本申请公开了一种基于图神经网络的锂离子电池健康状态预测方法。所述方法包括以下步骤:获取锂离子电池各个半循环的健康状态;构建图的节点、节点的特征和标签,并设定窗口大小;将图数据划分为训练集、验证集和测试集,并对图数据进行归一化处理;采用图神经网络的方法对训练集数据进行训练学习,并对测试集样本进行测试,从而实现锂离子电池健康状态预测。本发明既可综合考量,又可以考虑历史充放电对未来健康状态的影响,故本发明准确率相对更高;此外,本发明避免了繁杂的对电压、电流和温度的特征工程工作。
声明:
“基于图神经网络的锂离子电池健康状态预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)