本发明公开了一种软包装锂离子电池极耳与镍带的连接结构,涉及锂离子电池技术领域,包括镍带,镍带的一端与电池极耳的一端固定连接,镍带与电池极耳的连接处固定连接有两组焊点,两组焊点横向排列,每组焊点的个数为三个,三个焊点由上至下等距离排列,镍带与电池极耳的连接处外侧固定连接保护套的内部。该软包装锂离子电池极耳与镍带的连接结构,通过焊点将电池极耳与镍带连接,通过保护套将焊点压紧,通过弹性柱和第二橡胶杆的弹力,增加了压板对电池极耳与镍带产生的压力,通过挡板防止外界的力传递到电池极耳与镍带,通过第二缓冲杆和第一缓冲杆可以将保护套受到的力进行缓冲和消除。
本发明公开了,一种用于新能源汽车的锂电池PACK组合箱体结构,包括箱体,箱体内腔设有单体锂电池,箱体内侧壁设有导热胶片,箱体顶部设有密封箱盖,密封箱盖顶部开设有通风管道,密封箱盖底部设有电池防护盖,箱体前后侧壁设有排气百叶窗,箱体底部开设有滚轮槽,滚轮槽内设有活动滚轮,箱体底部设有支撑底座,支撑底座内腔底部对称设有减震装置,两组减震装置顶部均设有支撑柱,两组支撑柱之间连接有齿轮轴,齿轮轴外侧壁套接有齿轮,齿轮顶部设有活动支撑架,活动支撑架底部设有齿条,活动支撑架前侧壁开设有滑动槽,滑动槽内腔滑动设有滑动杆,活动支撑架顶部开设有活动槽,本发明提供了一种减震性能好、便于安装的锂电池组合箱体。
本发明属于生物功能材料领域,公开了一种二硅酸锂复合生物玻璃陶瓷的制备方法。该方法包括以下步骤:首先通过溶胶凝胶法和熔融法制备生物玻璃粉末,按照一定比例混合,再经过研磨、过筛、模压、煅烧,可制备获得二硅酸锂复合生物玻璃陶瓷。该方法具有工艺简单,所用原料价廉,操作容易等优势,所制备的二硅酸锂复合生物玻璃陶瓷具有良好的力学性能以及生物活性,可应用于牙科领域伤口缺损的修补、药物控制缓释、细胞培养等,具有良好的应用前景。
本发明涉及锂离子电池技术领域,具体地说是一种采用氢破工艺制备氧化亚硅负极材料的方法及锂离子电池,其特征在于,包括如下处理步骤:无定形氧化亚硅在惰性气氛保护下进行热处理使无定形硅产生部分晶化;氢破;气流破碎;包覆改性;炭化。本发明同现有技术相比,适用于高容量锂离子电池负极材料制备,工艺过程具有生产效率高、成本低、便于进行工业化生产等优点;所得氧化亚硅材料具有氧含量低、晶粒均匀、粒径分布窄、高度各向异性、导电性好;制备的硅碳负极材料比容量高达1500mAh/g,首次效率达82%。
本发明涉及一种柔性卷袋式锂电池突发和异常情况处理装具,包括配套使用的柔性卷袋、防护服和防护手套,柔性卷袋包括袋体、设置在所述袋体开口一端的延长部及设置在所述延长部外侧的把手,防护服包括头罩、设置在头罩正前方的视镜、设置在头罩上,位于视镜两侧的出气孔,位于视镜下方的鼻托,连接在头罩下方的防护围裙,伸入头罩内的吸气管,设置在防护围裙腰部的固定带,该固定带的端部设置锁扣,防护手套的指尖处设置隔热防滑块。与现有技术相比,本发明可在锂电池及含锂电池产品的储存和运输过程,以及应急管理领域广泛运用,结构简单,成本低廉,安全便捷。
本发明公开了一种复合包覆改性的富锂锰正极材料及其制备方法,该材料包括基体以及基体外包覆的复合氧化物;复合氧化物为Li、B和金属Me的复合氧化物,且金属Me为Al、Zr等中的至少一种。该制备方法包括以下步骤:将富锂锰正极活性材料基体加入去离子水中混合搅拌,充入CO2气体;配制金属Me的盐溶液A;配制硼化合物的溶液B;往上述活性材料基体混合液中加入溶液A、B;再使混合溶液呈中性或弱碱性,加热得到胶状混合物;将胶状混合物在熔融状态下均匀包覆于基体表面;将所得产物干燥、研磨,恒温热处理,得到复合包覆改性的富锂锰正极材料。本发明可以克服现有产品中残余Li含量过高、倍率性能差、循环性能差等不足。
本发明为一种具有g‑C3N4/RGO有序多孔涂层的锂硫电池隔膜的制备方法。该方法包括以下步骤:第一步,制备g‑C3N4/RGO复合材料;第二步,制备g‑C3N4/RGO有序多孔材料;第三步,制备表面附着g‑C3N4/RGO有序多孔涂层的锂硫电池隔膜:将g‑C3N4/RGO有序多孔材料和PVDF混合、研磨,然后滴入N‑甲基吡咯烷酮,继续研磨10~30min,用涂刮器将其涂覆在隔膜一侧,涂覆厚度为10~20um,将涂好的隔膜置于干燥箱中干燥1~24h,得到表面附着g‑C3N4/RGO有序多孔涂层的锂硫电池隔膜。本发明得到的材料具有良好的稳定性,还具有良好的导电性,还具有多孔结构。
本申请公开了一种用于固态锂电池的离子液体聚合物凝胶电解质及制备方法。该离子液体聚合物凝胶电解质的制备方法包括以下步骤:(1)将聚偏氟乙烯‑六氟丙烯共聚物和1‑甲基‑3‑乙基咪唑二(三氟甲基磺酰基)亚胺溶解于无水丙酮中,搅拌均匀后,在铝箔上涂覆成均匀薄膜;(2)将涂覆了薄膜的铝箔真空烘干,然后冷却,剥离得到所需的离子液体聚合物膜;(3)将离子液体聚合物膜浸泡在二(三氟甲基磺酸)亚胺锂的1,3‑二氧戊环/乙二醇二甲醚混合溶液中,取出后,用滤纸除去过量的溶剂,即得离子液体聚合物凝胶电解质。本申请解决了金属锂负极的枝晶生长问题。
本发明的一种绝缘垫片及具有该垫片的圆柱型锂电池,属于电池领域,包括第一扇形垫片、圆形垫片、第二扇形垫片以及圆柱,第一扇形垫片包括第一圆孔,第一圆孔位于第一扇形垫片中心处,圆形垫片包括中心圆孔、第一槽口以及第二槽口,中心圆孔设置于圆形垫片中心位置,第一槽口以及第二槽口设置在中心圆孔外侧,第二扇形垫片包括第二圆孔,第二圆孔位于第二扇形垫片中心处,圆柱一端依次穿过第一圆孔、中心圆孔以及第二圆孔连接第一扇形垫片、圆形垫片以及第二扇形垫片构成绝缘垫片整体。该绝缘垫片能同时满足锂电池的吸液保液,且其结构安全,适合多极耳结构,可有效提升圆柱型锂电池电芯循环,倍率,安全性能等。
本发明公开了一种新型锂离子电池正极浆料搅拌工艺,该工艺包括以下步骤:(1)导电胶液制备,(2)活性物质浸润,(3)常温低速正反转搅拌,(4)真空高速搅拌,(5)调节浆料粘度和固含量出料制备出锂离子电池正极浆料。相对于传统的“湿混搅拌”和“干混搅拌”,本发明的有益效果是本发明的新型正极浆料搅拌工艺在一定的程度上综合了“湿混搅拌”和“干混搅拌”的优点,不仅能提高锂离子电池正极浆料分散均匀性能,同时能减少搅拌设备的损耗,延长设备的使用寿命。
本发明公开了一种用于移动充电锂电池的主体,设有容置槽和内置在容置槽中的USB插口,容置槽的深度大于USB插头柄部的高度。本发明具有以下优点:通过将USB插口内置在容置槽中,通过预设容置槽的深度,可使得插入USB插口中的USB插头的柄部也内置于容置槽中,仅有柔性的出线部位于主体外,从而防止外物碰触到较为脆弱的USB插头的柄部,对其起到较好的防护作用。
本发明涉及锂电池化成技术领域,特别是一种锂电池负压化成自动检测系统,包括若干独立与电池总导管相连接的独立导管,所述独立导管前端固定有负压化成吸嘴本体,所述负压化成吸嘴本体压吸在需要化成锂电池本体的电池注液口上表面;所述电池总导管内设置有压力传感器和流量计,所述压力传感器和流量计通过信号线与PLC控制器相连接。采用上述结构后,本发明通过重新设计的负压化成吸嘴,防止在化成过程中从电池注液口有少量的电解液泄漏。
本发明公开一种锂离子负极涂层及制备方法,由扁平化的TiB2熔融粒子堆砌而成,且熔融粒子间存在微间隙,比例为0.1~3%。涂层材料中TiB2相纯度>99%,室温电导率>1×105Ω‑1·m‑1。制备步骤是先对粒径3~5μm的TiB2粉末造粒,获取15~40μm的喷涂原料,然后采用等离子喷涂‑物理沉积技术,在金属材料基体上制备锂离子负极涂层。本发明的优点在于,该制备方法可有效简化锂离子负极的制备流程,降低电池制备成本。
本发明涉及锂电池生产领域,尤其涉及一种锂电池载具联动锁紧装置。一种锂电池载具联动锁紧装置,该装置包括侧方夹紧爪、第三气缸、联动板和后端夹紧爪,该装置用于实现电池载具循环时在某个工位进行锁紧,以便于实现电池移印、电池喷码、扫码检测、良品、不良品的自动分选。
本发明公开了一种废旧锂离子电池的分离方法,涉及废旧电池的综合回收利用领域。用以解决现有技术中锂离子电池回收过程复杂,且会产生大量的废水或有机溶剂,容易造成环境污染的问题。包括:将锂离子电池粉碎成直径介于1~10μm的颗粒;风机按照设定风速将所述颗粒传输至降尘室中,当所述颗粒内至少包括3种密度的材料时,进入到所述降尘室内的所述颗粒按照密度大小,依次跌落至位于所述降尘室底部的分离区域中,且密度大的所述颗粒与所述降尘室入口的距离小于密度小的所述颗粒与所述降尘室入口的距离;所述风机的风速介于10~15m/s,压力介于0.1~0.12MPa。
本发明公开了一种用于锂离子电池正极及负极材料的混料方法,包括:用于锂离子电池正极材料的混料方法,先在一个搅拌釜中将溶剂和粘结剂混合得到胶液,在溶剂和粘结剂混合的同时,在另一个搅拌釜中将粉状的导电剂和主材进行高速分散,待粉状材料分散充分后,将胶液加入粉体材料中混合;用于锂离子电池负极材料的混料方法,先在一个搅拌釜中将溶剂和增稠剂混合得到增稠液,在溶剂和增稠剂混合的同时,在另一个搅拌釜中将粉状的导电剂和主材进行高速分散,待粉状材料分散充分后,将增稠液加入粉体材料中混合,待粉体和增稠液混合充分后,再加入负极材料胶液。本发明的混料方法具有时间短、溶剂量少、分散效果佳的优点。
本发明公开了一种新型导热材料在动力锂电池模组及pack上的应用,该新型导热材料作为具有隔热保温和导热两种特性的材料在动力锂电池模组及pack上的应用,所述的应用是在动力锂电池模组或者pack系统的壳体内,当温度较高时,具有导热特性,当温度较低时,又具有隔热保温特性。本发明的优点:该新型导热材料具有保温和导热两种特性:当温度较高时,新型导热材料具有导热特性,当温度较低时,又具有隔热保温特性;并且新型导热材料随着温度的上升,新型导热材料的导热系数上升,导热能力增大,随着温度的下降,导热系数下降,导热能力减小,隔热能力增加,显示保温特性;成本低,无需另外设置冷却设施和保温设施。
高性能纳米磷酸铁锂正极材料的制造方法,其特征在于:包括以下步骤:1)采用半液相纳米化技术;2)采用颗粒聚合物隔离技术保持烧结材料的小尺寸一次颗粒;3)采用鉄位掺杂技术提高磷酸铁锂材料的电子电导率;4)通过磷酸铁锂表面有机单体聚合包覆薄碳层技术。本发明,使碳包覆层控制10纳米以内,提高了振实密度和比容量,电池的体积比容量和倍率特性得到了很大的提高,从而获得了高达20C倍率特性。
本发明公开了一种铌酸钾钠锂基无铅压电单晶及其生长方法,其为钙钛矿结构,化学式为(KxNa1-x)1-yLiy(Nb1-zMz)O3,其中M表示过渡金属元素,0< x< 1,0< y< 1,0< z< 1。所述方法包括:称取原料粉末和助熔剂并混合;将起始料放入坩埚中;在500~1100℃保温3~20h,升温至1000~1300℃,保温2~20h使起始料熔化,然后坩埚以0.1~1.2mm/h的速度下降结晶,完毕冷却到室温得到铌酸钾钠锂基无铅压电单晶。本发明首次采用添加助熔剂的坩埚下降法实现了过渡金属掺杂的铌酸钾钠锂基无铅压电晶体的生长,且所得晶体为纯的钙钛矿结构,无其他杂相,并具有很好的压电和铁电性能。另本发明的工艺简单,具有烧结温度较低的优点。
本发明提供一种锂电池模组的安全防护结构,锂电池模组包括串联或并联连接的第一电芯和第二电芯。该安全防护结构包括一汇流排,设置在锂电池模组的上方。汇流排的第一端耦接至第一电芯的电极,其第二端耦接至第二电芯的电极。汇流排还横跨于泄压阀的上方或侧边,当泄压阀因电芯内部压力而作用时,高温高压气体或固体将汇流排熔断。相比于现有技术,本发明可采用高导电、低熔点的金属或金属合金作为汇流排,利用必备的安全泄压阀并整合其他监测组件、保护组件来提供有效的安全防护和断路保护。当泄压阀因电芯内部压力膨胀而作用时,产生的高温高压气体或固体将上方的汇流排熔断,使电池组间的串联和/或并联结构完全开路。
本发明提供一种异型叠片式锂离子电池及其电芯,锂离子电池包括电芯及包覆在电芯外侧的包装膜,电芯包括呈叠片结构布置的正、负极片及隔膜,正、负极片及隔膜均为板片结构,所述的板片结构的正、负极片及隔膜的中部分别开设有对应贯通的中心孔以使得所述电芯呈环形,环形电芯的中部具有由所述正、负极片及隔膜的中心孔对接形成的散热孔。环形电芯的中部具有由正、负极片及隔膜的中心孔对接形成的散热孔,这样可以有效扩大电芯中部的散热空间,提高电芯中部的散热性能,有利于叠片式电池进行高倍率充放电,提高锂离子电池的功效。
本发明提供一种锂电池石墨烯导电浆料,其特征是由10‑15份石墨粉、0.5‑2份活化剂、0.5‑1份分散剂、0.2‑0.3份胶体材料、0.1‑0.5份碳纳米管、0.01‑0.1份促进剂、85‑90份溶剂、适量粘度调节剂制备而成。通过对石墨的细化活化,进一步通过分散研磨剥离,在研磨机组剪切力、摩擦力作用下,微米级促进剂作为微观力传递介质使石墨被剥离成石墨烯,同时微米级促进剂与石墨烯、碳纳米管在研磨过程由胶体材料交织形成复合微胶粒,在锂电池正负极活性材料中具有优异的分散性,使活性物质的充放电效率大幅提高,同时与石墨烯复合用于锂电池导电剂可以显著地提高载流子浓度,并可以提高电池活性材料的电导率和放电容量。
本发明属于锂离子电池技术领域,尤其涉及一种裸电芯,包括正极极片、负极极片、隔离膜、正极极耳和负极极耳,隔离膜介于正极极片和负极极片之间,正极极耳焊接于正极极片上,负极极耳焊接于负极极片上;正极极片设置有第一镂空部。相对于于现有技术,使用该极片进行卷绕后的裸电芯可以折叠成面积更小的裸电芯,从而提升小电池的能量密度和装配效率。另外,本发明还提供了一种锂离子电池的制备方法,使用该方法制得的电池不仅形状更加小型化,且其能量密度也得到提升。本发明又提供另一种锂离子电池的制备方法,其在提升电池的能量密度的同时也增强了电池的柔性。
本发明公开钛基片/钛球形复合材料在锂离子电池负极中的应用,采用一步法进行制备,将十六烷基胺溶于乙醇中,加浓氨水和钛酸异丙酯,加含氢氧化锂的蒸馏水,在100-300度下反应1-48h,反应后将样品烘干,在500-800度下锻烧2h,将其用于锂离子电池负极,电流密度3500mA/g下充放电500次循环后,容量仍100mAh/g以上。
本发明提供一种具有优异循环特性的二次电池及可以得到具有优异粘结性的负极的锂离子二次电池负极用浆料组合物。本发明的锂离子二次电池负极用浆料组合物为含有负极活性物质(A)、水溶性高分子(B)及水(C)的锂离子二次电池负极用浆料组合物,其特征在于,所述水溶性高分子(B)包含水溶性高分子(B1)及水溶性高分子(B2),所述水溶性高分子(B1)为含有烯属不饱和酸单体单元及含氟(甲基)丙烯酸酯单体单元的聚合物的碱金属盐,所述水溶性高分子(B2)为含有80质量%以上烯属不饱和酸单体单元的聚合物的碱金属盐,所述水溶性高分子(B1)的5%水溶液粘度为100cp以上且1500cp以下,所述水溶性高分子(B2)的5%水溶液粘度为2000cp以上且20000cp以下。
本发明公开了一种开关式的锂离子电池模块,其包含:N个锂离子电池单体组成的电池模块,其被分成至少两个半电池模块,每个半电池模块分别引出正负极;电驱动开关底座,其输入端分别连接所述各个半电池模块的正负极,其输出端用于输出所述的多个半电池模块串联或并联后的电压结果;电驱动开关上盖,其连接所述电驱动开关底座,通过调整电驱动开关上盖与电驱动开关底座的相对位置,使得多个半电池模块之间实行串并联切换。其优点是:其将开关切换结构应用在锂离子电池模块上,使电池模块在不同串并联数目之间切换,完成电池模块的动态容量、电压、充放电倍率规格的调节,满足不同的电压、功率、时间等需求。
本发明涉及材料领域,具体公开了一种电解液及其应用和锂离子电池,所述电解液含有:主盐、有机酯、有机添加剂和IA族金属元素卤盐和/或碳酸锂。所述锂离子电池包括正极材料、负极材料、隔膜和电解液;所述电解液为上述的电解液。使用本发明的电解液作为电池材料能够解决电池在大倍率电流条件下不能快速充放电以及在低温环境中不能有效放电的问题。
本发明公开了一种钠和铁共掺杂制备高性能锰酸锂正极材料的方法。(1)将锰源和强氧化剂溶于蒸馏水中,充分溶解后转移至反应釜中,然后将反应釜置于烘箱中,反应得到MnO2粉末;(2)将二氧化锰、锂源、钠源和铁源充分研磨得到黑色混合物;(3)在马弗炉中将混合物进行第一次高温烧结,随炉冷却至室温,研磨后后进行更高温度的烧结,自然降温至室温,即得到LiNaxMn2‑yFeyO4,其中:x=0.01~0.2,y=0.01~0.2。本发明能够制备出颗粒细小、结晶性优良且晶粒之间接触更加紧密的钠、铁复合掺杂的锰酸锂正极材料,材料的倍率性能及循环性能均得到较大的提高。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!