with density of approximately 0.14-0.06 g/cm(3). Moreover, the combination of cotton-derived carbon networks with graphene through the construction of a sandwich configuration, where graphene sheets were dispersed inhomogeneously on both sides of carbon networks, was further developed and the resultant carbon composite networks with ultrathin skin layers of graphene film in thickness of only approximately 2 mum possessed higher EMI SE of approximately 48.5-87.0 dB than that ( approximately 33.7-55.6 dB) of pure carbon networks in thickness of approximately 0.3-0.7 mm, possibly due to the enhanced EM reflection and absorption of EM waves penetrating the material. The SE increment of approximately 26-41% was also observed in the sandwiched samples in comparison with the counterparts with homogeneous graphene dispersion, demonstrating a very promising configuration for the significant SE enhancement.

[3]

Song W L, Guan X T, Fan L Z, et al.

Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding

[J]. J. Mater. Chem., 2015, 3A: 2097

[4]

Li X Y, Huang X L, Liu D P, et al.

Synthesis of 3D hierarchical Fe3O4/Graphene composites with high lithium storage capacity and for controlled drug delivery

[J]. J. Phys. Chem., 2011, 115C: 21567

[本文引用: 1]

[5]

Xu D W, Xiong X H, Chen P, et al.

Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties

[J]. J. Magn. Magn. Mater., 2019, 469: 428

[本文引用: 1]

[6]

Zeng Q, Xiong X H, Chen P, et al.

Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance

[J]. J. Mater. Chem., 2016, 4C: 10518

[本文引用: 1]

[7]

Zeng Q, Chen P, Yu Q, et al.

Self-assembly of graphene hollow microspheres with wideband and controllable microwave absorption properties

[J].Chin. J. Mater. Res., 2018, 32: 119

(曾强, 陈平, 于祺等.

具有宽频与可控微波吸收性能的石墨烯空心微球的自组装

[J]. 材料研究学报, 2018, 32: 119)

[8]

Chu H R, Chen P, Yu Q, et al.

Preparation and microwave absorption properties of FeCo/Graphene

[J].Chin. J. Mater. Res., 2018, 32: 161

[本文引用: 1]

(褚海荣, 陈平, 于祺等.

FeCo/石墨烯的制备和吸波性能

[J]. 材料研究学报, 2018, 32: 161)

[本文引用: 1]

[9]

Liu J, Cao M S, Luo Q, et al.

Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature

[J]. ACS. Appl. Mater. Interfaces, 2016, 8: 22615

URLPMID [本文引用: 1]

[10]

Liu P B, Huang Y.

Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties

[J]. J. Polym. Res., 2014, 21: 430

[本文引用: 3]

[11]

Qiu B C, Xing M Y, Zhang J L.

Recent advances in three-dimensional graphene based materials for catalysis applications

[J]. Chem. Soc. Rev., 2018, 47: 2165

DOIURLPMID " />

Electric double layer capacitors (or supercapacitors) store charges through the physisorption of electrolyte ions onto porous carbon electrodes. The control over structure and morphology of carbon electrode materials is therefore an effective strategy to render them high surface area and efficient paths for ion diffusion. Here we demonstrate the fabrication of highly porous graphene-derived carbons with hierarchical pore structures in which mesopores are integrated into macroporous scaffolds. The macropores were introduced by assembling graphene-based hollow spheres, and the mesopores were derived from the chemical activation with potassium hydroxide. The unique three-dimensional pore structures in the produced graphene-derived carbons give rise to a Brunauer-Emmett-Teller surface area value of up to 3290 m(2) g(-1) and provide an efficient pathway for electrolyte ions to diffuse into the interior surfaces of bulk electrode particles. These carbons exhibit both high gravimetric (174 F g(-1)) and volumetric (~100 F cm(-3)) specific capacitance in an ionic liquid electrolyte in acetonitrile. The energy density and power density of the cell assembled with this carbon electrode are also high, with gravimetric values of 74 Wh kg(-1) and 338 kW kg(-1) and volumetric values of 44 Wh L(-1) and 199 kW L(-1), respectively. The supercapacitor performance achieved with these graphene-derived carbons is attributed to their unique pore structure and makes them potentially promising for diverse energy storage devices.

[14]

Tong G X, Hu Q, Wu W H, et al.

Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties

[J]. J. Mater. Chem., 2012, 22: 17494

DOIURL [本文引用: 1]

[15]

Li Z X, Li X H, Zong Y, et al.

Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers

[J]. Carbon, 2017, 115: 493

[本文引用: 2]

[16]

Chu H R, Zeng Q, Chen P, et al.

Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method

[J]. J. Alloys Compd., 2017, 719: 296

DOIURL [本文引用: 1]

[17]

Lv H L, Ji G B, Liu W, et al.

Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features

[J]. J. Mater. Chem., 2015, 3C: 10232

[本文引用: 2]

[18]

Zong M, Huang Y, Zhao Y, et al.

Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites

[J]. RSC Adv., 2013, 3: 23638

[19]

Zhou M, Zhang X, Wei J M, et al.

Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures

[J]. J. Phys. Chem., 2011, 115C: 1398

[本文引用: 1]

[20]

Sun G B, Dong B X, Cao M H, et al.

Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3 and Fe with high performance of microwave absorption

[J]. Chem. Mater., 2011, 23: 1587

[本文引用: 1]

[21]

Zhao B, Guo X Q, Zhao W Y, et al.

Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties

[J]. Nano Res., 2017, 10: 331

[本文引用: 1]

[22]

Wu Z C, Tian K, Huang T, et al.

Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance

[J]. ACS Appl. Mater. Interfaces, 2018, 10: 11108

URLPMID [本文引用: 1]

Microporous Co@CoO nanoparticles with superior microwave absorption properties

1

2014

声明:
“磁性多孔RGO@Ni复合材料的制备和吸波性能” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记