本发明提供了一种制备钛白粉的方法,所述方法包括:采用钛铁物料以盐酸浸出法制备的高钛盐酸浸出渣作为原料或原料之一,利用硫酸酸解制备钛液,钛液经氧化和有机萃取提纯后水解得偏钛酸,偏钛酸再经洗涤、盐处理、煅烧和表面处理而制得钛白粉。本发明将含氯化盐的盐酸复合体系溶液在浸取钛铁物料后分流处理循环回用,并且将其与钛液有机萃取提纯和硫酸体系循环工艺有机配套,从而减少了钛液处理工序和成本,且由于所用盐酸、硫酸和有机萃取剂可循环使用,因此不产生硫酸亚铁(绿矾),从而有效降低了稀硫酸和酸性废水的排放,显著提高了钛白粉质量。本发明的方法实现了整个流程的高效、清洁、低成本、低能耗、低废弃物排放功效,为硫酸法钛白粉生产提供了一种新型的工艺技术,并能有效利用攀西地区高钙镁含量的细粒岩型钛铁矿。
本发明公开了一种利用五氧化二钒、三氧化二钒生产过程中处理沉淀废水产生的废弃废水渣作为原料,提取回收钒生产五氧化二钒和富集铬产出含铬原料的生产工艺,使危险化学废弃物得到综合利用,既体现经济价值,更具环保社会效益。它是利用五氧化二钒、三氧化二钒生产过程中处理沉钒废水产生的废弃废水渣作为原料,提取回收钒生产五氧化二钒和富集铬产出含铬原料的生产工艺。其特征在于工艺流程为:干燥脱水→焙烧转化→溶解浸出→过滤洗涤→沉淀钒→熔化。本发明的独特在于,百分之百利用五氧化二钒、三氧化二钒生产过程中处理沉淀钒废水产生的危险化学废弃物作为原料,提取回收钒生产五氧化二钒和富集铬产出含铬原料。目前尚未发现利用该废弃物提取回收钒生产五氧化二钒的生产工艺。
本发明公开了一种制备精细钒渣的装置及方法,包括可拆卸连接的第一球磨装置和第二球磨装置,第一球磨装置外套装有过滤装置,过滤装置上设置有旋转轴,第一球磨装置和过滤装置之间设置有旋转机构,所述旋转机构和旋转轴能够使第一球磨装置和过滤装置以旋转轴为轴线相对旋转,第一球磨装置与第二球磨装置连接时,第一球磨装置能够带动第二球磨装置共同旋转;过滤装置的出料口与风选机的进料口连接,风选机的出料口与第二球磨装置连接。本装置能够适用于不同粒径,过滤筒能够带动球磨筒一起旋转,并且在旋转的过程中在调节机构的作用下进行上下往复旋转,进一步的提高球磨和过滤的效率及质量。
本发明公开了一种制备三癸基氧化磷的方法,向反应装置中加入二癸基氯化磷、溴癸烷和有机溶剂,其中溴癸烷过量,搅拌均匀,升温至80~120℃,反应12~24小时,31P‑NMR检测反应完全,旋转蒸发仪蒸除有机溶剂,得到棕褐色液体,加入蒸馏水,在室温下搅拌水解10~30min,将溶液用5~15wt%NaOH溶液调至碱性,用三氯甲烷萃取,蒸馏水洗涤至中性,旋转蒸发仪蒸除溶剂,用甲醇重结晶,得到白色固体三癸基氧化磷;本发明的制备方法反应步骤简单,绿色环保,原子经济性好,产物纯度高,易于分离,具有产业化的前景。本发明产品应用于水质检测和污水处理行业。
一种用氧化铜矿或铜碴生产铜精粉的方法,采用粉矿-氨浸-过滤-沉铜的流程生产铜精粉,特别适合处理含铜量0.5-5%的低品位氧化铜矿或铜碴。首先将矿石磨制成矿粉,其次用氨水和碳酸氢氨的混合溶液或氢氧化钠和碳酸氢氨的混合溶液为浸矿剂与矿粉反应,使矿石中的铜以铜氨络合物的形式进入溶液,并使铝、镉、锰、钙及硅等杂质留在矿渣中,实现铜与杂质分离,然后用硫化氨、硫化钠及硫化钾三种的任意一种或任意两种及两种以上配合使用做沉铜的沉淀剂生产铜精粉,过滤铜精粉待其干后得铜精粉产品,滤液返回浸矿池循环使用。此方法具有常温作业、能耗低、质量好、流程短、净液作业简单的优点,能充分有效地利用待开发的铜资源。
本发明涉及转炉钒渣的提钒方法,属于资源回收领域。本发明转炉钒渣的提钒方法,包括如下步骤:a、酸浸:将转炉钒渣中加入硫酸、搅拌、过滤,得滤液,即得含钒酸浸液;b、还原:在含钒酸浸液中加入还原剂,进行还原处理,将含钒酸浸液中VO2+还原为VO2+、Fe3+还原为Fe2+,得还原酸浸液;c、协同萃取-反萃取:对还原酸浸液进行萃取,然后将得到的有机相进行反萃取,下层清液即为含钒溶液。进一步的,本发明还公开了一种五氧化二钒的制备方法。本发明方法浸出工艺较传统工艺简单,低温低酸对设备要求较低,无需回转窑或多膛炉等高温焙烧设备;对酸浸液进行还原预处理,对低价钒进行萃取及反萃,有利于酸浸液中钒的提取与净化。
本发明公开了一种从废旧印刷线路板的金属粉末中电解制备铜粉的方法,将经过机械分离后得到的金属粉末直接压片电解,不需高温熔析或测出等预处理,以电子为“清洁剂”不需要额外的溶剂,控制好条件可以得到高纯度的铜,运行成本低、操作简便、效率高;可得到铜含量达98.06%的粗铜,此时电流效率为98.12%。
本发明公开了一种从锌精矿中提纯锌的方法,包括:将锌矿粉用氯化铵和氨的混合溶液浸泡,得到浸出液和浸出渣;向浸出液中加入双氧水和三氯化铁,反应除去砷和锑,然后加入锌粉,反应置换除去其他的重金属离子,得到净化液;将净化液电积得到金属锌及废电解液,电积条件为30~40℃,电流密度500~600A/cm2;所述废电解液补充液氨后循环使用,铅、砷、锑等金属富集在浸出渣中。本发明所述方法循环利用废电解液,解决了铅锌矿难以制取电锌的问题,彻底将锌与铅、砷、锑、铋、铟、钴、铁、镉等分离,消除这些杂质元素对锌电积过程的危害,提高锌的回收率至90%以上,是原材料价廉、成本低、操作简单、环境友好的工艺方法。
本发明公开了一种水溶性有机两性高分子絮凝剂及制备方法,该两性高分子絮凝剂是由两种无毒单体(见附图)聚合而成的二元共聚物。在制备过程中同时使用氧化还原引发剂及水溶性偶氮类引发剂,提高了单体的转化率,使残留单体减少到最低限度;絮凝剂的制备操作简单,可直接使用;所制备的絮凝剂具有用量小,絮凝直径大,沉降迅速等优点。
本发明公开了一种用于回收碱转废水中的钠和氟的方法,包括以下步骤:S1、氟碳铈矿经焙烧、酸浸、碱转后,过滤得到碱转母液和碱转渣,对碱转渣进行多次水洗;S2、加热碱转母液然后通入CO2进行除铝反应,然后静置澄清,碱转母液底部生成含冰晶石沉淀物,虹吸上清液得到含氟碱水,滤液转入含氟碱水中,含冰晶石沉淀物转运填埋或进行提纯成冰晶石产品;S3、向含氟碱水中加入生石灰或/和熟石灰,然后过滤得到滤液和滤渣,滤液经浓缩后作为液碱回收使用,滤渣则作为氟化钙混合渣进行下一步处理。本发明在没有增加处理成本的情况下,实现了对碱转废水中的钠和氟的回收,并得到了具有经济价值的副产品,降低了企业的废水处理成本,避免了氟资源和钠资源的浪费。
本发明公开了一种稳定料浆的方法,包括以下步骤:将料浆投入浓缩系统进行浓缩处理,所述料浆浓缩后的质量浓度大于或等于后续工序需要的质量浓度,一般为高质量浓度(如55%‑70%质量浓度);将浓缩后的料浆投入料浆搅拌槽中进行搅拌,所述料浆搅拌槽内的料浆浓度差在±1%内;搅拌后的料浆通过所述搅拌槽取量输出系统排出,在排出过程中通过在线检测系统进行检测,控制系统根据所述在线检测系统的检测结果控制补加水系统对料浆进行配置。本发明在湿法作业过程中,使得料浆始终处于一种稳定且内部浓度较为均匀的状态,使其满足后续工序要求,且流程简单、结构紧凑、操作方便。
本发明公开了一种以钒钛磁铁矿为原料同时制备钛渣和含钒生铁的方法,属于电炉冶炼钛渣技术领域,包括以下步骤:向电炉中加入重量配比为1:0.17~0.40的钒钛磁铁矿和碳质还原剂进行还原,然后进行渣铁分离得到钛渣和含钒生铁。本发明通过控制碳质还原剂的用量,同时得到了合格的钛渣和含钒生铁,与传统的含钒生铁生产工艺相比,工艺流程短,成本大幅降低,无冶炼废渣排出,清洁环保;与传统的钛渣生产工艺相比,将钛渣中的钒大幅还原出来,提高了钛渣中钒的利用率。
本发明公开了一种冶金用可对物料进行判断的称重方法,包括如下步骤:在装载物料容器称重位置的上方安装X荧光检测仪,物料容器装载所需称重的物料并称重时,X荧光检测仪对称重物料进行激发检测,所述X荧光检测仪发出X荧光,激发的物料中的元素会放射出二次X射线,根据数学关系式,λ=K(Z‑s)‑2,式中K和S是常数,同时根据量子理论,E=hν=hC/λ,式中,E为X射线光子的能量,单位为keV;h为普朗克常数;ν为光波的频率;C为光速,计算二次X射线的波长或者能量;本申请在对冶金物料称重的同时进行对其种类进行判断并记录,提升称重记录的效率。
本发明内容属于钛冶金工业技术领域,具体涉及从钛电解阴极产物中分离金属钛的方法。本发明所要解决的技术问题是提供一种从钛电解阴极产物中分离金属钛的方法,包括以下步骤:将钛电解结束后的阴极放入液镁中进行反应;反应结束后,取出阴极,再去除阴极表面的液镁,再从阴极上取下金属钛即可。本发明方法能有效解决传统方法带来的产品中O和H元素污染问题和高温蒸馏带来的钛粉烧结问题,在不破坏钛粉结构条件下实现钛电解质与钛粉的分离。
一种从氧化铜矿中提取铜、金、银的方法,采用粉矿-浸出-过滤-沉铜、金、银的流程生产含金、银的铜精粉,特别适合处理含金、银并且铜含量在0.2-5%的低品位氧化铜矿。该方法首先将矿石制成矿粉,其次用氨水、碳酸氢氨和硫代硫酸钠的混合溶液或氢氧化钠、碳酸氢氨和硫代硫酸钠混合溶液为浸矿剂与矿粉在10-80℃反应,使矿石中的铜、金、银以铜、金、银络合物的形式进入溶液,实现铜、金、银与杂质分离。然后用硫化氨、硫化钠及硫化钾三种的任意一种或任意两种及两种以上配合使用做沉铜、金、银的沉淀剂,生产含金、银的铜精粉,过滤含金、银、铜精粉待其干后得含金、银的铜精粉产品,滤液返回浸矿池循环使用。
本发明涉及回收锂离子电池正极边角料的方法,属于能源材料技术领域。本发明解决的技术问题是提供回收锂离子电池正极边角料的方法。该方法包括如下步骤:将锂离子电池正极边角料浸泡于有机溶剂中,浸泡后粉碎,过滤,取滤渣,干燥,筛分,得到收集于筛网之下的正极材料粉末与留在筛网之上的铝粒;将正极材料粉末用碱性溶液洗涤,静置,倾滗上层液体及漂浮物,得到底部浆料,将底部浆料过滤,洗涤滤饼,干燥,即得正极材料。本发明方法流程短,操作简单,可降低能耗,节约资源;不带入其它可能会影响电池性能的粒子,未破坏材料本身化学结构,避免了高成本的二次合成。
本发明公开了一种从再生铜熔炼飞灰中回收铜的方法,解决了现有技术中从再生铜熔炼飞灰中回收铜的方法存在工艺复杂、耗时长和能耗高的技术问题。本发明从再生铜熔炼飞灰中回收铜的方法包括如下步骤:将再生铜熔炼飞灰放置于电解槽的阳极室中;按比例向电解槽中加入电解液,电解液为碱性电解液,电解液包括NH3·H2O、NH4Cl和Cu2+;在搅拌状态下,再生铜熔炼飞灰在电解槽中发生电解反应,电解反应完成后,收集阴极产物。本发明从再生铜熔炼飞灰中回收铜的方法,电解液中加入NH3·H2O、NH4Cl不仅有利于铜氨络合物的形成,还可使电解液保持在一定pH范围内,可提高铜的回收效率;本发明的方法与现有技术相比较,还具有可缩短反应时间并降低能耗,操作简便的优势。
本发明公开了一种从废SCR脱硝催化剂中回收有价金属钛钒钨的方法,所述从废SCR脱硝催化剂中回收有价金属钛钒钨的方法包括:将废催化剂原料破碎粉磨得到粒度为200~400目的粉状原料;得到的废催化剂粉体与铝粉、氧化钙粉按质量比为50:35~45:34~50的比例混匀;混合好原料在电弧炉内反应;出炉冷却至室温,拔渣,得到钛铝基多元金属间化合物。与现有的工艺技术相比较,本发明的工艺流程简单,反应稳定,金属回收率高;实现了废催化剂中有价金属的回收可得到r~TiAl基金属间多元合金,钛、钒、钨的回收率分别最高可达97.0%、85%、95%。
本发明公开的是一种精炼工业硅制备太阳能级硅的方法,主要解决了现有冶金法制备太阳能级多晶硅工艺路线都比较长、设备较复杂、成本较高以及工艺的可控性较差等问题。本发明包括以下步骤:(1)冶金级硅在炉内熔化后获得硅熔体,向炉内通入保护气体和精炼气体,进行造渣精炼;所述造渣精炼包括低温造渣阶段、中温造渣阶段和高温造渣阶段;(2)造渣精炼后再进行真空精炼;(3)真空精炼完成后将熔体硅进行分凝精炼,分凝精炼后通过定向凝固获得成品。本发明具有投资少、操作方便、节能、可适用于大规模生产等优点。
本发明公开一种微波预处理包裹型复合铂钯矿技术,它是将大功率微波能通过由大功率环行器、销钉调配器、波导组成的微波传输系统对炉体内的包裹型复合铂钯矿加热处理,改善矿物后续浸出性能,再采用传统的湿法浸出、分离回收铂钯等贵金属。采用本发明所公开的技术,使我国已发现的大型贫铜、贫的包裹型复合铂钯矿床开发和综合利用成为可能。该技术与传统火法冶炼技术相比,具有高效节能、浸出率高、污染小等优点,可大大改善工人的劳动条件、降低劳动强度,具有极大的经济效益和社会效益。
本发明公开了一种去除锰矿脱硫液中连二硫酸锰的方法,将过硫酸盐加入到氧化锰矿脱硫液中搅拌溶解后加入硫酸亚铁,利用过硫酸盐和二价铁之间的高级氧化反应所产生的硫酸根自由基和羟基自由基,将氧化锰矿脱硫液中连二硫酸锰的连二硫酸根氧化为硫酸根,从而去除氧化锰矿脱硫液中的连二硫酸锰。本发明能够有效提高硫酸锰母液的纯度,不需要额外消耗能源用于加热锰矿脱硫液,也不需要消耗酸或碱调节脱硫液的pH,工艺条件简单、温和,操作性强,易于实现工业化应用。
本发明属于高性能电极材料技术领域,特别涉及贵金属改性钛阳极材料的制备方法。贵金属改性钛阳极材料的制备方法,采用贵金属有机配合物作为前驱体,前驱体溶于有机溶剂后雾化成雾化气流,沉积于钛金属板材表面,并于惰性气体存在下热分解、冷却,将沉积、热分解、冷却三个连续的步骤重复1次以上,后处理即得。本发明方法制得的钛阳极成品率高,表面露点少,贵金属和纯钛基材的结合力高,整个涂层的均匀性和一致性较好。并且实验表明本发明方法制得的钛阳极电化学性能优良,使用寿命长。
本发明公开了一种废磷酸铁锂电池磷酸体系浸出液中回收磷酸二氢锂的方法,使用萃取剂对废磷酸铁锂电池的磷酸或磷酸及双氧水浸出液进行杂质元素的萃取,其中,杂质元素为Cu、Al、Fe元素,萃取剂为Cu、Al、Fe元素的酸性有机萃取剂经氢氧化锂皂化和有机溶剂稀释获得;经水油相充分混匀、静置、分层,获得含锂离子、磷酸根离子和磷酸二氢根离子的萃余液;对萃余液经蒸发浓缩获得磷酸二氢锂。本发明通过短流程、高效率的方式一步解决了磷酸铁锂电池的磷酸体系浸出液中Cu、Al、Fe等杂质高效去除过程的方法以及参数调控技术问题,同时获得了高的Cu、Al、Fe等杂质去除率和低的Li等有价元素损失率。
本发明公开了一种金属钒或钒合金的制备方法,该方法包括:在金属盐的熔融状态下,将钒渣与所述金属盐接触反应,将接触反应后得到的混合物进行固液分离以去除固体杂质,并将固液分离后得到的熔融相进行电解,所述金属盐为在其熔融状态下能够与钒渣反应生成偏酸酸盐的物质。通过上述技术方案,实现了在金属钒或钒合金的制备过程中,钒合金收率高、金属钒纯度及收率高,且成本低、污染小的目的。
本发明涉及锂离子电池正极边角料的回收方法,属于能源材料技术领域。本发明解决的技术问题是提供锂离子电池正极边角料的回收方法。该方法包括以下步骤:将锂离子电池正极边角料充分粉碎后,升温到450~650℃保持90~150min;冷却,筛分,得到收集于筛网之下的正极材料粉末与留在筛网之上的铝粒;将正极材料粉末用碱性溶液洗涤,静置分层,倾滗上层液体及漂浮物,将底部浆料过滤,洗涤,干燥,即得正极材料。本发明流程短,操作简单,可降低能耗;碱性溶液可反复使用,节约资源;不带入其它可能会影响电池性能的粒子,未破坏材料本身化学结构,避免了高成本的二次合成,回收过程安全无毒,对环境友好,环保压力小。
本发明提供一种能够提高矿物中目标元素浸出率的矿物浸出分离用多段管式逆流浸出反应装置,包括三段以上的逆流螺旋浸出器,各逆流螺旋浸出器倾斜设置,相邻逆流螺旋浸出器之间通过出料管道相连,在出料管道上连接有出料仓,首段逆流螺旋浸出器上通过进料管道连接有进料仓,且下端通过进液管道连接有浸出液产品储存槽,中间段和末段逆流螺旋浸出器下端均通过进液管道连接有酸碱储液罐,酸碱储液罐底端连通有出液管道,出液管道与上一段逆流螺旋浸出器相连通,在末段逆流螺旋浸出器上方位置处通过原液管道连接有带原酸碱进液口的酸碱储液罐;实现了矿物与酸或碱逆流浸出,提高了矿物中目标元素浸出率,且其可连续生产,操作简单。
本发明公开了一种真空减压碳化还原含钛高炉渣提钛的方法,属于含钛高炉渣综合利用与钛提取冶炼领域。本发明所要解决的技术问题是提供一种高效率、低能耗、低成本的含钛高炉渣提钛的方法。将固态含钛高炉渣、焦粉和煤粉混合均匀,造球、烘干得物料a;将液态含钛高炉渣、焦粉和煤粉混合均匀,得物料b;将物料a、物料b放入真空还原反应装置中,进行真空减压碳化还原冶金反应;将反应产物冷却、破碎、球磨、磁选,得到碳化钛精矿产物。本发明方法采用真空减压碳化还原反应对含钛高炉渣进行提钛,显著降低了还原温度,从而极大降低能源消耗,可实现经济提钛,钛回收率达55~85%,极大地减少了含钛高炉渣钛资源的浪费。
本发明涉及氮化钒的制备方法,属于有色金属冶炼技术领域。本发明解决的技术问题是提供氮化钒的制备方法。该方法将钒氧化物和碳质还原剂混合作为阳极,碳钢棒为阴极,在含低价氯化钒的碱金属/碱土金属氯化物熔盐体系中实施电解,并在阴极下方通入氮气,阴极析出的钒金属与氮气反应生成氮化钒。本发明氮化钒的制备方法,通过电解方法获得氮化钒,可有效降低氮化制备的温度,降低生产成本,同时由于电解的精炼及保护作用使得其产品质量较好,氧和碳等杂质元素含量较低,此外,还能通过控制电流密度等参数调节产品粒径,其产品粒径可控,适合做粉末冶金添加剂,具备较强应用前景。
本发明是一种结合氧化铜矿石及回收伴生有价金属的选矿方法。包括以下步骤:(1)矿石破碎;(2)干磨制粉;(3)还原剂制备;(4)氯化剂制备;(5)物料混匀制成球团矿;(6)球团矿干炉;(7)氯化离析焙烧;(8)水淬;(9)磨矿分级;(10)浮选得铜精矿;(11)弱磁选得到铁精矿或镍精矿;(12)精矿脱水干燥。本发明对氧化铜矿石的处理具有产品质量高、可操作性强、工艺流程简单等特点,为多金属结合氧化铜矿处理的同时,并对伴生有价值金属实现较好的回收,为难处理复杂结合氧化铜矿石资源提供了新技术。得到铜品位≥23%,铜回收率≥90%的铜精矿产品;铁品位≥65%、铁回收率≥70%的铁精矿产品或镍品位≥5%、镍回收率≥75%的镍精矿产品。
本发明涉及利用硫酸法钛白废酸生产锌的方法,属于冶金领域。本发明所解决的技术问题是提供了一种利用硫酸法钛白废酸生产锌的方法。本发明方法包括如下步骤:a、将含锌原料与硫酸法钛白废酸混合,制得一次浸出液和滤饼;b、将含锌原料、一次浸出液、电解锌的废电解液混合进行二次浸取,制得二次浸出液;c、于二次浸出液中加入石灰乳调节溶液pH值为5.0~6,过滤,滤液备用;d、c步骤所得滤液中加入氧化剂,并调节溶液pH值为5.0~5.4,过滤,滤液备用;e、d步骤所得滤液中加入锌置换镉,过滤,滤液备用;f、调节e步骤所得滤液的pH值为7.5~8.0,过滤,收集滤饼和滤液备用;g、f步骤所得滤饼加入硫酸溶解,过滤,所得滤液中加入过量锌,再次过滤,滤液电解得到金属锌。
中冶有色为您提供最新的四川有色金属湿法冶金技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!