本发明公开了一种六氟磷酸锂结晶粒度自动控制装置,包括用于反应的结晶槽,所述结晶槽的顶盖上设有用于氟化锂和氟化氢混合溶液进入的进液口,用于五氟化磷气体进入的进气口以及用于废气排出的排气口,所述的结晶槽侧壁设有冷媒管,所述的结晶槽中部设有搅拌棍,所述的结晶槽底部设有结晶进管,所述的结晶进管上设有排液口,所述的结晶进管下端连接设有晶体收集槽,所述的晶体收集槽下端连接设有出料口,本发明的一种六氟磷酸锂结晶粒度自动控制装置,通过结晶收集槽的设计,有效控制了结晶颗粒的大小,由于结晶收集槽不制冷,结晶进入结晶收集槽后不会继续长大;使得结晶槽可以重复操作,提高了生产效率,生产设备可以也小型化,减少设备投资。
本申请公开了一种基于图神经网络的锂离子电池健康状态预测方法。所述方法包括以下步骤:获取锂离子电池各个半循环的健康状态;构建图的节点、节点的特征和标签,并设定窗口大小;将图数据划分为训练集、验证集和测试集,并对图数据进行归一化处理;采用图神经网络的方法对训练集数据进行训练学习,并对测试集样本进行测试,从而实现锂离子电池健康状态预测。本发明既可综合考量,又可以考虑历史充放电对未来健康状态的影响,故本发明准确率相对更高;此外,本发明避免了繁杂的对电压、电流和温度的特征工程工作。
本发明涉及一种圆柱锂离子电池极片极耳结构,包括:极片,极耳,绝缘胶纸;所述的极片设有空箔集流段;极耳一端的两侧各设有一个裁切缺口;极耳一端与空箔集流段连接,极耳另一端伸出空箔集流段一侧边,裁切缺口位于空箔集流段内;绝缘胶纸覆盖极耳一端且与空箔集流段粘贴。所述的圆柱锂离子电池极片极耳结构,在卷绕完成后,极耳与极片焊接部位的附近区域,后期充放电过程中不会出现充放电不均匀,且不会产生析锂。
本发明属于锂电池生产加工技术领域,具体涉及一种锂电池并联焊接用智能焊接设备及方法,设备包括焊接光源;定位台;储料单元;上料机构;压料机构;所述并联极片由垂直交叉的纵向金属带和横向金属带构成;沿纵向相邻的两焊接部之间的纵向金属带上设有纵向拱形部,沿横向相邻的两焊接部之间的横向金属带上设有横向拱形部;所述压料机构包括平面压板,所述平面压板上设有与锂电池模组的各电芯一一对应的通孔。本发明能够使各电芯焊接完成后具有一定活动余量,防止电芯脱焊,另外,该结构的并联极片在焊接过程中无需对焊接区域施加压力,只需要对拱形部施压即可确保并联极片与电芯可靠贴合,为焊接操作腾出空间,避免对敢接光源造成遮挡。
本发明涉及锂离子电池领域,公开了硅负极材料及其制备方法和锂离子电池,所述硅负极材料包括含硅物质和含有‑COOR的聚合物,其中,R为H和/或Si,经红外光谱测试,所述硅负极材料的红外谱图中,在1740‑1760cm‑1处出现振动峰。制备硅负极材料的方法包括:(1)对硅源进行亲水预处理,再进行任选地洗涤、任选地干燥;(2)将步骤(1)得到的产物与含有‑COOH的聚合物和含磷化合物混合,所述含磷化合物选自磷酸盐、亚磷酸盐和次磷酸盐的至少一种;(3)将步骤(2)得到的混合物进行任选地干燥,然后在惰性气氛下进行退火处理,得到硅负极材料。该硅负极材料能够显著抑制硅的体积效应,具有很好的循环稳定性和倍率性能,其制得的锂离子电池具有很高的能量密度。
本发明涉及一种锂电池火灾预警器,包括上端外壳、预警装置及下端外壳,所述上端外壳与下端外壳卡接配合连接,所述预警装置设置于上端外壳与下端外壳的中间,所述预警装置包括电性连接的集成电路板、温湿度传感器、PM传感器、TVOCS传感器、风扇及供电池,所述温湿度传感器固定安装在下端壳体的内侧,所述集成电路板的一侧与下端壳体底部固定连接,且所述集成电路板的另一侧固定安装有PM传感器及TVOCS传感器,所述风扇固定安装在上端外壳内侧,所述上端外壳顶端设置有电池槽,且所述供电池嵌入在电池槽内。本发明公布了一种锂电池火灾预警器,在锂电池出现异常时,精确地检测出发生火灾的可能性并发出报警声,将火灾消失在萌芽中。
本发明提供了一种电池正极及包含该电池正极的锂离子电池,该电池正极中包括镍钴锰酸锂、聚偏氟乙烯、碳黑导电剂、导电石墨、N‑甲基吡咯烷酮和分子筛。本发明通过电池正极材料中添加了分子筛,利用分子筛的孔道结构及其吸附性能,吸附电池副反应中产生的杂质气体,抑制电池体积膨胀。杂质气体特别是HF被吸附,可以减少SEI膜的损坏,本发明制备得到的锂离子电池与未添加分子筛添加剂的正极材料制备的电池相比,具有更长的循环寿命。
本发明涉及锂离子电池技术领域,尤其是涉及一种锂离子电池安全添加剂及其制备方法和应用,其中,安全添加剂,包括A类核壳结构材料和B类核壳结构材料;所述A类核壳结构材料和所述B类核壳结构材料均包括熔点为70‑90℃的聚合物的壳体和被包裹在所述壳体内的核体;所述A类核壳结构材料的核体包括成炭剂和含氮化合物;所述B类核壳结构材料的核体包括炭化促进剂;其中,所述成炭剂、所述炭化促进剂、所述含氮化合物的质量比为1:1:(0.5‑1)。本发明的锂离子电池安全添加剂在不影响电池电化学性能的前提下,实现电池较好的阻燃效果,并提高了电池在故障事件中的安全性。
本发明提供了一种对位芳纶锂电池隔膜及其制备方法,所述对位芳纶锂电池隔膜包括湿法芳纶多孔膜层,所述湿法芳纶多孔膜层的上下表面均覆盖有芳纶纳米纤维层,所述芳纶纳米纤维层由对位芳纶纳米纤维水溶液涂覆至湿法芳纶多孔膜层上制备得到。本发明可有效解决对位芳纶难溶于极性溶剂的问题,得到的锂电池隔膜的在不降低其它性能的同时,进一步改善电池的循环性能。
本发明提供了一种阻燃微胶囊,包括外层囊壁和包裹在外层囊壁中的囊芯;所述外层囊壁的熔融温度为110~200℃;所述囊芯为具有吸附性能的固体囊芯。本发明设计了一种热致激发主动安全机制阻燃微胶囊,包括稳定结构的囊壁和激活单元囊芯,通过采用特定熔点的囊壁材以及具有超吸极性分子和阻燃特性的固体囊芯激活材料,使得该阻燃微胶囊,在锂离子电池在正常工作时,其电化学性能不受影响,当锂离子电池发生热失控时,添加剂的囊壁材料发生融解破裂,囊芯激活单元得以释放,可瞬间吸收电解液,从根本上降低电解液的燃烧产热量,发挥阻燃功能,提升锂离子电池的安全性能。本发明提供的制备过程简单、成本较低,有利于规模化生产和推广应用。
本发明属于锂电池技术领域,涉及一种复合极片,其包括正集流体和负集流体,正集流体和负集流体具有x方向的宽度边和y方向的长度边,以及z方向的厚度面;正集流体和负集流体相邻的宽度边直接连接,且在连接处涂覆非极性物质;还包括涂布在厚度面的正极活性物质和负极活性物质,且同一朝向的厚度面上的正极活性物质和负极活性物质之间在集流体的连接处形成预留间隙。基于上述复合极片,不再需要电芯的正负极引出部件等对电芯进行串联和并联,且具有更强的电流的承载能力。还涉及一种锂离子电池组,该锂离子电池组由上述复合极片组成,不需要正负极引出部件等对复合极片进行串联或并联,使电池组的体积能量密度和质量能量密度均有大幅度提高。
本发明提供了一种基于降阶电化学老化模型的锂电池脉冲充电方法及系统,包括:采用降阶电化学模型对电池内部的负极液相锂离子浓度、副反应电流密度进行实时计算,得到对应的状态量值;采用恒流恒压方式对电池进行充电,将所述状态量值与预定的下限边界值进行比较,如果负极液相锂离子浓度或副反应电流密度的状态量值达到下限边界值,则停止为电池充电,直至电池内部的状态量值恢复至预定的范围后继续采用恒流恒压方式对电池进行充电;反复执行充电,直至电池充满。本发明可以在减少或不增加充电时间的基础上,延缓电池寿命衰减。
本发明提供了一种高电压锂离子正电极极片、电池及其制作方法,该正电极极片包括复合集流体和涂布于集流体表面的正电极浆料,所述的复合集流体包括表面有凹孔的铝基材、分别涂覆于铝基材两面的第一缓蚀导电层和第二导电层,第一缓蚀导电层由缓蚀剂和导电聚合物共混组成,第二导电层包括搭载客体分子的聚合物粘结剂Ⅰ、聚合物粘结剂和导电碳共混组成。此外,本发明还提供了一种高电压锂离子电池的制备方法。通过本发明提供正电极极片及电池制备方法,提高了集流体表面和活性材料的粘附性,改善了高电压条件下集流体与正活性材料之间的接触粘附性,从而改善高电压锂离子电池的电化学性能。
本发明公开了一种改进ARMA的锂电池剩余寿命预测方法,该方法包括:应用经验模态分解对电池循环剩余容量数据进行分解,得到的子序列去噪筛选后分别进行自回归移动平均(ARMA)建模,用皮尔逊(Pearson)相关系数验证各子序列与原数据的相关性,通过该相关系数进行EMD加权重构,实现对锂电池剩余寿命的准确预测。通过实验验证,本发明具有较好的预测精度,在正常工况下,同组锂离子电池数据的实验预测起始点越往后,预测误差越小。
本发明提供一种原位锂醇化三元纳米片正极材料的制备方法,将镍盐、钴盐和锰盐加入少量的醇溶液中,磁力搅拌至盐全部溶解,然后继续加入醇溶液至80mL,标记为溶液A;向溶液A中加入3~5g聚乙烯吡咯烷酮,磁力搅拌至均匀,标记为溶液B;将上述B溶液转入100mL反应釜中,盖子留有通入气体管道的缝隙,向溶液中通入氩气,将反应釜中的空气赶出,然后迅速取出锂片,迅速放入反应釜中,加大气流量和气流速至氢气排除,然后迅速密闭反应釜;将上述反应釜置于烘箱中,190~220℃反应8~12h,将产物经过离心、用乙醇溶液洗涤3~5次,60~80℃烘箱干燥,得最终产物。本发明利用原位锂醇化与溶剂热相结合的方法制备三元纳米片正极材料,制备无污染。
本发明提供了一种锂离子电池正极材料中重金属元素回收与正极材料再生方法。首先将废旧锂离子电池完全放电、拆解、煅烧、碱洗得到正极材料粉末;使用浸出剂浸出正极材料中的有价金属元素,得到富含有价金属的浸出液;加热蒸发浸出液中的氨并调节溶液的pH,得到氢氧化镍钴锰沉淀前驱体;将前驱体与适当过量的碳酸锂混合研磨,然后采用两段升温法煅烧合成三元正极材料。从浸出液中的蒸发出来的氨气可以使用硫酸吸收,生成铵盐,实现氨的再利用。本发明可实现三元正极材料循环利用,而且工艺简单,能有效降低生产成本,并且可实现氨的循环使用。
本发明公开了一种Mxene柔性自支撑锂空电池正极材料、Mxene柔性复合膜及其制备方法。该方法包括:通过氢氟酸或氟盐‑盐酸混合液对MAX相陶瓷材料刻蚀、超声剥离、真空抽滤,得到Mxene柔性自支撑锂空电池正极;将制备的Mxene柔性电极进一步插层处理,得到CNT插层的Mxene/CNT复合柔性电极(Mxene柔性复合膜)。本发明制备的柔性电极具有独特二维层状结构,比表面积大,电子电导率高,电化学稳定性高,可为氧气的流通和电解液的传输提供通道;经过CNT插层处理后的复合电极有效减小Mxene材料的堆叠,为放电产物提供足够储存空间。在锂空电池中有广阔的应用前景。
本发明提供一种锂离子电池正极极片及其制备方法,所述正极极片包括正极集流体、安全层、导电层和活性物质层,所述第一正极活性物质的充电容量占总容量的占比≥75%;通过使用新型的多层涂布极片结构设计,比目前常规两层涂布结构的极片具有更安全性和更优异的循环性能;使用多层涂布技术,利用导电层的高导电性可以改善正极极片中安全层和活性物质层在循环过程中由于电子导电性能差导致的界面问题,从而在保证高能量密度锂离子电池安全的同时还能进一步改善锂离子电池的循环性能以及循环过程中的DCIR增长变化率大的问题。
本发明公开了一种废锂电池电解液无害化脱除工艺、脱除装置及使用方法,包括撕碎机,撕碎机的进料口连接有上料装置,撕碎机的出口处安装有真空加热/水解脱液装置,撕碎机的顶端连接气体过滤器,真空加热/水解脱液装置连接气体过滤器,气体过滤器的出口端连接有气体冷凝器,气体冷凝器连接有碱液喷淋装置,气体冷凝器和碱液喷淋装置之间的管道上安装有真空泵,碱液喷淋装置的出气端口连接有活性炭吸附装置;碱液喷淋装置上安装有喷淋液冷凝器;将撕碎得到的大块极片中残留的六氟磷酸锂、碳酸脂类有机物电解液及分解的有害气体通过气体冷凝器液化排除和碱液清洗吸收干净,并将排放的空气净化处理;减少了废锂电池回收过程中的废气释放。
本发明公开了一种富锂锰基包覆层的三元正极材料制备方法,在常规共沉淀方法的基础上合成出富镍三元正极材料,通过溶剂热法在富镍三元正极材料包覆富锂锰基层。在本发明中,微观核壳结构将富锂锰基的高容量特性和三元正极材料的结构稳定性完美结合在一起,发挥了材料的最优性能。最后在材料外部包覆一层保护材料不与电解液反应的AlF3涂层,使得材料性能发挥更加稳定。本发明可控制材料的形貌、粒径,且该方法简单可控,适合工业化生产。
本发明提供一种基于温度耦合模型的锂离子电池寿命状态估计方法,涉及新能源汽车的电池管理系统技术领域。该基于温度耦合模型的锂离子电池寿命状态估计方法,通过现有的前置条件,判定车辆当前所处状态,根据不同状态获取不同的温度需求信息,根据不同温度下的累计时间和累计放电总安时分别计算温度影响的衰退容量和循环影响的衰退容量,进而求出电池寿命状态SOH,该基于温度耦合模型的锂离子电池寿命状态估计方法,通过对于不同使用频率的电池系统,能够同等地精确估计其寿命状态,不会受到用户使用习惯的影响,工况适应性良好,该方法覆盖整个温度区域,需求数据的可获得性强,算法执行逻辑明确简洁,完全符合目前的工程实际应用场景。
本发明属于锂离子电池材料技术领域,具体涉及一种锂离子电池正极材料制备用洗涤装置,机体内设洗涤室、阴极室和阳极室,洗涤室与阴极室间设阳离子选择性透过膜,洗涤室与阳极室间设阴离子选择性透过膜;阴极室内设负电极,阳极室内设正电极,洗涤室顶部设进料口、进水口和洗涤剂口,底部设出料口,机体上方设离心机,出料口通过循环泵和循环管道返料到离心机;洗涤室内部设有加热器,洗涤室底部设有超声波发生器,机体底部设置有电气箱,机体顶部设置有控制面板。该洗涤装置对正极材料前驱体洗涤更充分、更彻底,保证高镍正极材料的pH标准,提高锂离子电池产品质量,同时能够降低洗涤耗用水量,节约能耗成本。
本发明公开了一种锂离子电池电芯烘烤方法,包括如下步骤:在真空烤箱底部设置氮气进风口、透气挡板和加热装置,顶部设置氮气出风口;将锂离子电池电芯放入所述真空烤箱内,抽真空至≤‑0.085MPa,通过所述加热装置加热所述真空烤箱内温度至80~90℃;通过所述氮气进风口使所述真空烤箱内通入氮气,并维持所述真空烤箱内真空度≤‑0.085MPa,保持所述真空烤箱内温度至80~90℃,持续时间3~6h;停止加热,持续通入氮气使所述真空烤箱内电池电芯冷却至室温。使用本发明可以实现锂离子电池电芯水分的烘烤过程和带走过程同步进行,使整个烘烤流程仅需3‑6h,相比现有20h以上的烘烤流程,节约了烘烤时间和能耗。
本发明公开一种基于回收太阳电池制备锂离子电池负极的方法,其包括:(1)机械移除废旧太阳电池铝框和接线盒得到硅太阳电池组件,再通过高温加热除去组件的EVA粘结层和背板有机物,剥离面层钢化玻璃,得到硅片;(2)将硅片浸泡于硫酸中去除铝背电极和硅片表面的锡、铅;(3)用清水清洗步骤(2)得到的硅片并将其机械破碎,通过磨矿制得粒度小于2mm的硅粉;(4)将硅粉置于高能球磨机中球磨,得到纳米级锂离子电池硅负极。本发明避免了传统太阳电池回收需要消耗大量酸碱液和后续加工利用时高耗能的缺点,无需对太阳电池硅表面氮化硅、银、铜进行处理,仅通过高能球磨和煅烧的方法将上述成分直接利用得到锂离子电池硅负极材料。
本发明涉及锂电池技术领域,特别涉及一种锂离子电池极片及其上涂覆隔膜的制备方法和电池。本发明的锂离子电池极片上涂覆隔膜的制备方法包括以下步骤:S1、配置成膜浆料;S2、将成膜浆料涂覆于极片片体表面,其中,涂覆方法为浸没拉浆、转移式涂布、喷涂、凹版印刷的任意一种;S3、将涂覆成膜浆料的极片片体置于烘干室烘干,得到包裹有聚合物多孔膜的电池极片成品。优点:实现极片和隔膜一体化的结构,不需要单独使用隔膜,减少正极和负极之间的接触电阻,从而降低电池的内阻,提高电池的能量密度和综合性能。
本发明涉及一种非水性电解质溶液和包括其的锂二次电池,并且特别地,涉及一种非水性电解质溶液和包含其的锂二次电池,该非水性电解质溶液包括1.2M至3.3M的锂盐、由碳酸亚乙酯组成的第一有机溶剂、除碳酸亚乙酯之外的第二有机溶剂、以及作为第一添加剂的式1表示的低聚物,其中,基于非水性电解质溶液的总重量,第一有机溶剂的含量为0.1重量%至12重量%。
本发明公开了一种锂离子电池的电解液及其制备方法和应用,所述制备方法包括:将六氟磷酸锂、二甲基碳酸酯、乙基甲基碳酸酯、氟代碳酸乙烯酯、氯化钠、氯化钾、碳酸二丁酯、添加剂和去离子水混合制得电解液;制得的电解液能够使得锂离子电池在大倍率电流情况下快速充放电以及低温环境下有效放电。
本申请提供了一种高效率锂离子电池,属于锂离子电池技术领域,包括石墨烯‑LiFePO4复合材料电池正极、石墨烯纳米复合材料电池负极、复合隔膜和电解液,复合隔膜包括上、下两层静电纺聚偏氟乙烯‑六氟丙烯纳米纤维层和中间一层石墨烯复合原料层,石墨烯复合原料包括聚偏氟乙烯、N‑甲基吡咯烷酮中、聚乙烯吡咯烷酮和石墨烯;制备方法:石墨烯‑LiFePO4复合材料的制备;石墨烯纳米复合材料的制备;复合隔膜的制备:石墨烯复合原料的制备;静电纺聚偏氟乙烯‑六氟丙烯纳米纤维层的制备;复合隔膜的制备;将制备的正极材料均匀涂于铝箔上制成正极片;负极材料、复合隔膜和电解液共同构成高效率锂离子电池;本申请充放电容量提高,循环稳定性高,离子的电导率增加。
本发明公开了一种镍钛锰基锂离子电池正极材料及其制备方法;所述正极材料的化学通式为LiNi1‑x‑y‑zTixMnyMzO2,其中0.025≦x﹤0.2,0≦y﹤0.4,0≦z﹤0.05,Ni组分的摩尔比为0.6‑0.9,M为Co、Cr、Nd、Fe、Cu中的一种或者几种。本发明采用共沉积法,通过以下步骤:1)将TiO2或H2TiO3分散到反应底液中;或将钛的可溶性金属盐、钛的配位化合物在底液中水解;2)将可溶性金属盐的水溶液和氢氧化钠溶液、络合剂溶液并行加入到反应底液中,在加热和保护性气体条件下合成镍钛锰前驱体;3)称取前驱体和锂源混合,然后经预热处理,冷却,破碎,筛分得到镍钛锰锂离子电池材料。本发明的产品具有高比容量、低成本、加工和循环性能优异等优点。
本发明涉及锂电池生产技术领域,特别是一种加速锂离子电池极片反弹的方法,极片包括集流体和涂敷在集流体上的活性膜片,在极片辊压之后、叠片或者卷绕之前对极片进行热处理。本发明还包括一种加速锂离子电池极片反弹的装置,包括依次设置在生产线上的轧辊、热处理烘箱和冷却辊,所述轧辊前端和/或冷却辊后端设置有在线测厚仪。采用上述方法和结构后,本发明能避免辊压后极片厚度反弹不一致造成的电芯入壳困难及电池厚度异常等问题,缩短极卷流转周期,降低电池生产成本。
中冶有色为您提供最新的有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!