1993年R.S.Rouff等[1]首次用电弧放电法制备出碳包覆LaC2的纳米
复合材料,发现惰性的碳壳有许多优点[1, 2]:碳材料在酸碱条件下比较稳定,能保护被包覆的金属核不受环境的影响,使其抗氧化能力提高;提高了纳米粒子在极性溶剂中的分散性,阻碍其团聚;提高了材料的导电性能
自此碳包覆金属
纳米材料受到了极大的关注,在光学、锂离子电池电极材料、超级电容器、生物医药、催化化学及环境工程等领域得到了应用[3~10]
目前制备碳包覆纳米材料的方法有十余种,除了Ruoff 等采用的电弧放电,还有化学气相沉积法、激光辐照蒸发、溅射和热解法等[11~15]
热解法的特点是,制备装置简单、成本低、一次产物较多、节能
糖类或有机大分子碳水化合物等原料绿色环保、来源广泛,备受研究者们的青睐
以淀粉[16]、纤维素、蔗糖、葡萄糖等[2, 12, 17]大分子量有机物为碳源,可热解制备碳包覆金属纳米材料
但是在制备过程中,为了金属源还原需加入适当的还原剂或引入还原性气氛
本文以天然棉纤维为模板,不引入外加还原剂或还原性气氛,采用一步热解法在氮气气氛中原位制备NCCC,研究了碳壳的形成对纳米铜的抗氧化性的影响
1 实验方法1.1 NCCC的制备
先将脱脂棉置于60℃烘箱中干燥至恒重,备用
取适量质量比为10∶1的脱脂棉和五水硫酸铜
将五水硫酸铜溶解在适量的纯水中,加入脱脂棉充分吸附硫酸铜溶液后静置12 h
将吸附了硫酸铜的脱脂棉(Cotton@Cu)置于管式炉(BTF-1200C-4ZL)中,在氮气气氛下以10℃/min的速率升温到390℃并保温1 h,自然冷却到室温,得到NCCC样品
1.2 商业纳米铜/微米铜(Nano-Cu/Micro-Cu)的预处理
将适量的商业纳米铜和微米铜分别置于马弗炉中,以10℃/min的速率升温到300℃并保温1 h,自然冷却到室温后得到Nano-Cu-air/Micro-Cu-air样品
1.3 碳包覆纳米铜/微米铜(Nano-Cu/Micro-Cu)用品的制备
将适量的Cotton@Cu和Nano-Cu-air/Micro-Cu-air置于管式炉中,在流量为100 mL/min的氮气氛中以10℃/min的速率升温到390℃并保温1 h,自然冷却到室温后得到Nano-Cu-air-Cotton/Micro-Cu-air-Cotton样品
为了比较,不加Cotton@Cu,只用适量的Nano-Cu-air/Micro-Cu-air,制备出Nano-Cu-air-N2/Micro-Cu-air-N2样品
1.4 材料性能的表征
用透射电子显微镜(Tecnai G2 F20 S-Twin,FEI)观察用品的微观结构,用X射线衍射分析仪(D8 Advance,Bruker AXS)测试用品的XRD谱,用型号为SDT Q600,TA的热重分析仪进行热分析,用激光显微共聚焦拉曼光谱仪(DXR 2xi,ThermoFisher)测试样品的拉曼光谱
2 结果和讨论2.1 NCCC用品的核壳结构
从图1a可以看出,NCCC中纳米颗粒均匀地镶嵌在碳基体中,粒径分布在15~50 nm,少量颗粒的粒径大于50 nm
图1b给出了根据高分辨TEM照片测得铜的(111)晶面间距d=0.209 nm
可以看出,在球状铜颗粒表面较为均匀地覆盖了一层厚度约为3 nm的碳壳
铜颗粒周围的碳层具有明显的石墨化结构
从图1c可见,粒径分布在15~50 nm的颗粒占比约为91%
图1
图1NCCC的TEM照片和NCCC中铜颗粒粒径的统计
Fig.1TEM images of NCCC (a, b) and particle size of copper particles (c)
为了确认NCCC的物相组成,测试其XRD谱
从图2可以看出,在390℃碳化后棉纤维吸附的硫酸铜已还原成铜(JCPDS Card No.04-0836)和少量的氧化亚铜(JCPDS Card No.05-0667)
棉纤维在氮气气氛下热降解的过程中产生大量的醛、酮、CO等还原性物质
这些还原性物质将二价铜离子还原为铜单质和少量的氧化亚铜
在XRD谱中除了铜和氧化亚铜的衍射峰外,在10°~30°还出现了两个凸包峰,说明棉纤维在390℃的碳化产物大部分为无定型碳;未出现石墨的特征峰,表明石墨化的碳量极少
根据TEM照片和XRD谱给出的结果,NCCC是典型的碳包覆纳米铜核壳结构的材料
图2
图2NCCC的XRD谱
Fig.2XRD patterns of NCCC
2.2 碳包覆商业纳米/微米铜的组成
从图3a中的Nano-CuTEM照片可见,纳米铜颗粒为球状,粒径为130~220 nm
图3b表明,纳米铜表面没有层壳
图4c表明,商业纳米铜并不是纯的纳米铜,还有少量的氧化铜和氧化亚铜
图3
图3Nano-Cu、Nano-Cu-air、Nano-Cu-air-Cotton和Nano-Cu-air-N2的TEM照片
Fig.3TEM images of Nano-Cu (a, b), Nano-Cu-air (c, d), Nano-Cu-air-Cotton (e, f) and Nano-Cu-air-N2 (g, h)
图4
图4Nano-Cu和Micro-Cu热处理前后的拉曼谱和XRD谱
Fig.4Raman spectrum and XRD patterns of Nano-Cu and Micro-Cu before and after treatment
为了解Nano-Cu的热稳定性,分别在氮气气氛和空气气氛中对其进行热重分析,结果在图5中给出
从图5a可以看出,在263.8℃出现一个很小的放热峰,可能是在Nano-Cu的制备过程中有机溶剂挥发或分解所致;从热重曲线可以看出,Nano-Cu的质量损失为0.82%,是水分蒸发和Nano-Cu表面的有机溶剂辉发所致
从图5b可见,在260.7℃和351.4℃分别出现放热峰
260.7℃处的放热峰与氮气气氛下出现的放热峰基本相同
351.4℃处的放热峰对应Nano-Cu的氧化
图5
图5Nano-Cu热重分析图
Fig.5TGA curves of Nano-Cu, (a) tested in N2 atmosphere (10℃/min), (b) tested in air atmosphere (10℃/min)
从图3c,d可以看出,在300℃空气预处理后Nano-Cu-air有明显的团聚,有的颗粒已经熔化,金属颗粒表面无壳
从图3e可见,Nano-Cu-air-Cotton呈现团聚状态,金属颗粒熔化,金属颗粒表面产生了不规则的壳,厚度为5~50 nm
从图3f可清晰地看出,Nano-Cu-air-Cotton表面有一层很均匀的壳,厚度约为5 nm
从氮气气氛中对照样Nano-Cu-air-N2的TEM照片可见,金属颗粒表面未形成壳
这表明,棉纤维热解产生的气氛是材料表面形成壳的直接原因
为了证实热解气氛还原后材料表面的壳为碳壳,对Nano-Cu-air-Cotton进行了拉曼分析
从图4a Nano-Cu-air-Cotton的拉曼谱图可以看出,在1376 cm-1和1592 cm-1处出现了特征峰,对应于碳的D峰和G峰
根据IG/ID的比值可衡量碳材料的有序度[18~20]
代表无序结构的D峰比较平缓,代表有序结构的G峰比较尖锐
IG/ID的比值为2.14,表明Nano-Cu-air-Cotton中有一定量的石墨化碳
与Nano-Cu-air的拉曼谱对比表明,经过热解碳源还原后得到Nano-Cu-air-Cotton,其表面确实有碳壳
将图4c给出的物相组成与Nano-Cu-air-N2相比可见,Nano-Cu-air-Cotton在棉纤维的热解气氛中发生了还原(表1)
从XRD物相组成可以看出,CuO已还原为氧化亚铜或铜单质
这也进一步证实了棉纤维的热解气氛的还原作用,解释了NCCC中单质铜的形成
Table 1
表1
表1商业纳米铜处理前后的物相组成
Table 1Phase composition of Nano-Cu before and after treatment
Sample name
|
Phase composition
|
Cu
|
Cu2O
|
CuO
|
Nano-Cu
|
√
|
√
|
√
|
Nano-Cu-air
|
√
|
√
|
√
|
Nano-Cu-air- N2
|
√
|
√
|
√
|
Nano-Cu-air- Cotton
|
√
|
√
|
×
|
为了探究相同实验条件下棉纤维热解气氛对微米铜的影响,对微米铜样品进行相同的预处理
从图6a可以看出,Micro-Cu为不规则颗粒,出现了明显的团聚,颗粒尺寸为8 μm×3 μm;图6b给出了在300℃空气中预处理样品的的TEM照片,可见处理前后样品表面都没有壳层
经过棉纤维热解气氛还原后,微米铜颗粒周围包裹了壳层(图6c)
将图6c的照片放大(图6d, e),可见颗粒表面覆盖了均匀的壳层
从氮气气氛对照样Micro-Cu-air-N2的TEM照片可见,颗粒的周围没有壳层
这个结论和纳米铜的验证结果一致,进一步证实棉纤维热解气氛是金属颗粒壳层形成的决定性因素
为了探究颗粒表面的壳层是否为碳壳,对其进行了拉曼分析
在图4b给出的Micro-Cu-air-Cotton拉曼谱中1365 cm-1和1598 cm-1处分别出现了对应于碳的D峰和G峰
IG/ID的比值为2.00,结合Micro-Cu-air-Cotton的TEM照片,表明Micro-Cu-air-Cotton中有一定量石墨化的无定型碳
与Micro-Cu-air的拉曼谱对比表明,Micro-Cu-air-Cotton表面的壳确实为碳壳
XRD谱给出的物相分析结果(图4d和表2)表明,Micro-Cu经空气热处理后单质铜氧化为氧化亚铜和氧化铜,经棉纤维热分解气氛热处理后得到Micro-Cu-air-Cotton,氧化铜被还原
而对照样品Micro-Cu-air-N2中仍然有氧化铜,证实了棉纤维热分解气氛的还原作用
图6
图6Micro-Cu、Micro-Cu-air、Micro-Cu-air-Cotton和Micro-Cu-air-N2的TEM照片
Fig.6TEM images of Micro-Cu (a), Micro-Cu-air (b), Micro-Cu-air-Cotton (c, d, e), and Micro-Cu-air-N2 (f, g)
Table 2
表2
表2商业微米铜处理前后的物相组成
Table 2Phase composition of Micro-Cu before and after treatment
Sample name
|
Phase composition
|
Cu
|
Cu2O
|
CuO
|
Micro-Cu
|
√
|
×
|
×
|
Micro-Cu-air
|
√
|
√
|
√
|
Micro-Cu-air- N2
|
√
|
√
|
√
|
Micro-Cu-air- Cotton
|
√
|
√
|
×
|
上述原位热解实验结果表明,棉纤维热解气氛为商业纳米铜和微米铜核壳结构的形成提供了碳源,热解气氛具有一定的还原作用
这就给出了NCCC核壳结构中碳壳、单质铜和氧化亚铜的形成机理
2.3 核壳结构纳米铜的稳定性
为了探究NCCC的稳定性,将NCCC在室温敞口放置180 d,发现其物相组成没有变化(图7a中的曲线g)
另一组将NCCC放置在水中,7 d后氧化亚铜的相对含量提高了,浸渍14~35 d后其物相组成不变(图7a中的曲线b~f)
两组实验结果都表明,NCCC物相组成非常稳定
图7
图7碳包覆纳米铜在不同环境放置不同时间后的XRD谱
Fig.7XRD patterns of carbon-capsulated nano-copper particles stored in different environment for different time (a) NCCC stored in different environment for different time; (b) Nano-Cu stored for one day and 120 d; (c) Nano-Cu-air-Cotton stored for 1 d and 120 d
为了进一步验证核壳结构对材料抗氧化性能的影响,将Nano-Cu在密封环境中放置120 d,而将Nano-Cu-air-Cotton敞口放置于室温环境中120 d,并分析放置当天的样品和120 d后样品的物相
从图7b可以看出,Nano-Cu在密封环境下放置了120 d后氧化亚铜的峰趋于平缓,而氧化铜的峰更加尖锐,即氧化铜的相对含量提高了,表明材料被氧化了;而从图7c可以看出,Nano-Cu-air-Cotton放置120 d前后物相没有变化
这些结果表明,碳壳的生成对Nano-Cu-air-Cotton稳定性有非常关键的作用
3 结论
(1) 用一步热解法原位制备的核壳结构的纳米铜碳材料(NCCC),单质铜纳米颗粒均匀地镶嵌在碳基体中,大部分粒径为15~50 nm
以浸泡了硫酸铜的棉纤维为热解碳源、以商业纳米铜和微米铜为铜源可原位制备碳包覆纳米/微米铜
(2) 用一步热解法制备碳包覆金属颗粒材料,核壳结构中的碳壳使材料的稳定性和抗氧化性提高
参考文献
View Option 原文顺序文献年度倒序文中引用次数倒序被引期刊影响因子
[1]
Ruoff R S, Lorents D C, Chan B, et al.
Single-crystal metals encapsulated in carbon nanoparticles
[J]. Science, 1993, 259: 346
PMID [本文引用: 2] " />
With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in catalysis, energy storage, sensing, and biomedicine are presented.
[7]
Lu W J, Guo Y T, Luo Y Q, et al.
Core-shell materials for advanced batteries
[J]. Chem. Eng. J., 2019, 355: 208
DOI " />
Manganese dioxide powders were firstly prepared via electric pulse assisted redox method with KMnO4 and MnSO4 as raw material, then MnO2/C composite materials coated with different amounts of carbon were fabricated via liquid phase sintering with glucose as a carbon source. The effect of amount of coated carbon on the morphology, structure and electrochemical properties of the MnO2/C materials were investigated. Results show that the coated carbon could induce the transformation of crystallographic structure of MnO2 from γ-type into α-type. Under heating conditions glucose decomposed and coated on the surface of MnO2 particles, which could inhibit the grain growth and thus refine grains. When the preparation with the process parameters: glucose concentration was 1.5 g/L and the current density was 2 A·g-1, the prepared MnO2/C material presented the specific capacitance of MnO2 of 722.2 F·g-1, in other words, the carbon coating could increase the specific capacitance by 80%, in comparison with that of the blank ones. Furthermore, after 4000 charge-discharge cycles, the capacitance retention rate could still maintain 74.72%, displayed good electrochemical performance and cycling performance.
潘 双, 庄 雪, 王 冰 等.
碳包覆改性二氧化锰电极材料的制备和性能
[J]. 材料研究学报, 2019, 33(7): 530
[本文引用: 1]
[11]
Xu B S, Guo J J, Wang X M, et al.
Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution
[J]. Carbon, 2006, 44: 2631
DOIURL [本文引用: 1]
[12]
Su L W, Jing Y, Zhou Z.
Li ion battery materials with core–shell nanostructures
[J]. Nanoscale, 2011, 3: 3967
DOIURL [本文引用: 1]
[13]
Gawande M B, Goswami A, Felpin F-X, et al.
Cu and Cu-based nanoparticles: synthesis and applications in catalysis
[J]. Chem. Rev., 2016, 116: 3722
DOIPMID " />
We report the covalent functionalization of graphene by photochemical chlorination. The gas-phase photochlorination of graphene, followed by the structural transformation of the C-C bonds from sp(2) to sp(3) configuration, could remove the conducting π-bands and open up a band gap in graphene. X-ray photoelectron spectroscopy revealed that chlorine is grafted to the basal plane of graphene, with about 8 atom % chlorine coverage. Raman spectroscopy, atomic force microscopy, and transmission electron microscopy all indicated that the photochlorinated graphene is homogeneous and nondestructive. The resistance increases over 4 orders of magnitude and a band gap appears upon photochlorination, confirmed by electrical measurements. Moreover, localized photochlorination of graphene can facilitate chemical patterning, which may offer a feasible approach to the realization of all-graphene circuits.
[19]
Crowther A C, Ghassaei A, Jung N, et al.
Strong charge-transfer doping of 1 to 10 layer graphene by NO2
[J]. ACS Nano, 2012, 6(2): 1865
DOIPMID class="outline_tb" " />
With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in catalysis, energy storage, sensing, and biomedicine are presented.
[7]
Lu W J, Guo Y T, Luo Y Q, et al.
Core-shell materials for advanced batteries
[J]. Chem. Eng. J., 2019, 355: 208
" />
Manganese dioxide powders were firstly prepared via electric pulse assisted redox method with KMnO4 and MnSO4 as raw material, then MnO2/C composite materials coated with different amounts of carbon were fabricated via liquid phase sintering with glucose as a carbon source. The effect of amount of coated carbon on the morphology, structure and electrochemical properties of the MnO2/C materials were investigated. Results show that the coated carbon could induce the transformation of crystallographic structure of MnO2 from γ-type into α-type. Under heating conditions glucose decomposed and coated on the surface of MnO2 particles, which could inhibit the grain growth and thus refine grains. When the preparation with the process parameters: glucose concentration was 1.5 g/L and the current density was 2 A·g-1, the prepared MnO2/C material presented the specific capacitance of MnO2 of 722.2 F·g-1, in other words, the carbon coating could increase the specific capacitance by 80%, in comparison with that of the blank ones. Furthermore, after 4000 charge-discharge cycles, the capacitance retention rate could still maintain 74.72%, displayed good electrochemical performance and cycling performance.
潘 双, 庄 雪, 王 冰 等.
碳包覆改性二氧化锰电极材料的制备和性能
[J]. 材料研究学报, 2019, 33(7): 530
[11]
Xu B S, Guo J J, Wang X M, et al.
Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution
[J]. Carbon, 2006, 44: 2631
[12]
Su L W, Jing Y, Zhou Z.
Li ion battery materials with core–shell nanostructures
[J]. Nanoscale, 2011, 3: 3967
[13]
Gawande M B, Goswami A, Felpin F-X, et al.
Cu and Cu-based nanoparticles: synthesis and applications in catalysis
[J]. Chem. Rev., 2016, 116: 3722
PMID " />
We report the covalent functionalization of graphene by photochemical chlorination. The gas-phase photochlorination of graphene, followed by the structural transformation of the C-C bonds from sp(2) to sp(3) configuration, could remove the conducting π-bands and open up a band gap in graphene. X-ray photoelectron spectroscopy revealed that chlorine is grafted to the basal plane of graphene, with about 8 atom % chlorine coverage. Raman spectroscopy, atomic force microscopy, and transmission electron microscopy all indicated that the photochlorinated graphene is homogeneous and nondestructive. The resistance increases over 4 orders of magnitude and a band gap appears upon photochlorination, confirmed by electrical measurements. Moreover, localized photochlorination of graphene can facilitate chemical patterning, which may offer a feasible approach to the realization of all-graphene circuits.
[19]
Crowther A C, Ghassaei A, Jung N, et al.
Strong charge-transfer doping of 1 to 10 layer graphene by NO2
[J]. ACS Nano, 2012, 6(2): 1865
PMID
We use resonance Raman and optical reflection contrast methods to study charge transfer in 1-10 layer (1L-10L) thick graphene samples on which NO(2) has adsorbed. Electrons transfer from the graphene to NO(2), leaving the graphene layers doped with mobile delocalized holes. Doping follows a Langmuir-type isotherm as a function of NO(2) pressure. Raman and optical contrast spectra provide independent, self-consistent measures of the hole density and distribution as a function of the number of layers (N). At high doping, as the Fermi level shift E(F) reaches half the laser photon energy, a resonance in the graphene G mode Raman intensity is observed. We observe a decrease of graphene optical absorption in the near-IR that is due to hole-doping. Highly doped graphene is more optically transparent and much more electrically conductive than intrinsic graphene. In thicker samples, holes are effectively confined near the surface, and in these samples, a small band gap opens near the surface. We discuss the properties and versatility of these highly charge-transfer-doped, few-layer-thick graphene samples as a new class of electronic materials.
[20]
Ammar M R, Galy N, Rouzaud J N, et al.
Characterizing various types of defects in nuclear graphite using Raman scattering: heat treatment, ion irradiation and polishing
[J]. Carbon, 2015, 95: 364
Single-crystal metals encapsulated in carbon nanoparticles
2
1993
声明:
“碳包覆纳米铜的原位热解法制备及其稳定性” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)