本发明提供了一种无钴富锂正极材料及其制备方法和应用。所述无钴富锂正极材料由镍锰氢氧化物前驱体与锂源复合后烧结得到;其中,所述镍锰氢氧化物前驱体满足:17m2/g<比表面积a<27m2/g,1.4g/cm3<振实密度b<1.6g/cm3;所述无钴富锂正极材料满足:1m2/g<比表面积c<5m2/g,1g/cm3<振实密度d<2g/cm3;且5≤a/c+b/d≤25。本发明通过调控正极材料及其前驱体的比表面积和振实密度,同时,在正极材料和其前驱体之间建立比表面积和振实密度的关系,提升了正极材料的循环性能,降低了其电压降的幅度。
本发明公开了一种用于锂离子电池的三维多孔涂层及其制备和应用,按质量百分比计,所述三维多孔涂层包括如下组分:三维多孔微粉55‑70%、粘结剂20‑40%和气体吸收剂5‑10%,所述气体吸收剂为活性氧吸收剂或还原性气体吸收剂。本发明通过三维多孔微粉来形成具有三维骨架结构的功能涂层,三维多孔微粉所具有的高比表面积、高孔隙率、低密度、低导热率的特点,在为气体吸收剂提供可靠依附点位的同时,能够在不影响锂离子电池能量密度、离子传输通路以及内阻的情况下,吸收由正极产生的氧化性气体,并起到一定的阻热、绝热作用,从整体上综合解决了锂离子热失控的问题,极大地提高了锂离子电池的安全性。
本发明提供的珊瑚形貌二氧化锡@碳复合纳米材料及制备方法、半固态负极浆料及半固态锂离子电池,本发明以锡盐为原料,蔗糖为碳源,进行一步水热法合成得到,用以作为锂离子电池负极。同时,制备半固态锂离子电池浆料时,加入聚偏氟乙烯作为添加剂,使形成的半固态浆料电极具有更高的稳定性。与传统的锂离子电池电极制备工艺相比,半固态浆料电极的制备过程,无需涂覆、烘干等复杂的制备工艺,有利于大规模的生产与新型电极材料的研发,并且无集流体的特点可以避免活性材料在循环过程中形成裂痕从集流体上脱落造成的容量衰减,从而极大提高电池的使用寿命。
本发明属于锂离子电池技术领域,本发明公开了一种三甲基硅烷基化合物,所述三甲基硅烷基化合物中含有不饱和取代基团;本发明还提供了包含三甲基硅烷基化合物的电解液和锂离子电池,将三甲基硅烷基化合物作为电解液添加剂使用时,一方面,借助于Si‑F化学键的强烈作用,可消除电解液中的HF,避免HF对正、负极表面相界面膜的刻蚀和破坏,抑制正极材料中过渡金属元素的溶解;另一方面,其中的不饱和官能团可发生聚合反应,从而抑制电解液中溶剂和锂盐组份的分解,提高锂离子电池的放电容量,改善电池在常温和低温环境下的长期循环性能。
本发明公开了一种用于锂离子电池的复合浆料、其制备方法及其应用,属于锂离子电池导电材料领域。包括以下原料:2‑3%改性碳纳米管、1‑2%石墨烯、0.5‑1.5%分散剂、93.5‑96.5%溶剂;所述改性碳纳米管为引入了苯胺基的改性碳纳米管。本发明应用于锂离子电池正极材料方面,解决现有锂离子正极材料因高工作电压和高工作温度引起的正极三元材料的金属离子溶出问题,具有粘度低、分散性好、导电剂利用率高、能够缓解三元正极充放电过程中金属离子溶出且安全环保的特点。
一种利用二维碳化钛‑乙炔黑对全固态锂离子电池界面的改性方法,为解决聚合物电解质与正极界面阻抗大、固态电解质界面膜不稳定的问题。具体步骤为:将乙炔黑和二维碳化钛按质量比1:1混合均匀,加入与上述固体质量比为5:2的电解质前驱体浆料得界面改性浆料,用刮涂法在电解质上涂一层50μm厚的改性层,100℃烘干得带界面改性层的电解质薄膜。本发明中二维碳化钛‑乙炔黑作为聚合物电解质改性层,通过涂层对电解质界面进行改善,本发明有效降低聚合物电解质的本体阻抗和界面阻抗,使聚合物电解质与正极间形成了稳定的固态电解质界面层,防止了形成锂枝晶对电池性能的影响,提高全固态锂离子电池的充/放电比容量和容量保持率。本发明用于锂离子电池领域。
本发明公开了一种便携式锂电冷藏箱,其包括:箱体,其的内部设置有金属内胆;箱盖,其可转动的设置在所述箱体的上方,所述箱盖上设置有把手;制冷组件,其包括锂电池、冷却水箱、半导体制冷板、第一吸水棉和散热板,所述锂电池设置在所述箱盖中,所述冷却水箱设置在所述把手中,所述半导体制冷板设置在所述金属内胆的下方,所述散热板设置在所述半导体制冷板的下方,所述散热板的下表面设置有若干散热片,相邻两个散热片间构成散热槽,所述第一吸水棉填充至散热槽中,所述锂电池与所述半导体制冷板电性连接,所述冷却水箱通过水管与所述第一吸水棉连接。本发明能够快速的将半导体制冷板产生的热量带出,具有提高半导体制冷板制冷效果的特点。
本发明提供了一种回收失效锂电池的方法,将失效锂电池置于NaCl溶液中浸泡放电;将放电后的锂电池于400‑600℃条件下焙烧4‑6h;将焙烧后的锂电池在水喷淋条件下破碎成1‑10mm的片状物;将片状物在2000‑8000GS磁场强度下分别磁选出Fe、Ni和CoO;将磁选后剩余片状物风选出Al和Cu;将风选后剩余的片状物在40‑80℃的有机酸溶液中浸泡6‑10h,浸泡完成后向有机酸溶液中添加还原剂形成浅红色透明溶液;将浅红色透明溶液进行电沉积,得到Li2O和Mn。该方法可有效解决现有的方法存在的有价金属回收率低,纯度低的问题。
本发明涉及锂离子电池领域,公开了一种用扣式半电池评估软包锂离子全电池性能的方法,步骤包括制作正极片,制作负极片,组合压实分别制作成两体系和三体系的扣式半电池,对制成的扣式半电池进行电池性能测试,本发明通过设定电解液注入比、涂覆面密度以及选用不同尺寸的负极材料和铜箔的负极组合,制成的扣式半电池可以准确地反映锂离子全电池的电池性能,提高扣式半电池数据的可靠性,并且可以评估一系列不同正极涂覆量的全电池,节省了大量的测试资源,本发明中的测试方法在三电极体系中也具有良好的适用性,缩短了扣式半电池锂离子全电池评估结果之间的差异。
本发明公开了一种锂电池电极SKID转台机构,包括滚筒输送机及同步升降机构,所述滚筒输送机具有两列间隔设置的滚筒输送线,滚筒输送机内对应两所述滚筒输送线之间形成有一凹陷空间;所述同步升降机构安装在凹陷空间内,其顶部转动连接有转台,所述转台由一旋转驱动机构驱动作旋转运动;将转台设置在同步升降机构上,转台上铺设有聚氨酯垫块,同步升降机构四周可同步驱动聚氨酯垫块顶升,在旋转换向时对锂电池电极SKID的支撑平稳性较好;此外聚氨酯垫块设置有弹性防滑压条,可在与锂电池电极SKID接触时,抵压在锂电池电极SKID的底面,增大两者之间的摩擦力,保证其转动换向时的稳定性。
本发明公开了一种长寿命快充型锂离子电池负极材料及其制备方法,该负极材料由硬碳及包覆在外层含有CeF3和补锂剂的软碳组成,以质量100%计,外层的质量占比为1~10%,由1~10%CeF3、1~10%补锂剂、80~98%软碳组成。其制备方法是将铈源、氟源、氮源、导电剂添加到有机熔剂中,通过水热反应、冷冻干燥得到多孔氟化铈,与沥青粘结剂、补锂剂混合均匀后球磨,然后与硬碳前驱体混合,碳化得到。本发明能提升硬碳的首次效率、动力学及其循环性能。
本申请涉及盐湖提铝的技术领域,更具体地说,它涉及一种盐湖提锂吸附剂母粒及其制备方法。质量分数为10‑15%氢氧化钠溶液100‑120份;无水氯化铝50‑55份;无水氯化锂7‑9份;表面处理剂3‑5份;洗脱剂20‑30份;第一分散剂1‑1.5份;200‑220份PP/PVC;吸附料30‑45份;通过以上原料进行制得的吸附剂母粒具有对锂离子的吸附效果好,且对锂离子的吸附量高。
本发明公开了一种萃取法分离回收废旧磷酸铁锂电池正极材料酸浸出液中铝的方法,该方法是废旧磷酸铁锂电池正极材料酸性浸出液采用含有长链烷基膦酸萃取剂的有机相进行萃取三价铝离子,萃取有机相经过硫酸‑硫酸钾混合溶液进行反萃取,得到硫酸铝钾溶液,萃余液为含二价铁离子和锂离子的溶液。该方法充分利用溶液体系中Al3+的电荷数要高于Fe2+和Li+的特性,通过选择带有长链烷基的膦酸萃取剂对溶液体系中的Al3+进行选择性萃取分离,Fe2+和Li+留在浸出液中,奠定了再合成磷酸铁锂电池材料的基础,同时实现了溶液体系中Al3+的分离与再利用。
本发明提供3D网络准固态电解质、准固态锂离子电池及其制备方法,包括:交联剂、聚合单体、锂盐、浸润剂以及引发剂;其中,所述锂盐的质量百分比30‑60%,所述交联剂的质量百分比为0.1‑1%,所述聚合单体的质量百分比为10‑50%,所述浸润剂的质量百分比为10‑50%,所述引发剂的质量百分比为0.01‑0.1%。本发明的有益效果是准固态电池在一定程度上能够保证界面润湿,提高电池的安全性,并且准固态具有较高离子电导率,能够提高电池的电化学性能;3D网络准固态电解质具有较高的离子电导率,粘弹性较好,制备的固态锂离子电池具有较高的安全性,并且生产工艺易于实现。
本发明提供了锂电池技术领域的一种锂电池压力信号采集装置及方法,装置包括:一个上位机;一个压力信号采集器,与所述上位机连接;一个压力传感器组,与所述压力信号采集器连接;所述压力信号采集器包括:一个通信模块,与所述上位机连接;一个主控模块,与所述通信模块连接;一个模数转换模块,与所述主控模块连接;一个电压放大模块组,一端与所述模数转换模块连接,另一端与所述压力传感器组连接。本发明的优点在于:实现对锂电池受到的压力进行实时采集,进而极大的提高了锂电池的性能以及安全性。
本发明涉及锂电池技术领域,特别涉及一种低温锂电池用电解液及其制备方法,所述的电解液包括锂盐、有机溶剂和低温添加剂,所述的低温添加剂为溴化钾、苯基环己烷、丁二腈和氟代碳酸乙烯酯的混合物,且该低温添加剂在所述电解液中的质量含量为0.08‑0.15%;与现有技术相比,本发明提供的技术方案中,通过在电解液中添加多组分混合的低温添加剂,从多个方面改善了电解液在低温下的状态,以及改善了SEI膜的组成,从而显著的提高了锂电池在低温下的容量和循环寿命。
本发明公开了一种提高电池安全性能的锂离子电池的电解液,其包括:有机溶剂、溶于有机溶剂的锂盐以及添加剂,所述的添加剂为:二硫腈基烷烃,其对应的分子式为:CNR1SSR2CN,R1、R2是碳原子数在0‑‑4之间的烷烃,或烷烃上的氢原子被氟原子取代,取代的氟原子数在1‑‑5以内。本发明在实际的实验过程中,所加入的二硫腈基烷烃添加剂,其作为含硫物质能够在锂离子电池正负极表面形成表面保护膜,从而在电池化成、循环等条件下防止溶剂的共嵌入、减少副反应的发生。同时,由于腈类物质能够在高电压条件下抑制电池产气,作为锂离子电池电解液的添加剂,可以有效解决电池在高电压下的胀气情况。
本发明提供了一种钛酸锂电池及其制备方法。该钛酸锂电池包括正极极片和负极极片,正极极片包括正极集流体和设置在其表面的正极活性物质层;负极极片包括负极集流体和设置在其表面的负极活性物质层;其中,正极活性物质层的材料包括正极活性物质、正极导电剂和正极粘结剂,且正极粘结剂为水性粘结剂;负极活性物质层的材料包括负极活性物质、负极导电剂、负极粘结剂和陶瓷粉体,负极活性物质为钛酸锂。本发明提供的钛酸锂电池既具有优良的性能,其生产成本还得到了有效降低。
本发明提供了一种机械化学法(mechanochemistry)制备高储锂容量Ti3C2Tx的方法,属于MXene制备技术领域。本发明以MAX相的Ti3AlC2为原料,在强碱环境中,通过施加机械力诱发化学反应制备了稳定的小尺寸Ti3C2Tx。该材料具有二维纳米薄片结构、较大的层间间距和稳定的表面特性。其丰富的外露边缘和大的比表面积,增加了储锂活性位点数目,更利于与电解液的充分接触和锂离子的传输扩散,从而获得高储锂容量。本发明采用的强碱辅助机械化学法制备的Ti3C2Tx,具有工艺简单可控、污染小、成本低等特点,有实现规模化生产的潜力。
本发明涉及一种锂电池储能容量优化配置方法,属于锂电池控制技术领域。本发明不同循环充放电深度对锂电池寿命的衰减系数计算;所述预定水特征允许值基于所述渗透水流的不同质量落入预定浓度范围内;基于识别到的特征和所述预定水特征允许值将所述多个处理装置中的至少两个的渗透水流结合;以及输出产物水流和至少一股废弃浓缩物流。本发明所述的锂电池储能容量优化配置方法,可以解决现有技术的铅酸蓄电池荷电容量估算方法的精度和计算效率都比较低,不能很准确的预测铅酸蓄电池荷电容量随时间的变化趋势的问题。
本发明提供了一种锂离子电池膨胀率的测试方法,所述的测试方法包括:在一定温度下,对锂离子电池施加压力,测量得到电池的厚度,测量厚度后对电池进行充放电循环,连续记录厚度变化值ΔL,得到可逆膨胀值、不可逆膨胀值和充电膨胀值,并计算得到膨胀率。本发明通过对锂离子电池的厚度进行连续测量,从而得到每一个循环过程中的可逆膨胀值、不可逆膨胀值和充电膨胀值,并计算得到膨胀率,使锂离子电池充放电循环次数少,此外,本发明可以测试多种条件下,任意电池状态下的膨胀值和膨胀率,避免了普通方法测试时,压力去除后,电池厚度反弹带来的误差。
本发明公开了一种锂电子电池的正极加工工艺,该锂电子电池的正极加工工艺包括以下步骤:将石墨片岩与改性剂按质量比110:0‑40均匀混合,得混合物,选择适宜配方的主原料,并将原料按照需求磨制成粉末状,其粉末状颗粒度根据需求设定;将结晶硅铝酸盐类矿物、硅酮粉按重量比6:1混合,放入球磨罐中密封,将球磨罐抽真空并通入保护气体,得到复合粒子,等静压处理,将复合粒子与混合物在热等静压设备中进行热等静压处理;本发明锂电子电池的正极加工工艺,使用结晶硅铝酸盐类矿物、硅酮粉、石墨片岩与改性剂的按照一定比例配对,使得锂电子电池的正极材料的导电性明显增强,同时经过等静压处理,使得正极的物理性质更加稳定。
本申请提供一种弧形叠片锂电池及其叠片方法。上述的弧形叠片锂电池的叠片方法包括以下步骤:制作连续弧形正极带、连续弧形负极带和连续弧形隔膜带,连续弧形正极带包括多片镜像对称的正极片,连续弧形负极带包括多片镜像对称的负极带,连续弧形隔膜带包括多片镜像对称的隔膜;将连续弧形正极带、连续弧形隔膜带及连续弧形负极带依次层叠,形成层叠芯体;将层叠芯体进行交替折叠操作,得到弧形叠片电芯;将弧形叠片电芯放入铝塑套中,并进行热压封装操作,得到弧形叠片锂电池。上述弧形叠片锂电池的叠片方法能够有效减少或避免毛刺和粉尘、提高叠片平整度及稳定性。
本发明提供一种用于固态电解质的一磷酸锂铝钛的制备方法,依序包括步骤:(S1)将一锂源加入一磷酸水溶液中进行一中和反应,其中该磷酸水溶液系加水稀释构成,且具有一稀释黏度;(S2)于该锂源与该磷酸水溶液的该中和反应完成后,加入一铝源以及一钛源,且共同混合形成一混合液;(S3)去除该混合液中的水分,且形成一反应混合物;以及(S4)热处理该反应混合物,形成用于固态电解质的该磷酸锂铝钛。利用加水稀释后的磷酸作为原料,有效避免于制备过程中产生氨气排放,增加制备过程的安全性,同时提升制备过程的效率。
本发明属于化工和材料,尤其涉及一种连续合成锂基稀土氟化物上转换发光纳米材料的微反应系统,该系统由预热器、微通道混合器、高温晶化反应器、物料冷却器和背压阀构成。其使用方法是:分别以氟化铵溶液和油酸稀土盐/油酸锂混合溶液为反应原料,经换热器预热后注入微混合器,物料快速混合后进入高温高压晶化反应器,经历一段反应时间生成四氟稀土锂盐纳米颗粒,含有产物颗粒的溶液经冷却后收集。本发明实现了锂基稀土氟化物上转换发光纳米材料的连续合成,产品发光效率好,生产效率高,适用于批量生产。
本发明提供一种快充锂离子电池及制法。快充锂离子电池包括正极极片、负极极片、电解液、隔膜和外包装结构;正极极片包括正极活性材料、正极集流体、正极导电剂和正极粘结剂;负极极片包括负极活性材料、负极集流体、负极导电剂、负极粘结剂和防沉剂;正极活性材料为锂化的嵌入化合物LiaNi1‑x‑yCoxMnyMzRqO2,其中,M为Al、Mg、Sr、Zr、Ti和Cr中的任一种,R为B或V,0≤x≤0.3,0.05≤y≤0.5,0≤z≤0.01,0≤q≤0.01,0.95≤a≤1.1;正极集流体为表面涂覆有三维大孔碳的铝箔;正负极导电剂包括导电炭黑;负极集流体为微孔铜箔。该快充锂离子电池具有较高的倍率性能和循环性能,且性能稳定。制法简单。
本发明提供一种锂碘电池正极材料制备装置。所述锂碘电池正极材料制备装置包括底座;第一封堵板,所述第一封堵板设置在所述底座的上方;第二封堵板,所述第二封堵板设置在所述底座的上方并位于所述第一封堵板的一侧;两个固定块,两个所述固定块分别固定安装在所述第一封堵板和所述第二封堵板相互远离的一侧上;两个支柱,两个所述支柱均固定安装在所述底座的顶部,两个所述支柱相互远离的一侧分别和两个所述固定块相互远离的一侧固定连接。本发明提供的锂碘电池正极材料制备装置具有能够对锂碘电池正极材料进行大批量高精度研磨、且收集物料较为简单的优点。
本发明公开了Li3V2O5‑碳纳米管复合材料及其制备方法和在锂离子混合电容器中的应用。本发明以商用V2O5为前驱体,以正丁基锂为锂源,通过简单的化学锂化反应制得了无序盐岩结构的Li3V2O5。该材料可在空气中存放2周且结构不发生明显改变。通过向Li3V2O5中添加碳纳米管,可构建具有高导电网络的复合材料Li3V2O5‑碳纳米管,该材料可有效加快电子的传输速率,改善电极材料的性能。电化学性能测试结果表明,当碳纳米管添加剂量为5wt%时,复合材料的性能最优,可在0.1A/g的电流密度下实现275.3mAh/g的高比容量,且在20A/g的高电流密度下展现出100.3mAh/g的高比容量。循环充放电测试结果表明,该复合材料在20A/g的大电流密度下循环1000次后比容量仍可达94.4mAh/g,比容量保持率为94.1%,具有优异的循环稳定性。
本公开涉及一种电解液及其锂电池,包括锂盐、电解液溶剂和第一添加剂,所述第一添加剂含有具有式(1)所示的结构的化合物中的一种或几种:
本发明属于锂离子电池材料技术领域,公开了一种改性三元锂离子电池正极材料及其制备方法和应用,所述改性三元锂离子电池正极为核壳结构,其内核为第一镍钴锰三元材料,其外壳为第二镍钴锰三元材料,所述外壳与所述内核的质量比为1:8~10;其中,所述第一镍钴锰三元材料中Ni:Co:Mn的摩尔比为13~15:2~4:2~4;所述第二镍钴锰三元材料中Ni:Co:Mn的摩尔比为0.5~2:1:1,且所述第二镍钴锰三元材料内掺杂有锂离子。本发明制备的镍钴锰三元正极材料同时具有高比容量、较为优异的倍率性质和优良的加工性能,同时可以由于降低钴含量从而降低了正极材料的价格和电池价格。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!