本发明涉及一种500kV输电线路四分裂导线行走装置,由主轮行走机构、摆杆升降机构、辅轮行走机构、刹车制动机构、吊臂侧摆机构、吊篮等组成,其中主轮行走机构、摆杆升降机构、辅轮行走机构、刹车制动机构、吊臂侧摆机构均有两组,按照机构行走方向的左右边各一组对称分布,在主轮行走机构底部通过两根吊臂与吊篮底梁铰接形成整体。本发明强度高,质量轻,大大降低了整个装置的重量;动力电源采用高能锂电池,一次充电可持续运行1小时以上;动力机构采用直流低速无刷电机,无极变速,前进倒退行走自如;导线行走装置能顺利跨越间隔棒、防震锤、接续管、直线悬垂串等障碍;刹车减速机构的设计既能进行减速刹车,又能起到保险作用。
本发明涉及一种可外调色的水包水涂料及其应用。该涂料包括基础漆、造粒液和连续相,基础漆包括:水56%‑80%、羟乙基纤维素0.5%‑1.2%、丙烯酸酯类乳液8%‑20%、颜填料0.4%‑20%、含硅酸镁锂的保护胶0.24%‑1.12%和第一碱溶胀增稠剂1.2%‑8%;造粒液包括:水90%‑95%和含硅酸镁锂的保护胶4.8%‑10%;连续相包括:水39.2%‑69.2%、丙烯酸酯类乳液30%‑60%和第二碱溶胀增稠剂0.3%‑0.8%;该涂料的制备方法包括将基础漆和造粒液按照质量比大于2:1的比例混合制备粒径小于1mm的彩粒,以及将彩粒和连续相按照质量比(0.25‑1.5):1混合的步骤。该涂料强度适宜,可外调色。
本发明涉及电池材料回收技术领域,具体涉及一种退役NCM正极料再生NCMA正极材料的方法。所述方法包括以下步骤:将退役三元锂离子电池放电、拆解获得正极极片,并采用气流粉碎法处理所述正极极片,获得回收粗粉料;将所述回收粗粉粒进行研磨后获得回收细粉料,并进行第一次焙烧,获得第一混合材料;将所述第一混合材料经三次筛除铝颗粒、研磨、补锂和焙烧获得NCMA正极材料。本发明回收环节不引入溶剂,不产生化学废液,使整个回收环节简捷,环保,对企业也更加经济、高效。
本发明公开了一种Sn基复合材料、电池及其制备方法和应用。该Sn基复合材料,包括若干个蛋黄‑壳结构,单个蛋黄‑壳结构包括一碳壳包覆层;所述碳壳包覆层内为空腔结构,所述碳壳包覆层内设有若干个金属Sn内核;所述若干个金属Sn内核的体积小于所述碳壳包覆层内的容积;单个蛋黄‑壳结构中,所述空腔结构与所述若干个金属Sn内核的体积比为(0.3~8):1。本发明的Sn基复合材料用于锂离子电池负极材料,展现了高的容量、快速的反应动力学和优异的储锂稳定性。
本发明公开一种无机耐水阻燃材料及其制备方法,该无机耐水阻燃材料以水,磷酸盐,锂水玻璃,含镁化合物,改性二氧化硅,玉石粉,高岭土,重钙,分散剂,增稠剂,消泡剂为主要成分,其中锂水玻璃为主要成膜物质结合改性二氧化硅和含镁化合物及其他原料的共同作用,有效提高了涂料的耐水性和耐冲刷性。当其涂覆在墙体或建筑材料表面后,会使该墙体或建筑材料具有更好的耐高温、防水、防火等性能。该制备方法简单,制备得到的无机耐水阻燃材料,因为疏水性,可以减少水润湿和冲刷导致的涂层损坏和粉化,因此潮湿多雨环境下的使用寿命大大延长。
本发明公开了一种硫储能电池及改善其倍率性能与循环稳定性的方法,属于电池技术领域。具体方法是向硫储能电池的正极和/或电解液中加入添加剂,所述添加剂用于与硫储能电池充放电过程中产生的多硫化物发生反应,使所述多硫化物转换为不溶于电解液的中间产物,从而抑制多硫化物的溶解与穿梭,改善硫储能电池的倍率性能与循环稳定性。本方法不需要对原有的体系施加其它多余的修饰策略,仅仅通过加入少量的添加剂,通过对多硫化锂从液相到固相的转化,抑制多硫化锂在充放电过程中的溶解与穿梭。
本发明公开了一种酰胺基复合固态电解质的原位制备方法及其应用,以异氰酸酯衍生物、小分子量羟基有机单体、高分子聚环氧乙烷PEO、锂盐和表面成膜添加剂为主要原料,溶于溶剂,搅拌混合,获得均匀浆料;然后混合浆料涂覆在固态电池的正极材料表面,形成浆料膜;再将涂覆浆料膜的正极材料加热至浆料膜固化成固体膜,得到与正极材料表面紧密结合的酰胺基复合固态电解质。将所制备的酰胺基复合固态电解质膜与固态电池正极材料表面结合,组装得到二次锂离子固态电池,适用于工作电位≥4.3V vs.Li+/Li,工作温度不高于40℃的条件。本发明方法工艺较为简单,能从根本上解决PEO在高电压电池中的分解的问题,从而提高电池的稳定性能。
本发明涉及一种高功率型电芯正极浆料的制备方法及制得的正极浆料与应用,所述制备方法先将正极活性物质与导电剂经干混得到干料,将粘结剂与溶剂混合均匀得到粘结剂胶液,再将粘结剂胶液依次按照高速预混、低速捏合与高速分散加入干料中,实现匀浆过程。通过使用所述制备方法,可以保证制得的正极浆料具有优异的分散均匀性、一致性、流变性和涂覆后较好的离子迁移特性等,还可以使匀浆工序得到简化,从而节省时间和能耗,所述制备方法总工艺耗时可低至4h,且使用制得的正极浆料可以制造出电阻率低至0.031Ω的锂离子电池正极极片,使用所述正极极片有利于制造出高功率型锂离子电池。
本发明公开了一种羰基聚合物及其制备方法与应用。上述羰基聚合物,为金属‑有机框架结构,结构式中包括M,M包括苯基、噻吩基和呋喃基,以及苯基、噻吩基和呋喃基的衍生物基团中的至少一种。上述羰基聚合物用作锂离子电池正极时具有比容量高、能量密度高、氧化还原动力学快等优点。其比容量可以达到257.6mA/g,工作电压区间为1.05‑4.0V;采用本发明上述羰基聚合物为正极材料制得的锂电池,循环4000次后,仍具有80%的容量保持率和库仑效率基本保持在100%,具有优异的电性能。
基于可逆固体氧化物电池的可再生能源就地储能系统及其方法,该系统包括可再生能源发电系统、锂电池模块、可逆固体氧化物电池子系统(RSOC)和储气罐;当可再生能源过剩时,可逆固体氧化物电池子系统运行在电解(SOEC)模式,高温蒸汽在固体氧化物电池中转化为氢气和氧气分别储存于储气罐中;可再生能源短缺时,电能由两种方式补充,第一种为可逆固体氧化物电池子系统在燃料电池模式运行,将氢气化学能转化为电能,另一种为锂电池模块放电。本发明既可以减少可再生能源波动性、间歇性和不确定性导致的可再生能源发电系统实际出力与计划出力偏差,又能够降低可再生能源发电系统为其他调峰电源支付的调峰成本。
本发明属于废旧电池回收技术领域,公开了一种废旧电池安全浸出的方法和应用,该方法包括以下步骤:将废旧锂电池进行放电,焙烧,筛选,得到铜铝箔和电池粉;将电池粉加入水中,再加入浮选剂进行浮选,得到漂浮物料和沉淀物质;将漂浮物料用碱液进行浸出,过滤,得到滤液b和滤渣a;将滤渣a进行洗涤,过滤取滤渣c,加入浸出剂和还原剂进行浸出,得到浸出液。本发明利用焙烧、筛选、浮选等安全、高效、低能耗的物理方法以及稀碱溶解等化学方法相结合,能从源头上除掉废弃锂电池中的铝。
本发明的一个方面提供一种非水电解质电池(20),其特征在于,包含:含有在正极集电体(3a)的至少一个面上形成的正极层(3b)的正极(3);含有在负极集电体(4a)的至少一个面上形成的负极层(4b)的负极(4);在所述正极(3)与所述负极(4)之间配置的隔膜(5);和非水电解质,其中,在所述负极层(4b)中含有能够在0.4V(V.S.Li/Li+)以上嵌入和脱嵌锂离子的负极活性物质,并且满足下述式(I)以及式(II),1≤Q2/Q1(I)0.5≤C/A≤0.999(II)。
本申请涉及一种高熵正极材料及其制备方法与应用,属于锂二次电池技术领域。本申请公开了一种高熵正极材料,所述高熵正极材料包括内核和碳包覆层,所述内核的材料包括Li1+x(M0.5Mn0.1Ni0.1Co0.1Cr0.1Fe0.1)1‑xO2‑yFy,其晶体结构为立方相,空间群为Fm‑3m,其中,M包括Mn、Ti、Zr、Sn、Nb、V或Mo中的一种,0<x≤0.5,0<y≤1,所述碳包覆层为包覆在所述内核表面的碳层。本申请通过合理设计过渡金属组分,并加入氟元素,构建了双阴离子型岩盐结构的高熵正极材料,有效改善了高熵正极材料的锂离子传输动力学性能,提高了循环过程中的电压和容量保持率;此外,内核表面包覆的碳层极大降低了高熵正极材料的电荷转移阻抗,改善了其倍率性能。
一种1,3‑二(2‑氯‑4‑三氟甲基苯氧基)苯的合成方法,以3,4‑二氯三氟甲苯和间苯二酚锂盐为原料,在溶剂中反应完全,将反应液经分离纯化,获得1,3‑二(2‑氯‑4‑三氟甲基苯氧基)苯:所述间苯二酚锂盐和3,4‑二氯三氟甲苯投料物质的量之比为1:2‑8。本发明简化了后处理过程,提高原料的转化率和产物的收率。
本发明公开一种制备5-取代-2,4-二甲硫基嘧啶的方法,涉及一类重要的医药和农药中间体的合成方法,属于有机化学合成技术领域。其特征在于:第一步,通过以5-溴-2,4-二氯嘧啶为起始原料,在室温下与硫甲醇钠反应,生成5-溴-2,4-二甲硫基嘧啶;第二步,5-溴-2,4-二甲硫基嘧啶在氮气保护下,于低温与丁基锂作用,再分别与三甲基硼酸酯,N,N二甲基甲酰胺,和固体二氧化碳反应,生成2,4-二甲硫基嘧啶-5-硼酸,2,4-二甲硫基嘧啶-5-甲醛和2,4-二甲硫基嘧啶-5-甲酸。其有益效果在于:所生成的目标化合物,收率高,纯度好,具有广泛的应用前景;操作简便,原料易得,反应选择性好,环境友好,易于放大生产,实现商业化产品。
本发明涉及一种用于固态电池的高熵氧化物固态电解质材料及其制备方法与应用,该高熵氧化物固态电解质材料的组分为石榴石型氧化物(Li6La3(ZrHfTaNb)0.5O12),该材料采用以下方法制备得到:(1)按照化学计量比称取碳酸锂、氧化镧、氧化锆、氧化铪、氧化钽和氧化铌放入球磨罐中,然后加入异丙醇分散剂和磨球,进行球磨处理,再经干燥得到前驱体粉末;(2)将前驱体粉末放在马弗炉中进行煅烧,得到高熵氧化物粉体;(3)取高熵氧化物粉体、异丙醇分散剂和磨球放入球磨罐,进行球磨处理,然后经干燥、过筛、压片、烧结得到目的产物。与现有技术相比,本发明高熵氧化物固态电解质具有高离子电导率和低电子电导率,具有良好的化学与电化学稳定性,能与锂兼容。
本发明属于过渡金属硫族化合物-碳材料技术领域,具体为一种硒化钼/多孔碳纳米纤维复合材料及其制备方法和应用。本发明制备过程包括:利用聚苯乙烯为造孔剂,通过静电纺丝和高温碳化法制备得到多孔碳纳米纤维,再通过一步水热法在多孔碳纳米纤维上原位生长硒化钼纳米片。本发明所制备的多孔碳纳米纤维具有比表面积大、化学性质稳定、导电性好、力学性能优良等优点;本发明制备的硒化钼/碳纳米纤维复合材料形貌可控,硒化钼纳米片均匀地生长在碳纳米纤维上,充分利用了多孔碳纳米纤维独特的基底结构和高的比表面积。本发明制备的硒化钼/多孔碳纳米纤维复合材料可作为理想的高性能电催化材料以及锂离子电池和太阳能电池等新能源器件的电极材料。
本发明具体是涉及一种1,3‑双(4‑羧基苯基‑2,6‑二异丙基)氯化咪唑鎓的合成方法,包括以下步骤:将2,6‑二异丙基苯胺经过溴代反应生成4‑溴‑2,6‑二异丙基苯胺。利用二苯甲酮在惰性气氛下对4‑溴‑2,6‑二异丙基苯胺的氨基进行保护,反应得到N‑(4‑溴‑2,6‑二异丙基苯基)‑1,1‑二苯基甲亚胺。将N‑(4‑溴‑2,6‑二异丙基苯基)‑1,1‑二苯基甲亚胺进行卤锂交换反应得到锂的活泼中间体。将活泼中间体与二氧化碳反应得到羧酸产物。将羧酸产物在酸性条件下脱去二苯甲酮并经过柱层析得到4‑氨基‑3,5‑二异丙基苯甲酸。将4‑氨基‑3,5‑二异丙基苯甲酸与乙二醛水溶液进行胺醛缩合生成Schiff碱产物。将Schiff碱产物与多聚甲醛反应生成1,3‑双(4‑羧基苯基‑2,6‑二异丙基)氯化咪唑鎓产物。该方法绿色、安全、高效且适合大规模生产。
本发明提供一种复合负极活性材料及其制备方法和应用。所述复合负极活性材料包括聚合物、导电材料和负极活性材料,所述聚合物包括水溶性聚合物和非水溶性聚合物的组合或水溶性聚合物。本发明提供的复合负极活性材料不仅能够大幅提升锂电池的制作效率,同时降低了锂电池的制作成本,还能够改善电池的循环性能以及降低电极的膨胀率。
本发明提供一种改性石墨及其制备方法和应用,所述制备方法包括以下步骤:在二氧化碳气氛中,将提纯后的石墨以1200~2000℃烧结12~20h,得到改性石墨。本发明中改性石墨的制备方法通过将提纯后的石墨在二氧化碳气氛下进行烧结,使提纯后的石墨表面开孔,嵌锂位点增多,从而有利于锂离子电池的容量提升;所述制备方法提高了提纯后的石墨的pH值,避免使用洗涤的方式来提升pH,从而避免大量酸液的排放,节约生产成本,提升生产效率;同时,相比于在氧气气氛中烧结,在二氧化碳气氛下进行烧结不会造成球形石墨比表面积的升高,因此不会造成电池循环性能的损失。
本发明提供一种隔热高强度彩色玻璃制品及其制备工艺,包括以下原料及重量份数:纳米二氧化硅60‑70份、硼砂15‑26份、钼铁0.5‑2份、贝壳5‑10份、锂云母4‑8份、纯碱10‑20份、碳酸钾2‑8份、碳酸锂0.5‑2份、五氧化二铌2‑5份、三氧化二锑2‑6份,氧化钴10‑15份,氧化硼15‑25份、氧化锌14‑20份,二氧化钛2‑7份和五氧化二钽0.5‑2份。本发明获得的玻璃隔热性能较好,能够起到节能保温的作用,降低了能源消耗。
本申请涉及一种参比电极的测量误差标定方法及计算机设备。包括建立三电极电池的几何‑电化学模型。几何‑电化学模型包括正极区域、负极区域、隔膜区域以及参比电极区域。获取三电极电池的电压特性参数、几何参数以及负极析锂状态。根据三电极电池的几何参数,调整几何‑电化学模型每一个区域的结构参数。根据三电极电池的电压特性参数和负极析锂状态,调整几何‑电化学模型中每一个区域的电化学参数。对调整后的几何‑电化学模型进行仿真,获得参比电极电压测量中误差的变化过程,以完成参比电极的测量误差标定。本申请通过几何‑电化学模型的准确标定获得参比电极的误差规律,定量给出了参比电极电位测量的误差值。
本发明公开了一种PAA干粉的制造方法,主要包括取分子量在300万单位的液体PAA在容器中不断搅拌,一直加热到80℃左右,用泵输送到喷雾塔;液体PAA输送到喷雾塔后采用压力喷雾造粒,压力及喷雾量按照蒸发量调节;经喷雾塔干燥后的PAA输出喷雾塔后及时用集料袋包装;生产时空气中相对湿度在80%以下。本发明还公开了上述PAA干粉的用途。本发明提供的PAA干粉用于锂电子正负材料粘结剂,由于干粉使用更加方便,成份更好控制,对提高锂电池产品稳定性非常有帮助。
本发明属于材料技术领域,公开了一种铝基碳化硅复合材料及其制备方法和应用。该铝基碳化硅复合材料包括以下原料:α碳化硅粉、β碳化硅粉、至少含有锂、镁、硅、铝中两种元素的混合物、成型助剂;α碳化硅粉包括粒径为120‑200μm的α碳化硅粉一、36‑75μm的α碳化硅粉二和8‑15μm的α碳化硅粉三,α碳化硅粉的纯度≥99.5%。本发明以多种粒径组成的高纯度α碳化硅粉为基本原料,添加β碳化硅粉、至少含有锂、镁、硅、铝中两种元素的混合物为烧结助剂,水性环保粘结剂为成型助剂,经真空烧结、无压浸渗,制得铝基碳化硅复合材料,导热率达到250‑270W/(m·K),热膨胀系数低至7.0‑8.0ppm/K。
本发明公开了一种用于制备稀土掺杂LiYF4发光材料的方法及其应用。所述方法包括:使包含锂源、硝酸钇、铵源和水的第一混合反应体系于200℃发生水热反应48h,制得用于制备稀土掺杂LiYF4发光材料;其中,所述锂源、硝酸钇与铵源的摩尔比为4∶1∶8。本发明采用水热法一步合成LiYF4,操作简单,技术要求低,成分易控,大大降低了成本,通过调整各反应物的摩尔比例,有效地消除了LiYF4生成过程中存在LiF杂相的不佳影响,通过高温水热反应,导致了在晶体生长过程中YF3向LiYF4的相变,避免了温度调控不准确而生成YF3的弊端,从而最终稳定合成了发光性能良好的稀土掺杂LiYF4发光材料。
本发明涉及金属-树脂间润滑用润滑脂组合物。提供树脂-金属间的润滑性优异的润滑脂组合物、以及通过使用该润滑脂组合物来抑制摩擦/磨损、能实现产品的操作性提高和长寿命化的树脂滑动构件和树脂/金属间滑动构件。一种用于树脂制的滑动面的树脂润滑用润滑脂组合物G,含有:氟系基础油(40℃下的运动粘度为300mm2/s以上)和合成烃油作为基础油、氟系增稠剂和锂皂增稠剂或锂复合皂增稠剂作为增稠剂、氟系表面活性剂作为添加剂、以及极压添加剂,以及一种树脂滑动构件(滑动开关101),其具有使用了该润滑脂组合物G的树脂制的滑动面。
本发明涉及一种防盗花鼓,具体说,涉及一种用于自行车的防盗花鼓,包括车轴、左鼓壳、右鼓壳、环形鼓壳、左辐盘、右辐盘、滚珠轴承、发电机、锂电池、防盗锁等,左鼓壳与右鼓壳通过两侧的滚珠轴承安装在车轴上,左鼓壳、右鼓壳与环形鼓壳形成具有规则空间的腔体,发电机与防盗锁安装该腔体中。发电机的定子安装并固定在车轴上,发电机的转子内嵌在左花鼓上,在花鼓转动时,发电机产生电力持续存储在锂电池中。防盗锁主要由锁销、凸轮机构、压簧及电机组成,电机根据控制指令驱动凸轮转动,锁销插进环形鼓壳的沟槽中,限制环形鼓壳相对车轴转动,实现对自行车花鼓的锁紧,以此提高自行车在停放状态下的防盗能力。
一种再生砖骨料透水混凝土及其制备方法,该混凝土按质量包括以下组分:再生砖骨料1150~1184份、水泥201.3~276.3份、锂渣粉71.9~98.7份、硅灰14.4~19.7份、水72~98.7份、羟丙基甲基纤维素0.06~0.08份、聚羧酸高效减水剂0.92~1.26份,其制备方法如下:1)按比例称取水泥、硅灰、锂渣粉并混合均匀;2)按比例称取再生砖骨料,加入步骤1)得到的混合料,搅拌混合均匀;3)按比例称取水、羟丙基甲基纤维素、聚羧酸减水剂加入经步骤2)得到的混合料中,搅拌混合均匀后即可得到所述的再生砖骨料透水混凝土,该再生砖骨料透水混凝土粘聚性较好,自重低、吸水率高、保水性好、净水效果好、可吸附重金属离子、成本低廉,可广泛应用于河岸、护坡、道路基层铺装等场所。
本发明属于废旧锂电池回收领域,公开了一种加速电池电极材料和集流体分离的方法,包括以下步骤:(1)拆解退役电池:从退役锂电池中拆解出正极极片或负极极片;极片包括集流体以及紧密附着在集流体上的电极材料层;(2)材料处理:将极片浸泡在特定溶液中,所述特定溶液能够使电极材料层与集流体分离;(3)材料分离:向溶液中通入气体加速电极材料层和集流体的分离。本发明在利用极片与溶液的作用进行分离(液相分离)的基础上,通过气流扰动加速电极材料与集流体的分离,显著提高了分离效率。并且,通入的气体可将分离过程中产生的有害气体稀释,有效规避了有害气体带来的风险,提高操作过程安全性。
本发明公开了一种TiO2/SiOx体相双连续结构电极材料及其制备方法与应用,所述TiO2/SiOx体相双连续结构电极材料包括第一连续结构和与所述第一连续结构插连的第二连续结构,所述第一连续结构为桥接的TiO2纳米颗粒,所述第二连续结构为SiOx纳米颗粒网络结构,其中,0.5<x<2,所述SiOx纳米颗粒的粒径小于所述TiO2纳米颗粒,所述TiO2纳米颗粒的粒径不大于10nm。本发明基于纳米尺度复合的双连续体相结构的独特优势,TiO2/SiOx体相双连续结构电极材料作为锂离子负极材料时,表现出优异的容量,快充性能和循环性能,是高容量、长循环寿命锂离子电池的潜在应用材料。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!