一种1,2‑加成喹啉基锂配合物及其合成方法和应用,属于催化剂制备技术领域,目的在于提供一种1,2‑加成喹啉基锂配合物及其合成方法,该方法是以喹啉为底物,与烷基金属锂作用发生加成反应,这类1,2‑加成喹啉基锂配合物可用于催化ε‑己内酯的开环聚合反应。合成方法简单,且产率较高,该催化剂对ε‑己内酯开环聚合反应具有很高的催化活性,不仅可制备出高分子量的聚己内酯,而且能制备出分子量可控聚合物。由于这类催化剂的可降解性强、生物相容性好、毒性小,可以很好地用于催化合成可降解的聚酯材料。
一种稻谷壳制备锂离子电池硅‑碳负极材料的熔盐电化学方法,属于锂离子电池的领域。该制备方法将稻谷壳清洗烘干后作为原料,对其进行碳化,将碳化谷壳灰球磨成粉末,压片,烧结,以压片作为阴极,石墨棒作为阳极,在氯化钙熔盐中,高温下施加电压,恒电位电解,使稻谷壳中的二氧化硅还原为硅,还原得到的硅被谷壳中的碳包覆形成碳包覆硅的核壳结构,将压片提离熔盐冷却、清洗除去盐、盐酸酸洗、干燥,实现锂离子电池硅‑碳负极材料的制备。该方法可以制成性能优良的锂离子电池硅‑碳负极材料,环境友好、成本较低、操作简单。
本发明涉及混合电源领域,具体地说是一种电动飞机用燃料电池和锂电池混合动力系统,燃料电池控制系统的输出端连接燃料电池电堆,对燃料电池电堆进行控制;燃料电池电堆的输出端连接DC/DC转换器的输入端,DC/DC转换器的输出端与二极管和熔断器连接后连接到电机控制器的输入端,为电机控制器对电机控制提供电源;DC/DC转换器的输出端与二极管和熔断器连接后连接到充电系统的输入端,给充电系统提供电能;充电系统的输出端连接锂电池的输入端,为锂电池充电;锂电池的输出端通过二极管和熔断器后连接到电机控制器的输入端,为电机控制器对电机控制提供电源。本发明能够最大程度的增加飞机飞行时间,延长飞机航时间,保证飞行员和飞机安全。 1
本发明涉及锂硫电池技术领域,具体涉及一种用于锂硫电池的正极材料及其制备方法和应用,该制备方法包括如下步骤:(1)前驱体的热处理:利用三聚氰胺作为前驱体,进行热处理;待材料自然冷却,充分研磨均匀,制得石墨态g‑C3N4;(2)正极材料的制备:将石墨态g‑C3N4与升华硫混合后研磨,采用惰性气体保护后进行保温处理,制得锂硫电池正极材料。本发明的制备方法通过只需简单的热处理,无需复杂的制备流程,而且三聚氰胺成本低,制得的锂硫电池正极材料载硫量较高且循环性能良好。
本发明公开了一种薄膜铌酸锂单偏振波导及其制备方法,属于集成光子学领域。该波导从上至下包括上包层、铌酸锂薄膜波导芯层、下包层和衬底层;所述铌酸锂薄膜波导芯层包括脊形波导和位于所述脊形波导两侧的槽形区域;脊形波导的宽度和刻蚀深度小于TM0模式存在截止值,脊形波导中的TM0模式与和所述槽形区域中的TE1模式发生交叉耦合;槽形区域的宽度取值使得从所述脊形波导中TM0模式耦合到两侧槽形区域的TE1模式与泄漏到槽形区域的TM0模式发生相干相长。通过优化微纳光波导结构的几何参数,获得仅支持TE0模式稳定传输的波导结构。本发明中的薄膜铌酸锂单偏振波导对光场的限制能力强,提高了器件的集成度,简化了工艺流程。
本发明公开了一种便于散热的新能源汽车锂电池组,包括电池壳体,所述电池壳体内壁的中间固定连接有锂电池组,所述电池壳体内壁的顶部和底部通过连接块固定连接有散热弯管,电池壳体的右侧固定连接有储液盒,储液盒内壁的底部固定连接有水泵,储液盒右侧的底端连通有补液管,本发明涉及锂电池技术领域。该便于散热的新能源汽车锂电池组,通过螺纹杆的旋转使得半圆活动头与弹性挡片可以快速结合和脱离,使得弹性挡片与梯形引流块可以快速结合或脱离,提高了开关操作的便利性,防渗漏空盒的设置使得接触杆移动时减少了循环液流进补充阀门盒的概率,提高了装置整体的可靠性,解决了循环液泄漏后补充不及时不方便的问题。
一种有序介孔金属氧化物@碳锂离子电池负极材料的制备方法,属于锂离子电池负极材料的制备领域。本发明要解决现有SnO2基负极材料循环稳定性以及倍率性能差的问题。本发明方法:一、以油酸铁为原料,通过程序升温处理,得到单分散的油酸包覆的四氧化三铁纳米颗粒;二、然后溶于有机溶剂中,超声后常温下静置,得到自组装的NPs;三、将锡源溶于乙醇中,缓慢滴入组装后的NPs中,机械搅拌;四、醇洗,烘干,惰性气氛下煅烧,研磨,刻蚀,水洗,烘干。本发明的SnO2@C负极材料展现较好的循环稳定性以及倍率性能;在0.2C放电180圈,可以达到730mAh g–1的容量;在经过大电流循环又恢复到0.2C时,容量仍然未见衰减。
本发明公开了一种用于新型电动汽车的锂电池,包括外壳、内胆以及一对结构相同的接电头,所述内胆嵌装于外壳内,所述外壳上开设有一对结构相同的接电槽,一对所述接电头安装于一对所述接电槽内,本发明的有益效果是,该新型电动汽车的锂电池,结构简单,安装快速方便,具有良好的防爆和防冲击效果,通过通风报警机构,使外壳内形成通风道,并且通过加速风力流动,带出内部反应发出的热量,避免电解质过热,引发爆炸的危险,通过快速连接机构以及辅助固定组件,使得新型锂电池在安装过程中,可以快速连接,非常快速方便,通过防刺穿结构以及防撞击结构,有效的避免了冲击力和尖锐物体对新型锂电池的伤害发生燃烧或者爆炸。
本发明公开了一种锂/钠离子电池负极材料四硒化三镍/碳复合材料及其制备方法。该方法的步骤如下:1)将六水合氯化镍、柠檬酸和尿素共同置于乙醇和水的混合液中,水浴加热搅拌后干燥,获得镍盐前驱体;2)将镍盐前驱体先去除有机物,再高温碳化处理,获得镍/碳复合材料;3)将镍/碳复合材料研磨成镍/碳粉末后置于水中超声分散得溶液A,将硒粉加入到水中磁力搅拌,并加入硼氢化钠,得到溶液B;4)将溶液B加入溶液A中,水热反应后冷却,过滤、洗涤、干燥,获得Ni3Se4/C复合材料。利用该复合材料组装的锂电池和钠电池,可以同时实现高容量、高倍率、高首次库伦效率和高稳定性。
本发明公布了锂电池技术领域的一种锂电池化成分容工艺,取套膜完成的电芯以0.05C恒流充15min,0.1C恒流充10min,静置24h后进行ocv分选,50mV一档,取同档位电芯置于电池支架内,使用镍片先并后串连接成电池模块。m个电池模块串联后,以0.1C恒流充电3600S;0.2C恒流充电7200S;0.3C恒流恒压充至单体3.65V,截止电流0.05C。本发明制作锂电池,降低锂电池生产成本,化成完成的模组可直接用于电池包生产,能将电池分成不同的档,节省了分档工序,同一档次的电池性能接近,使得电池组寿命更长,性能更稳定,检测周期短,方法简单易实现,生产操作方便,提高生产效率。
本发明公开了一种合成硼氢化锂·二氧化碳配位化合物的方法,所述合成方法是在真空或保护气氛下,使硼氢化锂和二氧化碳在干燥的反应器中充分接触并加热保温反应。待保温反应结束后即可获得硼氢化锂·二氧化碳配位化合物。本发明方法首次合成了硼氢化锂·二氧化碳,工艺简单,能耗低,易于工业化生产。
本发明公开了一种功率连续可调的锂电三元材料隧道式微波干燥装置,主体为微波干燥炉,设置有进料端和出料端,还包括:微波加热谐振腔、物料传送系统、微波源及微波功率调节装置、微波抑制系统、排湿冷却系统、电控系统和测温系统;本发明进料端还设置有布料器,对物料进行破碎和筛分,同时本发明采用功率连续可调的微波装置,对锂电三元材料物料均匀加热,通过红外测温仪测量隧道式微波腔体内锂电三元材料物料的各处温度,若温度过高或者过低,通过调节微波功率,可以使微波腔的锂电三元材料物料温度在一个合适的物料加热温度区间,相比常规的恒定功率微波干燥,具有延长微波源的磁控管寿命、能耗低、加热效率高等优点。
本发明公开了一种镍锰酸锂材料的制备方法,其包括以下步骤:S1、将锂、镍的氧化物或碳酸盐,与按比例称取的多孔电解二氧化锰,加入少量去离子水进行球磨,并在该浆料体系中加入适量分散剂;S2、将球磨混合好后的浆料进行喷干,喷干后的产物各收料组分再进行混合;S3、混合后直接装入待烧匣钵中,在加热炉中加热到600‑750度。反应2‑5小时,自然降温;S4、预烧后的产物与改性添加物氧化铝以一定比例再进行混合;S5、再混合后产物在电窑中加热至800‑900度,保温5‑15小时,自然降温,得到产品镍锰酸锂。本发明提供了采用氧化物直接合成镍锰酸锂正极材料的方法,更环保,更经济。
本发明公开了一种废旧锂电池湿法回收生产线物理分选方法,包括以下步骤:步骤一,将锂电池进行放电处理;步骤二,将放电处理后的锂电池拆解后获取含石墨负极材料的负极铜箔片和正极材料;将正极材料进行粉碎为正极粉料;粉碎后的正极粉料首先经过浮选回收Cu材料,然后再经过过滤脱水得到初选后的正极粉料,初选后的正极粉料在进入后续工序中进行处理;本发明在锂电池湿法回收的预处理阶段对于正极材料进行物理分选,选出有色金属的Cu材料,降低了后续浸出工艺的复杂程度,减少了浸出液的使用,提高了回收的效率,值得大力推广。
一种颗粒状Cu3(PO4)2/super P的锂离子电池正极材料制备方法。本发明通过固相法得到磷酸铜前驱体,后在马弗炉中阶段升温,再将热处理过的Cu3(PO4)2与super P进行充分球磨,即得Cu3(PO4)2/super P复合电极材料。复合具有“三高一优”的super P,即高比表面积、高结构、高纯净度和导电性优异,从而改善了磷酸铜导电性差的问题,super P具有良好的导热性保证电池的安全性和使用寿命,且可以提高材料的导电性。与现有技术相比,本发明原料丰富廉价易得,安全,且在复合过程中无需高温烧结,能耗低、制备工艺简单,此复合材料的应用将有望提升锂离子电池的性能。
本发明公开了一种锂电池制造工艺,包括前处理工序、第一烘烤工序、组装工序、第二烘烤工序、注液浸润工序、封口工序、搁置浸润工序以及化成工序。本发明公开的锂电池制造工艺,通过第一烘烤工序和第二烘烤工序的烘烤,可以高效地去除电池内部的水分以提高电池的综合性能,且烘烤的过程中不用大幅度地提高烘干温度和延长烘烤时间,不会对电池的性能产生负面影响,且不会带来更大的能源消耗;此外,在注液浸润工序中,通过提高半成品电池的温度、增加注液后的真空压力以及延长保压时间,极片上不会出现析锂的现象,有效提高电解液的浸润效果;进一步地,通过增加正极、负极活性材料的含量和电解液的注入量,有效地提高了锂电池的能量密度。
本公开提供一种全固态锂电池及其制备方法,涉及锂电池领域。该全固态锂电池的制备方法包括在一基板上形成正极集流体层,正极集流体层包括第一连接层和形成于第一连接层远离基板的表面的多个第一凸起;形成覆盖正极集流体层的正极层,且正极层对应于第一凸起的区域凸出于对应于第一连接层的区域;形成覆盖正极层的电解质层,电解质层对应于第一凸起的区域凸出于对应于第一连接层的区域;形成覆盖电解质层的负极层;形成覆盖负极层的负极集流体层。本公开的全固态锂电池及其制备方法可增大电解质与电极层的接触面积,提高存储容量。
本发明公开了一种高温型锂锰软包装电池用电解液。它包括电解液溶剂和电解质盐,电解液溶剂为沸点大于80℃,电导率大于5mS/cm的有机溶剂,电解质盐的摩尔浓度0.8mol/L~1.5mol/L。本发明具有耐高温、锂锰软包装电池用电解液制备的锂锰软包装电池能达到在80℃±2℃条件下连续存放48小时不出现气胀的优点。本发明还公开了高温型锂锰软包装电池用电解液制备电池的方法。
本发明公开了一种含硅溶剂和噻吩类添加剂的电解液及使用该电解液的锂离子电池。该含硅溶剂和噻吩类添加剂的电解液包含锂盐、有机溶剂和添加剂;其中,所述有机溶剂中包含硅代有机溶剂,所述添加剂中包含噻吩类化合物,所述有机溶剂中还包含链状碳酸酯类、环状碳酸酯类、羧酸酯类中的一种或多种有机溶剂。本发明中硅代溶剂与噻吩类化合物相配合,辅以其他有机溶剂和添加剂,合理配比,配制的锂离子电池高电压电解液能够有效改善锂离子在电解液中的电导率,抑制由于成膜造成的阻抗增加,有效改善电池的循环性能和低温性能。
本发明属于锂电池的技术领域,提供了一种锂电池硫化物固体电解质及制备方法。该方法先将Li3PO4、Li2S加入稀盐酸中得到混合液,然后喷雾干燥并收集粉末,最后将粉末与聚硅氮烷、P2S5混合后在真空下加热反应,收集产物,制得锂电池硫化物固体电解质。与传统方法相比,本发明制备的硫化物固体电解质的离子传导率高,热稳定性优异,并且制备工艺操作简单,生产效率高,适合工业大规模生产,在锂电池领域具有较好的应用前景好。
本发明公开了一种含氟溶剂和吡啶类添加剂的电解液及使用该电解液的锂离子电池。该电解液包含锂盐、有机溶剂和添加剂,所述有机溶剂包含氟代有机溶剂、链状碳酸酯类、环状碳酸酯类、羧酸酯类中的一种或多种,所述添加剂包含含腈基的吡啶类化合物。相较于未使用本发明电解液的传统锂离子电池,由于本发明电解液中添加了含腈基的吡啶类化合物,且配合使用具有较好浸润性的氟代有机溶剂,能够优化电极界面,减少了界面间的阻抗,改善低温性能;同时能够改善电极/电解液界面膜的性质,抑制过渡金属的溶出,减缓电池在高温高压下的胀气速度,提高锂离子电池在高温高压下的循环寿命。
本发明涉及一种锂电池自动化梯级拆解与回收再利用系统,包括:用于监控整个锂电池拆解及回收再利用系统各个工序的视频监控模块;用于收集拆解电池包、电池模组、电芯及卷芯过程中产生废气用的废气处理模块;用于将电池包拆解为电池模组的电池包自动化拆解模块;用于将电池模组拆解为电芯的模组自动化拆解模块;用于将电芯拆解为卷芯和壳体的电芯自动化拆解模块;和回收电芯正极、负级极片的极片回收模块。本发明解决了现有废旧锂电池回收中人工拆解存在危害身体健康、拆解效率低、污染环境等问题,实现废旧锂电池的流水线式回收、拆解利用,能够完善废旧电池回收再循环体系。
本发明提供了一种卤化物固体电解质及其制备方法和锂离子电池,卤化物固体电解质的制备方法包括以下步骤:对卤化锂和非金属卤化物进行球磨,得到混合物;对混合物进行放电等离子烧结或电场辅助烧结。上述制备方法,采用放电等离子烧结或者电场辅助烧结的方式制备卤化物固体电解质,相比于传统的烧结方式,上述方法中烧结温度低,烧结时间短,减少了锂的损失,且得到的卤化物为纳米化结构,从而提高了锂离子的电导率。上述制备方法中烧结步骤之前只需要进行一次球磨混合即可,制备工艺简单,提高了生产效率。
本发明公开了一种点焊锂离子电池镍片的定位装置,涉及锂离子电池生产领域,包括放置块,其内设有开口向上的放置槽;匹配板,其设有若干贯穿其上下端面的点焊槽,每个点焊槽与一列锂离子电池相对应,点焊槽左右两端的侧壁内设有用于放置镍片端部的稳定槽;扣合件,其包括第一母扣和第一公扣,放置块的外侧面设有若干第一母扣,匹配板的外侧面设有与第一母扣相对应的第一公扣,在点焊时,人手只需要稳住放置块靠近下端面的位置,这样在将一个锂离子电池与镍片点焊时,由于人手远离镍片,因此点焊机的点焊头在焊接时难以触碰到人手,减少手部受伤的可能。
本发明揭示了一种软包磷酸铁锂电池,正电极片、隔膜、负电极片构成的叠片式结构或卷绕式结构外设有封装层,所述封装层内注有电解液,电极中含有三缩水甘油异氰尿酸酯及胺类交联剂,所述正电极片为磷酸铁锂材料。本发明使用不含贵金属的磷酸铁锂作为锂离子电池的正极,使用不含氟的水基正极粘结剂提高安全性的同时降低制造成本。为提高电池性能,使用水基石墨烯复合导电剂作为正极导电剂,电池隔膜使用低成本的干法隔膜,并采用盘式结构极耳。此外,负极引入高温下可超支化交联的添加剂,极大的提高了电池的安全性。
本发明公开了一种适用于高镍‑硅碳体系无EC锂离子电池电解液,涉及锂离子电池技术领域,包括电解质锂盐、非水性有机溶剂和添加剂,添加剂包含具有式1结构的硫氮类化合物添加剂A和常规成膜添加剂,所述溶剂体系中环状酯包含碳酸丙烯酯(PC)和氟代碳酸乙烯酯(FEC),线状酯包含碳酸二甲酯、碳酸二乙酯(DEC)、碳酸甲乙酯中的至少一种。本发明电解液利用上述添加剂A和常规添加剂的联合使用所产生的协同作用,提供了一种可有效改善高镍‑硅碳体系锂离子动力电池性能的电解液,在高温和低温条件下均具有良好的循环性能、倍率性能和存储性能等电化学性能,从而解决了现有高镍‑硅碳体系高电压下产气问题。
本发明属于聚合物固态电解质膜技术领域,特别涉及一种固态电解质膜、制备方法和用途与包含它的锂电池。所述固态电解质膜包含:由聚乙二醇二丙烯酸酯、经甲基丙烯酸酐修饰的金属有机骨架材料和季戊四醇四(3‑巯基丙酸)酯交联聚合而成的聚合物网络;分散在所述聚合物网络中的锂盐。本发明还公开了上述固态电解质膜的制备方法和用途,及包含它的锂电池。本发明通过将MOF和聚合物通过化学键连接,制备混合固态聚合物电解质,该设计方法可以合成超强超韧的聚合物电解质材料,是目前所报道的聚合物固态电解质中机械性能最好的一种,同时在室温下,将锂离子的离子电导率提高到超过10‑5S/cm。
本发明涉及锂离子电池技术领域,公开了一种改性镍钴铝酸锂正极材料及其制备方法与应用。所述正极材料具有通式I所示的组成:Li1+αNixCoyAlzMdGePfO2 式I,其中,0≤α≤0.1,0.80≤x≤0.99,0.01≤y≤0.20,0.01≤z≤0.06,0≤d≤0.005,0≤e≤0.004,0≤f≤0.04,M选自Ca、Sr、Ba、Zr、Y、Ce、Mg、Ti和Mn中的至少一种;G选自Ca、Sr、Ba、Zr、Y、La、Ce、Mg、Ti、B和W中的至少一种;P选自Ni、Co、Al、Nb、W和Mn中的至少一种;其中,d、e和f不同时为0。正极材料具有高的循环倍率性能以及低的表面残余Li,并且由其制得电池具有良好的循环稳定性、热稳定性以及安全性能。
本发明公开了一种TiO2纳米纤维包覆的锂离子电池三元正极材料制备方法及产品,实施步骤如下:1)静电纺丝法合成出TiO2纳米纤维;2)高温反应制备TiO2纤维包覆三元正极材料形成的复合材料,其结构通式可表示为:TiO2@LiNixCoyMnzO2(其中0
本发明公开一种新型状态观测器的锂离子电池荷电状态估测方法,在于提高锂离子电池SOC估测精度,主要包括以下步骤:1)利用实验数据建立电池荷电状态SOC与开路电压OCV的模型;2)修改SOC‑OCV的关系模型使其含SOH和温度;3)建立戴维南锂离子电池模型;4)离线状态下估计电池模型初始参数;5)设计一种新型的状态观测器输出误差反馈矩阵;6)读取电池当前SOH、温度T、电流和端电压;7)利用状态观测器观测SOC值。本发明的优势:一种全新的状态观测器,可保证观测误差趋于零。该状态观测器结构明确,参数设计简单;它解决了传统卡尔曼滤波器计算量大,难以应用于实际的问题。通过状态观测器保证了锂离子电池估测方法的实用性、准确性和精度。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!