本发明属于锂金属电池负极材料领域,具体公开了一种内镶嵌贵金属银的氧化钛@C中空复合骨架及其制备方法和应用。所述的中空复合骨架包括具有独立密闭腔室的氧化钛中空球、镶嵌在氧化钛中空球内腔的贵金属银纳米粒子、复合在氧化钛表面的碳层和含氮官能团。通过利用二氧化硅模板制备均匀负载银纳米粒子的SiO2@Ag复合模板,添加钛源进行水解,在复合模板外层得到氧化钛前驱体,随后进行原位聚合获得氮掺杂碳包覆的复合骨架前驱体,最后一定温度下焙烧,强碱刻蚀二氧化硅模板得到内镶嵌贵金属银的氧化钛@C中空复合骨架。该复合中空骨架材料具有密闭的腔体结构、良好的导电性和优异的梯度亲锂性,降低了锂沉积的形核过电位,选择性诱导锂金属沉积到腔体结构中,极大地避免了界面副反应和体积效应,抑制锂枝晶生长,为均匀的锂沉积/溶解创造了有利条件,显著地改善了锂金属电池的库伦效率和循环稳定性。
本实用新型提供了一种用于WSNs传感器节点的新型太阳能双模供电装置,包括太阳能供电电路、锂电池供电电路、锂电池充电电路。本装置提供两种方式向传感器节点供电,一是太阳能供电电路,由太阳能电池板经过稳压后的电路供电,二是锂电池供电电路,由锂电池经过升压电路供电。两种供电方式的切换根据光照强度自动实现。另外还包括锂电池充电电路,能利用太阳能电池,将多余的电能储备于锂电池中,同时,为延长锂电池寿命,设计使得只有在锂电池电压低于一定值(3.6V)时才会对其充电。本实用新型能够保证无线传感器网络节点24小时不断电。本实用新型结构简单、安装容易、基本属于免维护,减轻巡查负担,系统运行可靠。
本发明公开了一种用于Li-S电池的电解液,其主要由电解质盐和有机溶剂组成,电解质盐包含聚硫锂,该聚硫锂的分子式为Li2Sn。该电解液的制备方法为:将金属锂或Li2S与单质硫按摩尔比加入到有机溶剂中,在常温且惰性气氛保护下进行反应即可得到电解液,该电解液中可选择性添加锂盐、飞梭抑制剂等。本发明还公开了包含前述电解液的Li-S电池,其负极活性材料为金属锂或含锂合金;其正极活性材料为硫单质、有机硫化物、碳硫聚合物中的至少一种,且正极活性材料、导电剂和粘合剂按一定质量配比组成正极;其中每毫克硫对应于电解液的用量约为0.04mL。本发明产品具有原料来源广泛、能够提高锂硫电池能量密度和循环寿命等优点。
一种三段式热水机组系统及其工作方法,工作方法包括以下步骤:吸收器内的浓溴化锂溶液吸收蒸汽变成稀溴化锂溶液后进入高温发生器;热源水进入高温发生器,高温发生器内的溴化锂溶液吸热释放蒸汽,热源水降温,高温发生器的溴化锂溶液浓缩后进入中温发生器;热源水降温后进入中温发生器,中温发生器内的溴化锂溶液吸热释放蒸汽,热源水再次降温,而中温发生器的溴化锂溶液浓缩后进入吸收器;热源水再次降温后进入低温发生器,辅助吸收器内的溴化锂溶液送至低温发生器,热源水进一步降温并输出。本发明还包括三段式热水机组系统及另一种工作方法。本发明可提高发生效率和吸收效率,进而使得热源水出口温度降得更低,热源的利用区间大,换热效率高。
本发明公开了一种复合负极材料Li3V(MoO4)3/LiVOMoO4的制备方法,包括以下步骤:将锂源、钒源与钼源按锂、钒、钼元素摩尔比为3~1:1:3~1的比例混合均匀;然后加入还原剂和分散剂,常温条件下进行机械活化;将机械活化后的产物置于惰性气氛中进行烧结,即得到Li3V(MoO4)3/LiVOMoO4复合材料。本发明首次将Li3V(MoO4)3和LiVOMoO4制成复合材料,该复合材料在较低电位下(~0.5V?vs.Li+/Li)具有脱嵌锂性能,作为锂离子电池负极具有很高的可逆电比容量,高出现有技术几倍,且该复合材料容量主要集中在低电位,使其作为负极具有很好的应用前景。
本发明公开了一种有机-无机杂化聚合物固体电解质材料及其应用,该聚合物固体电解质材料由导锂聚合物、金属-有机框架和锂盐组成;将固体电解质材料应用于制备全固态锂离子电池的固态电解质膜,以该固体电解质材料制成的电解质膜组装的全固态锂离子电池,在高温、高倍率条件下具有稳定的较高充放电比容量,且循环性能好。
本发明属于锂离子电池负极材料制备技术领域,具体公开了3D亲锂CoP@碳纳米管复合材料及其制备和应用。本发明采用制备工艺流程短、易于产业化推广的3D亲锂骨架材料并应用于锂金属电池负极,不仅可以实现锂在三维骨架上均匀地沉积,同时能消除锂金属在沉积/溶解过程中巨大的体积效应,有效抑制锂枝晶的生长,最终获得的锂金属复合电极在大电流密度下的高库伦效率和长循环寿命。
本发明提供了一种复合电极材料及其制备方法和应用,该复合电极材料是将骨架材料和锂硼复合材料的片材进行轧制复合,使所述锂硼复合材料嵌入所述骨架材料中,得到所述复合电极材料;其中,所述复合电极材料厚度为30~500μm;所述骨架材料呈栅网结构;按质量百分数计,所述锂硼复合材料中锂含量为65%~95%,硼含量5~35%,其他元素含量0~30%。本发明通过将锂硼复合材料嵌入稳定的栅网骨架结构中,以此来均匀电极表面电流密度分布并赋予电极足够的自支撑强度,从而调控锂的沉积/溶解行为,提升电极结构稳定性,该复合电极材料应用于锂金属基电池中,可提高锂金属基电池的安全性能和循环寿命。
一种超级电容电池用复合碳负极材料,包括核层、壳层结构,所述壳层占核层与壳层总质量的10%-40%;所述核层由表面纳米化处理后的石墨类材料构成;所述壳层由多孔碳材料构成。所述核层的表面纳米化处理是在选自天然石墨、人造石墨或中间相碳微球材料的表面原位形成纳米碳纤维、碳纳米管或纳米孔洞;所述的多孔碳材料由碳机体上分布有微孔的三维孔结构构成。所述壳层中掺杂有金属元素。本发明组分配方合理、所制备的材料具有核壳结构,且掺杂有金属元素,同时兼具良好的双电层储能与锂离子脱/嵌储能特性、可有效提高锂离子电池的大倍率性能及功率密度;可满足超级电容电池对负极材料的锂离子储能和双电层储能的双重要求;可作为高性能锂离子电池负极;具有良好的大倍率充放电性能;产业化前景良好。
本发明公开了一种金属锂和金属钠二次电池电解液添加剂及其应用。本发明的电解液添加剂包括一种或者多种金属氮化物。其能够有效抑制金属锂或钠在充电过程锂枝晶生长。本发的操作简单,通过在电解液中添加金属氮化物,制成相应的电解质溶液;电池充放电过程中,电解液中氮化物与金属锂片或钠片发生化学反应,生成相应的金属和氮化锂或氮化钠,在金属锂表面形成原位的SEI膜,能有效避免锂枝晶产生,从而提高锂金属负极的充放电库伦效率及循环寿命。
本发明适用于锂离子电池技术领域,提供了一种镍钴锰三元正极材料及其制备方法和应用,该制备方法包括以下步骤:将镍钴锰三元前驱体S1和锂源A按照缺锂摩尔比例进行混合后,再添加复合助熔剂B进行混合,得到第一混合料;将第一混合料进行一次煅烧,并经自然冷却后,得到掺杂缺锂型镍钴锰三元前驱体S2;将掺杂缺锂型镍钴锰三元前驱体S2和补锂化合物C进行混合,得到第二混合料;将第二混合料进行二次煅烧,并经自然冷却后,得到所述镍钴锰三元正极材料。本发明通过复合助熔剂的加入,制备掺杂缺锂型镍钴锰三元前驱体,然后选择适当的补锂化合物,修饰材料晶体结构,完成适当锂的补充,同时达到掺杂阴离子提高容量的目的。
本发明公开了一种基于自适应小波转换的电动汽车混合能源管理系统及其控制方法,系统包括:超级电容、锂电池、两个DC/DC转换器、驱动模块、采集电路和控制模块。控制方法为,先通过电压环控制得到负载需求的总参考电流;再利用自适应小波转换算法对负载需求的总参考电流进行小波变换,得到高频电流分量和低频电流分量,并将其中的低频电流分量作为锂电池的参考电流,高频电流分量作为超级电容的参考电流;然后通过控制模块的电流环实时跟踪锂电池和超级电容的参考电流,实现负载需求功率的实时分配。本发明充分利用了超级电容,并有效地保护了锂电池。
本发明公开了一种固态电池及其制备方法与应用。上述固态电池,包括依次层叠设置的正极、固态电解质和负极;上述正极包括以下组分:含锂磷硫的化合物、导电剂和复合材料,上述复合材料包括铝基体和嵌入铝基体中的锂硫化合物;上述固态电解质包括以下组分:含锂磷硫的化合物;上述负极包括以下组分:锂金属。本发明固态电池中,既继承了锂硫体系的高容量的优势,又继承了固体电解质安全性能高的优势。另外,使用固体电解质代替传统液体电解液可以从机理上避免液态锂硫体系的“穿梭效应”,从而使全固态锂硫电池成为最有前景的下一代锂离子电池。
一种耐高压高功率电解液及其应用,该电解液由电解液锂盐、有机溶剂和添加剂组成;所述添加剂由碳酸亚乙烯酯、碳酸乙烯亚乙酯、丁磺酸内酯、硫酸乙烯酯、二氟磷酸锂和双氟磺酰亚胺锂组成;所述电解液锂盐、有机溶剂和添加剂的质量百分比为:电解液锂盐13.5%~15.8%,有机溶剂78~85%,添加剂3%~10%;所述有机溶剂由环状碳酸酯、线性碳酸酯和羧酸酯组成。本发明通过添加剂之间的相互协同作用,提高了电解液离子传导能力,改善锂离子电池的功率性能,同时优化锂离子电池中负极SEI膜和正极CEI膜的成膜效果,提高锂离子电池的高温高压性能。
本发明公开了一种新型三相复合锂离子电池正极材料,所述新型正极材料为一种LiFePO4·Li3V2(PO4)3·LiCoPO4/C三相复合正极材料,属于聚阴离子型正极材料技术领域。通过固相研磨,高温煅烧直接制备得到LiFePO4·Li3V2(PO4)3·LiCoPO4/C三相复合材料。本发明可一步制备LiFePO4·Li3V2(PO4)3·LiCoPO4/C三相复合材料,普适性强,制备过程简单,由该方法制备出的LiFePO4·Li3V2(PO4)3·LiCoPO4/C三相复合材料,克服了单一磷酸铁锂、磷酸钒锂或磷酸钴锂电化学性能不佳的缺陷,协同磷酸铁锂、磷酸钒锂、磷酸钴锂的优良性能,提高了电子电导率和锂离子扩散效率,用于锂离子电池正极材料,循环性能稳定,倍率性能优异。
本发明涉及高空作业设备技术领域,公开了快速充电系统、充电方法及高空作业设备,所述快速充电系统包括锂电池系统、电池管理系统和车载充电机;所述锂电池系统包括锂电池以及电池加热系统;所述车载充电机的输出端分别与锂电池系统和电池管理系统连接,输入端用于连接外接电源;所述电池管理系统用于监控、管理和保护锂电池,并与车载充电机通讯连接,控制充电电压和充电电流;其中,所述锂电池管理系统根据实时检测到的锂电池的总电压、充电电流以及单体电压进行故障分级,并根据故障等级对车载充电机进行限制功率或停止充电的控制;所述锂电池管理系统根据实时检测到的锂电池的电池温度控制电池加热系统的工作。
本发明提供了一种电动汽车48V起停系统的电池管理系统及方法。其中,所述电池管理系统包括:锂电池组,所述锂电池组有多个单独的锂电池相互连接组成;电压温度采集模块,用于采集每一块锂电池的电压数据和温度数据;电池总压采集模块,用于采集所述锂电池组的总电压数据;电流采集模块,所述电流采集模块的第一端与所述锂电池组电连接,用于采集锂电池组的电流数据和累计电量。本发明所提供的电池管理系统和电池管理方法实现对锂电池状态监控及保护,延长电池的使用寿命,避免电池出现过压、欠压、过流、高温和低温,提高电池的使用效率,防止电池损坏和起火、爆炸等安全事故。
一种兼具超级电容器与锂离子电池特征的新型储能器件及其制造方法,本发明通过将锂离子电池及超级电容器电极材料分开配制浆料,锂离子电池电极材料与超级电容器电极材料交替涂敷制作成超级电容电池电极片;或者分别制作成锂离子电池电极片与超级电容器电极片,卷绕后将锂离子电池卷芯与超级电容器卷芯并联形成超级电容电池卷芯集群,然后装入电池壳并焊接,干燥脱水,注入电解液,经充放电活化后得到具有高能量密度、高功率密度的新型储能器件——超级电容电池。
本发明公开了一种电解液及其制备方法与应用,该电解液的制备原料包括:锂盐、溶剂和添加剂;所述锂盐为六氟磷酸锂和双氟磺酰亚胺锂;所述溶剂包括戊二腈类溶剂;所述添加剂包括苯基乙烯砜和硼酸三(2,2,2‑三氟乙基)酯。本发明通过双氟磺酰亚胺锂部分替代六氟磷酸锂,利用双氟磺酰亚胺锂优异的高温稳定性和较高的溶解度提高了锂离子电解液的电导率。电解液溶剂使用戊二腈类溶剂,使电解液在超高温下仍然具有较高热稳定性。通过电解液中锂盐、溶剂和添加剂之间的相互协同搭配,实现了锂离子电池在高温条件下的优异的电化学性能。
本发明提供了一种具有断线保护技术的电池包,属于半导体集成电路技术领域。该电池包包括:锂电池组和锂电池保护芯片;锂电池组由三节串联的锂电池组成,锂电池保护芯片包括第一电流源、第二电流源、第一欠压保护模块、第二欠压保护模块、过压保护模块、逻辑处理模块和第一NMOS功率管;当锂电池组与锂电池保护芯片之间有断线现象发生时,由于在第一节和第三节锂电池之间产生第一电流源和第二电流源,那么就会造成第一节或第三节电池进入过压保护,而第二节进入欠压保护模式,从而通过逻辑处理模块的处理,关闭第一NMOS功率管,从而达到断线保护的目的。可以有效的发现锂电池包中断线现象的存在,降低锂电池组使用的风险。
本专利涉及一种取代锂硫电池正极铝箔集流体的碳纤维自支撑膜,属于锂硫电池技术开发领域。本发明一种自支撑多孔中空碳纤维膜的应用;包括将所述自支撑多孔中空碳纤维膜用于锂硫电池的正极;所述自支撑多孔中空碳纤维膜的比表面为50‑500m2/g;所述自支撑多孔中空碳纤维膜中含有过渡金属元素。本发明首次将过渡金属氧化物复合的多孔中空碳纤维膜用于锂硫电池上,实现了锂硫电池能量密度和循环寿命的有效提升。同时本发明所涉及的工艺简单、可控;所得产品性能优良。本发明制备工艺简单,所得产品性能优良,便于大规模工业化应用。
本发明涉及一种高倍率锂离子电池以及超级电容电池用碳类复合负极材料的制备方法。所述制备方法包括具有大孔-中孔-微孔三维层次孔多孔炭外壳在表面纳米化内核上的包覆、金属颗粒在外壳表面的掺杂以及低电位化处理三个步骤。通过模板法实现在内核上包覆三维层次孔多孔炭外壳;通过浸渍、化学镀以及物理混合方法实现金属颗粒在外壳表面的掺杂;通过电化学预掺锂实现对复合碳材料进行低电位化处理。本发明工艺方法简单、操作方便、所制备的材料具有核-壳结构,且掺杂有金属元素,同时兼具良好的双电层储能与锂离子脱/嵌储能特性、可有效提高锂离子电池的大倍率性能及功率密度;可满足超级电容电池对负极材料的锂离子储能和双电层储能的双重要求;可作为高性能锂离子电池负极;具有良好的大倍率充放电性能;产业化前景良好。
本发明涉及固态电解质技术领域,具体涉及一种阻燃磷酸酯基凝胶电解质的制备方法,将含有不饱和磷酯、引发锂盐、有机溶剂且不含偶氮引发剂的原料溶液在50~70℃下聚合得到;所述的引发锂盐为六氟磷酸锂、六氟砷酸锂、四氟硼酸锂、双三氟甲磺酰亚胺锂、双氟磺酰亚胺锂、三氟甲磺酸锂、二氟草酸硼酸锂、双草酸硼酸锂、二氟双(草酸根)合磷酸锂中的至少一种;所述的原料溶液中,式1不饱和磷酯与有机溶剂的体积比为0.5~2.5:1;引发锂盐的浓度为1.5~3.5M。本发明还涉及所述制备方法制得的材料及其在固态电解质中的应用。本发明技术方案,能够协同,可以在无引发剂下即可引发聚合,不仅如此,还能够意外地改善制得电池的高温循环性能。
本发明涉及一种新型高性能储能器件——超级电容电池。超级电容电池包括正极、负极和电解液。其中正极活性电极材料含有钴酸锂、锰酸锂、镍钴锰三元材料、磷酸铁锂等锂离子嵌入化合物与活性炭、纳米炭管、炭气凝胶等以及它们的复合材料。负极活性电极材料有活性炭、活性炭、纳米炭管、炭气凝胶等与石墨以及它们的复合材料。电解液采用含锂离子的非水有机溶剂组成的电解液。本发明针对的是集超级电容器双电层储能和锂离子电池嵌入-脱嵌两方面特点于一身的新型储能器件——超级电容电池,其兼具电容和电池双功能储能的特点,保持锂离子电池高电压、高能量密度的同时,还具有超级电容器的高功率密度、大电流放电、良好的循环寿命等特性。
本发明公开了一种从废旧动力电池正极废料中回收有价金属的方法,包括以下步骤:(1)将废旧动力电池正极废料酸浸处理,得到含镍钴锰锂混合溶液;(2)对含镍钴锰锂混合溶液进行除杂,得到含镍钴锰锂净化液和除杂液或除杂渣;(3)采用选择性共萃法从含镍钴锰锂净化液中分离镍钴锰,得到含镍钴锰反萃液和富锂萃余液;(4)对富锂萃余液进行深度除杂处理,得到富锂净化液和除杂液或除杂渣;(5)富锂净化液经深度除油处理后,采用双极膜电渗析法处理,产出氢氧化锂溶液和硫酸溶液;(6)氢氧化锂溶液经蒸发浓缩处理,得到电池级单水氢氧化锂产品和浓缩母液。本发明方法中镍钴锰锂锂的回收率均大于98%,在高效回收有价金属的同时实现金属产品的增值化。
本发明提供一种以Li2SnO3为主要成分的厚膜 型陶瓷湿敏元件及其制造方法。它具有阻抗低、稳定 性高,产品一致性好的特点。当温度为20℃时,对应 于10%~95%RH的相对湿度的阻抗为2×106~2 ×103Ω,湿度响应时间:吸湿(45%RH到95%RH) 为10秒,脱湿(95%RH到45%RH)为17秒,元件 的湿度系数为0.4%RH/℃,它可广泛应用于环境 空气相对湿度的检测。
本发明公开了一种高振实密度的LiFePO4材料的制备方法。本发明提供了一种高温合成分解物极少的制备LiFePO4的原始原料配方体系,采用Li3PO4、含杂FePO4*xH2O为主要原料,LiOH作为综合调配剂。该配方体系在干燥及升温合成烧结过程中除水蒸汽外基本无其它裂解挥发产物,生产过程十分环保,裂解挥发无少对于提高材料的紧密度有良好的作用。本发明还提供了一种旋转蒸发复合造粒技术,使预烧结料湿浆料一次干燥成型,制备成颗粒状并增强了预烧结料的各组分的结合紧密度,并提高了烧结后材料的振实密度。本发明的制备方法烧结过程一步完成,极大减少生产过程中的能耗,提高了材料振实密度,降低了生产成本。
一种复合碳微球的制备方法,包括以下步骤:(1)以小分子糖类、纤维素微晶或热塑性酚醛树脂作为前驱体,通过水热反应制备得到水热碳微球;(2)将步骤(1)中得到的水热碳微球经表面活性剂改性得到改性碳微球;(3)在引发剂的作用下,导电聚合物单体在步骤(2)中得到的改性碳微球表面进行原位聚合得到碳微球前驱体;(4)将步骤(3)中得到的碳微球前驱体在催化剂作用下催化热解,再酸洗、烘干后得到复合碳微球。本发明制备的碳微球的粒径小,具有较高的振实密度,催化热解后,会在复合碳微球的表面形成氮掺杂的无定型碳,有利于提高碳材料的容量和电导率,电化学性能优异。
本发明涉及一种半导体陶瓷材料,尤其是符合制备具有电阻负温度系数(NTC)的热敏电阻材料。本发明材料可以通过改变微量掺杂元素的含量调节热敏电阻元件的室温电阻值大小和材料常数值。本发明的NTC热敏电阻材料以简单氧化物为主要成分组成,能在1200℃左右烧结成陶瓷体,可适应热敏陶瓷元件、薄膜热敏元件及低温共烧叠层热敏元器件的烧结成型。本发明的热敏电阻材料具有稳定性好、一致性好、重复性好的特点,具有电阻值、材料常数、电阻温度系数等电气特性可控的特点,适用于温度测量、温度控制和线路补偿,以及电路和电子元件的保护以及流速、流量、射线测量的仪器与应用领域。
本发明公开了一种二氧化锡包覆LiNixCoyMnzO2材料及其制备方法和应用。将锡酸酯类偶联剂与LiNixCoyMnzO2材料通过液相混合后置于含氧气氛下进行煅烧,即得具有均匀、致密的二氧化锡包覆层,且界面结构稳定的二氧化锡包覆镍钴锰正极材料,该方法克服了现有水解沉淀法制备的二氧化锡包覆LiNixCoyMnzO2材料存在二氧化锡包覆不均匀、出现颗粒状、水引入损害表面活性以及界面结构不稳定等缺陷,以及克服了现有等离子体以及原子沉积技术方法设备成本高,难以工业化生产的缺陷,制备的二氧化锡包覆LiNixCoyMnzO2材料相对现有类似材料具有更高的电化学活性及循环稳定性。
中冶有色为您提供最新的湖南长沙有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!