本发明的银、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、银源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Ag∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mim高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在普通纯氮气氛中,经500-750℃高温煅烧24h,即得银、钡活化磷酸铁锂正极材料。由于掺杂少量取代银、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明公开了一种多元素掺杂改性的碳包覆锂离子电池正极材料的制备方法,包含以下操作:将锂离子电池正极材料粉末、有机碳源溶于水中,锂离子电池正极材料粉末与有机碳源的质量比为1:0.05~0.08,经后续处理后,在惰性气氛下500~1000℃煅烧5~12h,得到多元素掺杂改性的碳包覆锂离子电池正极材料。本发明方法制备所得多元素掺杂改性的碳包覆锂离子电池正极材料比容量高、循环性能好、重复性高、加工性能优良,能够满足实际生产中对高储能器件的需求。
本发明提供一种锂电池回收工艺,包括材料的制备,湿法冲击破碎,破碎后的筛取,按照筛取后的材料进行铝资源的回收钴资源的回收及钴酸锂的制备。本发明采用的湿法冲击破碎可有效地将废弃手机锂离子电池破碎解离,实现选择性破碎,得到的破碎产品单体解离充分,为后续机械分选、化学处理提供了优良的入料;可实现从废旧电池粉料中高效除铝;以废旧锂离子电池回收的钴为原料,采用(NH4)2C2O4沉淀固相法直接合成了LiCoO2粉体,钴的沉淀率达到99.2%;利用回收的钴资源制备的钴酸锂,产物的首次充、放电比容量分别为143.8mAh/g和140.0mAh/g,第10次循环的容量保持率为96%。
本发明涉及锂离子正极材料的制备,具体说为掺杂改性锰酸锂正极材料的制备方法,其包括将PVDF粘结剂溶于NMP中制成粘结剂溶液;将掺杂改性锰酸锂、粘结剂溶液、导电乙炔黑加入球磨罐中球磨成浆料;将浆料单面刮涂至铝箔上;真空干燥上述铝箔;裁剪并烘干。本发明以醋酸锂、醋酸锰、醋酸镍、间苯二酚、甲醛为原料制备掺镍改性锰酸锂,再将其制备成正极材料,在制备过程采用预烧结可提高产物的相纯度,经过二次烧结提高了材料的结晶性能、放电比容量和能量密度;并通过合理的原料配比,提高了正极材料的电化学性能。
本发明公开了一种全回收废旧锂离子电池正负极材料的方法及装置,所述方法是将废旧锂离子电池芯粉碎,将所得黑色粉末加入空气于一段煅烧炉煅烧;一段煅烧所产生的气体送入二段煅烧炉的内室与外壳的环隙空间,一段煅烧渣送入二段煅烧炉和甘蔗渣或秸秆渣混合后,于惰性气体下煅烧;对二段煅烧产物进行磁选,得到混合物1为镍、钴、铁氧化物或镍、钴、铁金属;加水溶解锰锂混合物2,过滤,对所得滤液蒸发,得到碳酸锂;所得滤渣进行碳酸化得到碳酸锰。该方法仅通过两步就实现了正极材料中锂、镍钴和锰的分离,同时回收了废旧电池中的正极材料和负极材料,综合利用了回收过程的热能,比现有湿法处理废旧锂离子电池的工艺流程更短,成本更低。
本实用新型公开了一种锂电池的太阳能路灯,涉及太阳能应用技术领域,包括太阳能电池板、灯杆、灯架、灯罩、锂电池组、太阳能控制器;所述太阳能电池板呈一角度安装在灯杆顶端,所述灯架的一端穿过灯杆固定在灯杆上端,另一端与灯罩固定连接,所述灯罩上安装有灯管;所述太阳能控制器分别与太阳能电池板、灯管、锂电池连接;所述锂电池组设置在灯杆底部内;所述锂电池组外设有电池壳和铝盖板;所述铝盖板内设置有多层防爆膜;所述电池壳和铝盖板外侧设有防水层。本实用新型节能环保,能保证路灯的高效、安全使用,且固定可靠、占用空间小。
本发明提供一种改善水系磷酸铁锂电池正极片的制造方法,属于锂电池技术领域,将浆料和水性分散剂按一定比例混合并放入特制的砂磨装置中,采用3段式高速球磨工艺并固定时间循环,浆料固体颗粒则被有效分散、剪切研磨,经动态大流量转子缝隙分离过滤器后,充分打散浆料中的材料组分,得到状态均一、粘度稳定的母料,经本球磨工艺研磨后涂布,可获得表面光洁、无凸起颗粒的磷酸铁锂正极极片。相对于同行业中技术添加纳米碳管/碳纤维等辅助材料来改善水系磷酸铁锂电池正极极片外观,本发明专利具有加工成本低、工艺简单、浆料稳定性好等优点。
本发明公开了一种以Mn3O4为锰原料的锰酸锂改性方法,包括以下步骤:将Mn3O4、Li2CO3和催化剂Nb2O5进行混合烧结,其中Li/Mn的摩尔比为0.5~0.6,Nb2O5的掺杂量为Mn3O4质量的0.5~0.80%,烧结温度为760~800℃,烧结完成后自然冷却,粉碎,过筛得锰酸锂正极材料。本发明以五氧化二铌为催化剂,能增大最终产品锰酸锂的压实密度,同时增强锰酸锂的电性能。
本发明的硒、钡活化磷酸铁锂正极材料,其化学通式可表述为:LiSexBayFePO4,x=0.00002-0.00005,y=0.0003-0.003;其中Li、Se、Ba、Fe、P的mol比为:1mol?Li∶0.00002-0.00005mol?Se∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P;由于掺杂少量取代硒、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明的硼、钡活化磷酸铁锂正极材料,其化学通式可表述为:LiBxBayFePO4,x=0.00002-0.00005,y=0.0003-0.003;其中Li、B、Ba、Fe、P的mol比为:1mol?Li∶0.00002-0.00005mol?B∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P;由于掺杂少量取代硼、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明公开了一种改善软包装锂离子电池厚度反弹的方法,其包括如下步骤:(1)按照混料、涂布工序的工艺流程制备软包装锂离子电池所需的正极片和负极片;(2)然后将负极片在辊机设备上先进行第一次辊压,将负极片的极片厚度辊压到实验设计压实密度所需厚度的1.05~1.15倍之间;(3)然后再对负极片进行第二次辊压,将负极片的极片厚度辊压到实验设计压实密度所需的厚度;(4)最后再将辊压后的负极片与正极片按照分切、模切、叠片、焊接、封装、注液、老化、化成以及分容工序进行电池的制作。本发明降低了锂离子电池的厚度,为后续模组组装提供便利,减少了模组变形现象的发生,最终,在提高锂电池体积能量密度的前提下减少了整车安全隐患的发生。
本发明涉及材料化学领域,提供了一种阴阳离子二元掺杂尖晶石锰酸锂的制备方法,其中包括原料选择;研磨压片;分段升温加热;冷却步骤,提供了此种阴阳离子二元掺杂尖晶石锰酸锂的制备方法通过分开研磨,先将碳酸锂、电解二氧化锰和五水硝酸铋混合均匀置于研钵中研磨,再添加氟化锂能够使得原料混合接触得充分,让Bi+和F-更好地掺杂进混合原料当中,达到了提高材料电学性能的作用。
本发明公开了一种基于灰色扩展卡尔曼滤波算法用于估算锂离子电池SOC的方法,包括步骤:首先通过灰色预测模型,预测当前时刻电池模型极化电压和SOC状态量的先验估算值,替代扩展卡尔曼滤波算法中Jacobian矩阵;然后利用扩展卡尔曼滤波算法通过观测值对先验估算值进行更新、修正得当前时刻锂离子电池SOC估算值。本发明为电动汽车电池管理系统提供了一种锂离子电池SOC估算方法,能提高锂离子电池SOC估算精度。
本发明的铌、钡活化磷酸铁锂正极材料,其化学通式可表述为:LiNbxBayFePO4,x=0.00002-0.00005,y=0.0003-0.003;其中Li、Nb、Ba、Fe、P的mol比为:1mol?Li∶0.00002-0.00005mol??Nb∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P;由于掺杂少量取代铌、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明公开了一种用于稳定锂离子电池高镍型正极片的镀膜处理方法,以氢氧化锂溶液为洗涤剂,对高镍层状氧化物材料表面的残锂进行洗涤。本发明抑制了纯水洗涤对高镍材料的结构破坏作用,既能有效地去除材料表面的锂残余,又能使材料免受在传统水洗过程中的化学脱锂作用。通过本发明改性的高镍层状氧化物正极材料,具有更好的加工性能及更好的电化学性能。
本发明涉及镍钴锰酸锂正极材料,具体说是一种合成镍钴锰酸锂正极材料的工艺,其包括按化学计量比称取MnSO4、CoSO4和NiSO4加水溶解,配置成混合金属离子溶液,将溶液置于反应釜中;再向上述反应釜中边搅拌边滴加浓氨水和过量的NaOH溶液进行水浴反应;将反应沉淀物陈化、洗涤、抽滤、干燥后与化学计量比的Li2CO3置于行星球磨机中,并加入分散剂进行机械活化;然后将活化后的浆料置于干燥箱内干燥,得到前驱体;将前驱体进行预烧;预烧后进行研磨,再焙烧,获得镍钴锰酸锂正极材料。本发明采用共沉淀法合成镍钴锰酸锂正极材料在合成过程中将前驱体进行机械活化,使前驱体颗粒分布均匀,粒径均匀;再通过预烧和焙烧获得电化学性能优良的钴镍锰酸锂正极材料。
本发明属于锰酸锂的制备领域,具体说是一种尖晶石锰酸锂的加工工艺,其包括将Mn(NO3)2和LiOH·H2O加入水中,用氨水调节pH值,搅拌均匀;将上述溶液置于高压釜中密封;将对高压釜加压加温后迅速冷却;取出高压釜内产物,过滤、洗涤;干燥并煅烧上述产物,获得锰酸锂。本发明利用Mn(NO3)2和LiOH·H2O加入水中在高温高压反应制成尖晶石锰酸锂,该工艺操作简便快捷,反应时间短,环境友好,制备的锰酸锂质量较好。
本发明属于锰酸锂的制备领域,具体说是一种层状锰酸锂的制备方法,其包括将MnSO4溶液和NH4HCO3溶液加入反应釜中搅拌反应,反应产物经洗涤、过滤后得到MnCO3;将MnCO3焙烧成Mn2O3;将Mn2O3和LiOH·H2O混合后加入乙醇球磨;球磨后进行干燥、研磨;再用去离子水洗涤,得到层状锰酸锂。本发明利用MnSO4为底液制备MnCO3,再将MnCO3焙烧成锰氧化物,然后通过与LiOH球磨成层状锰酸锂,其可在较低的Li与Mn摩尔比条件下制备较为纯净的层状锰酸锂,整个工艺流程较短,过程控制容易,且成本较低,适合工业化生产。
本实用新型公开一种光伏UPS锂电池储能系统,包括若干个锂电池的锂电池组,还包括光伏组件、并网逆变器、双电源自动转换开关、电能表、锂电池管理系统、电池组均衡装置和电源管理模块;所述锂电池管理系统包括CPU、电压检测模块、电流检测模块、温度检测模块、安时积分估算模块、开路电压估算模块、存储模块和显示模块;所述电压检测模块、电流检测模块和温度检测模块分别连接每块锂电池;所述开路电压估算模块分别连接电压检测模块和温度检测模块;所述安时积分估算模块分别连接电流检测模块和温度检测模块。本实用新型不间断供电,管理每块锂电池,获取锂电池较为精确的电池剩余量,为锂电池进行精准光伏充电或放电,防止过充过放。
本实用新型公开了一种基于锂电动力的长续航无人机,包括机体,机体的底部连接有固定架,固定架开口处固定安装有锁紧机构,固定架的后端安装有限位板,外置挂载电池仓安装于固定架内部,外置挂载电池仓包括相互卡扣连接成方形盒状的仓体板,仓体板之间安装有第一锂电池,开口处的仓体板上成型有若干第一电源线引出口;机体的内部连接有内置电池仓,内置电池仓包括相互卡扣连接成方形盒状的侧面板和底板,侧面板和底板之间安装有第二锂电池,侧面板上成型有若干第二电源线引出口,侧面板的上端卡扣连接有安装板,安装板安装于第二锂电池的上方;机体同时安装有单独工作的内置电池仓和外置挂载电池仓,延长机体续航时间,提高巡线人员的工作效率。
本发明公开了一种水热法生长大尺寸磷酸铅锂单晶的方法,具体是以铅源和磷酸二氢锂作为水热反应物,置于高压釜中,以锂离子浓度为1‑5mol/L的磷酸二氢锂溶液和/或磷酸氢二锂溶液作为矿化剂,采用温差水热法使水热反应物产生化合反应以生长得到磷酸铅锂单晶。本发明将铅源和磷酸二氢锂在高压釜中在温差水热条件下直接化合反应生长得到磷酸铅锂单晶,反应基础原料无需压制和烧结,工艺更为简单;另一方面,采用磷酸二氢锂溶液和/或磷酸氢二锂溶液作为矿化剂,既不会引入其它杂质,原料利用率也高,矿化剂浓度兼容性好,还能获得大尺寸的磷酸铅锂单晶。
本发明提供了一种锂离子电池和超级电容用双功能电解液及其制备方法。所述的锂离子电池和超级电容用双功能电解液包括多元酯基溶液与无机锂盐离子溶液。其制备方法为制备多元酯基母液与无机锂盐离子液体后,将这两种溶液真空条件下搅拌混合均匀,即得。本发明提供了一种既适用于纳米锰酸锂基锂离子电池,又适用于纳米针状二氧化锰基超级电容的双功能电解液,以提高电解液的通用性能,为锂离子电容型动力电池提供一种新的电解液。
本发明的钙、钡活化磷酸铁锂正极材料,其化学通式可表述为:LiCaxBayFePO4,x=0.002-0.005,y=0.0003-0.003;其中Li、Ca、Ba、Fe、P的mol比为:1mol?Li∶0.002-0.005mol?Ca∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P;由于掺杂少量取代钙、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,其首次放电容量达155.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过164mAh/g,100次充放电循环后容量约衰减3.0%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高;由于钡的价格要比锂价格低百倍以上,生产成本可降十倍以上。
本实用新型公开了一种锂电池生产用打码装置,包括底板,所述底板的顶部外壁通过螺钉固定有运输箱,且运输箱的顶部外壁通过螺钉固定有框架,所述框架的顶部内壁通过螺钉固定有电动伸缩杆,且电动伸缩杆活塞杆的一端通过螺钉固定有打码器。本实用新型通过设置有框架、电动伸缩杆、打码器、墨盒和图像采集元件,这五个元件构成了自动打码机构,锂电池经过框架,图像采集元件扫描锂电池的表面,没有条码,则电动伸缩杆伸长使打码器在锂电池表面打码,然后电动伸缩杆收缩,打码器离开锂电池表面,图像采集元件再次扫描锂电池表面,合格则不打码,反之接着打码,直至合格,这样可以减少工人的劳动强度,提高打码准确度,提高生产效率。
本实用新型公开了一种降低自放电率的锂亚电池,旨在提供一种自放电率低的锂亚电池,其包括钢壳、设于钢壳上端的盖板、穿于所述盖板中央的中心极柱、设于所述盖板与中心极柱之间的玻璃绝缘子、设于所述钢壳侧壁内侧的锂带、设于所述钢壳底壁内侧的底膜、设于所述锂带内侧的边膜和设于所述边膜内侧的正极颗粒,所述降低自放电率的锂亚电池还包括盖于所述正极颗粒顶部且与所述边膜连接并套于所述中心极柱上的镍制的集流片。本实用新型可用于锂亚电池。
本发明涉及锂离子电池正极材料领域,且公开了一种掺铌的高压实高容量锰酸锂,该掺铌的高压实锰酸锂的化学式为:LixMnyNbzO(x+3.5y+5z)/2,其中0.54≤x/y≤0.55,0.0045≤x/y≤0.0053且x﹥0,y﹥0,z﹥0,本发明还公开了掺铌的高压实高容量锰酸锂的制备方法。本发明的体积能量密度较高,电压平台高,循环性能良好,安全性能好,倍率性能优越。
本发明公开了一种锂离子电池正极材料LiFePO4/C的制备方法。本发明采用简单的溶剂热法合成出LiFePO4纳米颗粒,在利用溶剂热法制备前驱体时,提高溶剂中乙二醇和水的配比,以达到减小颗粒尺寸,提高材料电化学性能的作用,并在后期干燥过程中加入葡萄糖溶液作为碳源,通过冷冻干燥以及后续的煅烧过程对其进行碳复合处理,限制颗粒的二次生长,改善其颗粒间导电性,得到表面疏松多孔的纳米级锂离子电池正极材料LiFePO4/C。本发明方法操作简单、成本低廉,为锂离子电池正极材料LiFePO4/C的进一步改性研究提供了良好的条件,且制备的锂离子电池正极材料LiFePO4/C,结构稳定性好,电化学性能优良。
本发明公开了钛酸镍掺杂氢化铝锂储氢材料,由氢化铝锂和钛酸镍NiTiO3混合机械球磨制得,所述钛酸镍NiTiO3由氯化镍和钛酸丁酯在乙二醇中反应生成的沉淀煅烧后制得,所述钛酸镍NiTiO3为长1‑4μm、宽0.5‑2μm大小的棒状形貌,钛酸镍NiTiO3的添加量占总质量的2‑8 wt%。其制备方法包括:1)棒状钛酸镍制备;2)钛酸镍掺杂氢化铝锂储氢材料的制备。作为储氢领域的应用,催化剂掺杂量为2 wt%时,体系放氢温度降至95℃,放氢量达到7.0 wt%;当催化剂掺杂量为6 wt%时,体系放氢温度降至73℃,放氢量达到7.2 wt%。本发明具有以下优点:1、有效地改善氢化铝锂的放氢性能,添加少量催化剂后储氢材料还具有高的放氢量;2、具有成本低廉、制备工艺简单、反应可控等优点。
本发明适用于化学电源技术领域,提供了一种导电材料改性的富锂正极及其制备方法与应用,制备包括:将导电材料靶材与富锂正极材料靶材在工作气体和氧气的混合气氛下进行共沉积处理,在基体上生长复合富锂材料,进行退火后得到改性富锂正极。本发明通过共沉积处理在纳米尺寸上实现均匀复合,同时置入的导电材料在极片中形成良好的三维导电网络,在诱导形成稳定的CEI膜的同时起到缓冲结构的作用。本发明的改性富锂正极有高的储能密度、高的可逆容量,且复合于其中的导电材料作为电子良导体,能够大幅度降低固态电极的电阻,提高电池倍率性能。本发明的改性富锂正极与硅碳负极组装的锂离子电池能量密度高于350Wh/kg,电压区间在2‑5V,电池安全性好。
中冶有色为您提供最新的广西有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!