本发明提供一种正极活性材料及其制造方法,所述正极活性材料包含由以下化学式(1)表示的富锂锂锰基氧化物:Li1+aNixCoyMnzMvO2‑bAb(1),其中,0<a≤0.2,0<x<0.4,0<y<0.4,0.5<z<0.9,0<v<0.2,a+x+y+z+v=1,0<b<0.5;M是选自由Al,Zr,Zn,Ti,Mg,Ga,In,Ru,Nb和Sn组成的一种或多种元素;A是选自由P,N,F,S和Cl组成的组的一种或多种元素;在富锂锂锰基氧化物包含(i)锂钨(W)化合物或者(i)锂钨(W)化合物和(ii)钨(W)化合物,所述(i)锂钨(W)化合物包含所述(ii)钨(W)化合物与锂的复合物,基于所述正极活性材料的总重量,所述(i)锂钨(W)化合物或所述(i)锂钨(W)化合物和(ii)钨(W)化合物的含量为0.1重量%至7重量%。
本发明提供锂二次电池用电极粘合剂,其抑制因水解造成酰亚胺基分解而造成的粘合力、强度和拉伸性的降低,所述酰亚胺基包含在用作电极活性物质用粘合剂的聚酰胺酰亚胺中,且所述电极粘合剂通过即使在由于重复充放电而产生水的情况下仍抑制电极的劣化而能够延长锂二次电池的使用寿命;锂二次电池用负极;锂二次电池;制造具有长使用寿命的锂二次电池的方法,所述锂二次电池即使在由于重复充放电而产生水的情况下仍抑制电极的劣化;制造锂二次电池用电极粘合剂的方法;以及汽车。这种锂二次电池用电极粘合剂包含聚酰胺酰亚胺和碳化二亚胺。通过使用包含电极活性物质、聚酰胺酰亚胺、碳化二亚胺和溶剂的涂布液形成电极层而制造锂二次电池。
本发明提供了一种包含富锂锂锰基氧化物的正极活性材料及其制造方法,所述富锂锂锰基氧化物由化学式(1)表示,Li1+aNixCoyMnzMvO2‑bAb(1),其中,0<a≤0.2,0<x≤0.4,0<y≤0.4,0.5≤z≤0.9,0≤v≤0.2,a+x+y+z+v=1,0≤b≤0.5;M是选自由Al,Zr,Zn,Ti,Mg,Ga,In,Ru,Nb和Sn组成的组的一种或多种元素;A是选自由P,N,F,S和Cl组成的组的一种或多种元素;在所述富锂锂锰基氧化物的表面上形成有包含贫锂过渡金属氧化物的涂层,所述贫锂过渡金属氧化物处于锂与过渡金属的摩尔比小于1的贫锂状态,并且,基于所述正极活性材料的总重量,所述涂层的含量为1重量%至10重量%。
本发明的含锂过渡金属复合氧化物由能够掺杂和脱掺杂锂离子的一次颗粒凝聚而成的二次颗粒形成,并且满足下述条件。(1)由下述式(I)表示。Li[Lix(Ni(1‑y‑z‑w)CoyMnzMw)1‑x]O2(I)(2)由X射线光电子能谱分析在上述二次颗粒表面和上述二次颗粒内部分别算出特定的γ,当将上述二次颗粒表面的γ值设定为γ1、将上述二次颗粒内部的γ值设定为γ2时,γ1和γ2满足下述式(II)的条件。0.3≤γ1/γ2≤1.0(II)。
本发明所要解决的技术问题是:提供一种用于真空气雾化制备金属粉末的喷嘴,该喷嘴结构简单,能优化金属液流的破碎模式。
粉末冶金是制取金属粉末或用金属粉末作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工业技术。粉末冶金需要将金属粉末按一定的比例均匀混合制成坯粉,但是在混料过程中,经常会出现金属粉末粘附在混料装置内壁上的情况,由于正处于混料过程中,无法打开混料装置直接对粘附的金属粉末进行清理,所以部分混料装置会在内部设置相应的刮料装置,但是刮料装置需要直接与混料装置的内壁接触,这样在刮料过程中,不仅容易产生噪音,而且在刮料装置与混料装置内壁的接触面,会因为摩擦产生的热量
本发明的目的在于提供一种金属陶瓷粉末冶金材料及制作金属陶瓷导卫的方法,以解决现有技术中存在的导卫耐磨性不足、容易发生热裂纹、断裂等问题。
国内生产电池极片目前普遍使用湿法工艺,需要经过制胶、匀浆、涂布、碾压等一系列工序,工艺过程复杂。湿法工艺由于涂布工艺要求需要添加有机溶剂,这种溶剂在后续需要进行烘烤去除,耗能大,烘干设备占地面积大,并且溶剂也很难完全除尽,在后续锂电池中容易造成性能缺陷、产品一致性差等一系列问题。本发明为了解决上述技术问题提供自支撑膜,生产过程不需要任何溶剂,可实现零污染,工艺简单,成本低。
现有技术领域内,含氟高分子材料造粒机的粉末输送为节约生产成本仍使用螺旋输送机进行输送上料,由于螺旋给料机采用螺旋叶片输送,而含氟高分子材料粉末会在静电作用下附着在螺旋叶片上,不仅影响输送机的输送效率,严重的时候还会造成堵塞,导致停机,目前,在清理的时候采用通风清理,通风清理是用气泵或者风机将大量空气通入管内,将物料吹出管体,但由于螺旋叶片的阻挡导致该种方式的清理效果较不理想。本发明的目的在于提供一种含氟高分子材料造粒机的粉末上料设备,以解决上述背景技术中提出的问题。
本发明涉及合金材料技术领域,具体涉及一种新型轻质Al-Sc-Zr-Y-O耐热铝合金及其制备方法。
由于钨的熔点高,且在其它金属中的溶解度较低,因此如果钨含量过高,容易出现熔解不完全的问题,导致合金成分出现问题,针对该问题,本发明的目的是提供一种高钨含量镍基合金粉末的制备方法。本发明采用真空感应熔炼气雾化制粉,最终制备的高钨含量镍基合金粉末具有成分均匀,杂质含量低,球形度高、氧含量低等性能特点,能够很好的适用于激光熔覆技术。
本发明提供了一种复合法弧齿锥齿轮铣刀及其加工工艺,目的就是为了解决上述之不足而提供。本发明采用热等静压粉末冶金的方法直接将高合金粉末冶金高速钢与普通高速钢材质(工具钢及低合金高速钢)在高温高压(130Mpa)的环境下,使得粉末冶金高速钢100%致密化的同时且两种材质紧密结合,在接合面两种材质充分侵入融合成整体结构,改善了因传统焊接造成的结构缺陷,并且两种材质在热处理过程中也不会因其结合部分材质物理特性造成溶蚀开焊。
金属在研磨成金属粉末后,通常需要用到下料装,然而现有的下料装置在下料时粉末会扬起,从而对工作环境以及工作人员的身体健康造成不利的影响,同时也造成了金属粉末的浪费,现有的下料装置在进行下料时容易因粉末之间相互啮合达到受力平衡而堆积在下料斗的内侧,从而有影响下料的效率。因此我们对此做出改进,提出一种操作简单的金属粉末加工下料装置及方法。
目前在粉末冶金近净成形过程中,包套内型芯材质的选择通常为钢材,但对于薄壁大型尺寸环形粉末件而言,控制粉末热等静压包套型芯重量有重要意义,一方面为满足现有吨位热等静压炉的需求,另一方面可缩短酸洗去除钢芯的周期,提高粉末构件的研制效率;基于此,本发明提供一种粉末冶金用包套双重型芯的制备方法。
本发明涉及具有高效过滤功能的粉末冶金的金属粉末的加工装置,属于金属粉末加工技术领域。
金属复合板是指在一层金属上覆以另外一种金属的板子,已达到在不降低使用效果(防腐性能、机械强度等)的前提下节约资源、降低成本的效果,目前多使用冲孔机对金属复合板的进行槽孔加工。本发明的目的是为了解决现有技术中存在的缺点,而提出的一种用于金属复合板上预设槽孔加工的冲压装置。
本发明涉及金属粉末的专用装置或设备领域,具体是一种用于粉末冶金的成型装置及方法。
本发明属于陶粒生产和固体废弃物资源化利用技术领域,尤其是涉及一种氰化尾矿基烧胀陶粒及其制备方法。
在对铝型材加工进行加工时需要使用铣刀进行加工,铣刀是用于铣削加工的、具有一个或多个刀齿的旋转刀具。工作时各刀齿依次间歇地切去工件的余量。铣刀主要用于在铣床上加工平面、台阶、沟槽、成形表面和切断工件等。但传统的铣刀的强度低,而且各个部件难以拆装,损坏一个部件需要更换整个铣刀,存在一定的浪费,因此需要改进。针对背景技术中提到的问题,本实用新型的目的是提供一种用于铝型材加工的高硬度铝用铣刀,以解决背景技术中提到的问题。
本实用新型涉及摩擦材料加工技术领域,特别涉及应用于粉末冶金摩擦材料加工用的收尘装置。
本发明涉及金属化薄膜加工设备技术领域,特别涉及一种智能化金属化薄膜分切装置。
传统制备铼粉的方法主要是将低纯度的初级品铼酸铵溶解、提纯、结晶、过滤、烘干制备成较高纯度的铼酸铵,再将铼酸铵研磨、过筛,氢气还原制得。传统法制备铼粉,需要将初级品铼酸铵或铼酸钾进行提纯、结晶形成铼酸铵固体,再经烘干后研磨成粒度小的粉末再还原,过滤、烘干、研磨、过筛等过程,因流程长导致金属回收率低,成本高;同时长流程工艺过程中引入杂质的概率高,所得铼粉的纯度常受过程控制的影响。另外提纯铼酸铵需要使用氨等辅助材料,流程的环保风险大。本发明提供了一种高纯铼粉及其制备工艺,能够有效解决上述问题。
铼粉是纯铼金属的粉末态,通常呈深灰色,有时又被称作海绵铼。球形铼粉具有流动性好、松装密度、振实密度高的特点,在3D打印、热压成型、等离子喷涂领域应用广泛。其中大颗粒球形铼粉多用于3D打印、等离子喷涂领域,球形铼粉在制取过程中需要对其进行高温煅烧。在现有技术中,不便于对球形铼粉进行制取,同时不便于对球形铼粉进行送料与收集,因此我们提出一种球形铼粉制造用煅烧设备,用于解决上述问题。
粉末冶金制品可以减少机械加工量,提高生产率,所以在五金、电子工业上得到了日益广泛的应用。为了进一步提高其抗变载荷能力和耐磨耐磨性能,需要对粉末冶金制品进行氮化处理。
粉末冶金技术具备显著节能、省材、性能优异、产品精度高且稳定性好等一系列优点,在粉末冶金在压制成型后,在压制加工台上会残留多余的粉末,在压制成型后输出成型工件时粉末容易沾附在工件上,通过输送带的方式对工件输送时难以将粉末清除,在后续加工中残留的粉末容易对工件的质量造成影响,输送过程中的粉末清理效果不佳。针对现有技术的不足,本实用新型提供了一种粉末冶金成型输送装置,具备输送中粉末清理效果好的优点。
本发明针对现有金属钛粉制备方法中存在的技术难题,减少反应中的添加剂,简化反应操作过程,并制备纯度高、粒度分布均匀、高球形度的钛粉。
本发明的目的在于提供一种高强高塑双相钛的制备方法。以纯钛粉末为原料,通过3D打印、真空烧结等方法制备纯钛样品,对样品进行塑性变形处理或淬火,获得具有纳米尺度马氏体相且与基体α相共格的双相结构纯钛材料,室温力学性能优异。
本实用新型的目的是提供一种粉末冶金件加工用零件研磨设备,以解决将多个零件放入到研磨装置进行研磨,零件之间会产生碰撞,导致零件损坏,同时单方向的研磨容易导致的问题。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!