一种船用低噪声柔性复合材料节流阀及应用系统,包括阀体,阀体的两端设置有法兰或者连接螺纹,阀体的中部设置有对称的螺纹接口,一个为进油口,另一个为回油口,阀体的内部配合安装有复合材料阀芯,复合材料阀芯呈空心圆柱状结构,阀体的内壁面和复合材料阀芯的外壁面之间形成弹性空间,所述弹性空间与所述螺纹接口连通,并通入液压油;复合材料阀芯的两端设置有胶连部位,所述胶连部位与阀体的内壁之间通过强力胶相连,所述胶连部位处开有固定环安装槽,所述固定环安装槽内通过紧固件安装有固定环,通过螺纹接口的进油和出油的控制,复合材料阀芯从中部开始发生径向变形,从而控制复合材料阀芯内部经流的流量大小,使用灵活、可靠。
本发明属于光纤定位领域,涉及仿生光纤的物理结构以及仿生光纤网络与复合材料的融合技术,具体为仿生光纤‑复合材料结构载荷定位系统。解决目前复合材料结构的自诊断和自修复问题。系统包括光源模块、仿生光纤‑复合材料结构模块、光电检测模块、AD转换器模块、树莓派4B处理器模块和监测中心模块。其中,仿生光纤‑复合材料结构模块是将2*n仿生光纤以正交方式埋入复合材料结构中制成,光电检测模块包括光电探测器电路和信号放大电路。本发明采用仿生光纤作为结构的核心元件,满足同时实现复合材料结构自诊断和自修复的功能需求。
本发明提供一种纳米粒子复合材料,包括以下重量份数的各组分:PTT 50~60份,天然纤维20~30份,无机纳米粒子5~8份,SiC纳米粉末2~5份,偶联剂0.1~0.5份、增容剂4~8份、抗氧剂0.1~0.5份。本发明的纳米粒子复合材料通过使用PTT替代普通纳米材料中的塑料,并与无机纳米粒子,及其他组分在特定的配比下结合,得到的复合材料具有优异的力学性能、加工性能和耐热性能,并且抗冲击强度高,硬度高;并且加入无机纳米粒子,使得复合材料的强度和韧性都较高,扩大了复合材料的应用范围。此外,天然纤维的加入是的制得的复合材料易于回收、利用;SiC纳米粉末的加入能够增加复合材料的强度和耐磨性强。
一种基于折射率实时分离的固化度在线监测方法。该方法通过光纤传感器监测复合材料在固化过程中的折射率,同时实时分离复合材料固化和温度变化对折射率的影响,实现复合材料微波固化进程的实时监测。它通过实时监控复合材料固化进程对于提高复合材料的成型质量,缩短成型周期和降低生产能耗具有重要意义。针对现有技术无法实时监测复合材料固化进程的难题,本发明提出此方法在折射率测量、复合材料固化监测等技术领域具有广阔的市场价值和应用前景。
本发明涉及高分子材料技术领域,具体是涉及一种应用于IMR成型中的碳纤维增强聚碳酸酯复合材料及其产品。所述复合材料按重量份数表示包括:聚碳酸酯树脂100份;碳纤维10‑60份;阻燃剂5‑30份;所述阻燃剂为两种或两种以上的复配阻燃剂。所述产品,为经所述碳纤维增强聚碳酸酯复合材料成型后产生的产品。本发明的碳纤维增强聚碳酸酯复合材料及其产品,不仅能保证复合材料的阻燃性、流动性,又可降低复合材料的注塑温度,使复合材料可应用于IMR成型中,使IMR薄膜应用于高端超薄产品中,而且还能够注塑出外观漂亮的结构件产品。
本发明公布了一种表层氧化的碳纳米管阵列/石墨烯/二氧化锰复合材料电极及其制备方法和应用。该复合材料电极包括导电基底、碳纳米管阵列、石墨烯和二氧化锰,碳纳米管阵列与导电基底垂直相接形成三维导电网络骨架,石墨烯以纳米尺度包覆碳纳米管阵列形成碳纳米管阵列-石墨烯复合结构,二氧化锰以纳米尺度分散在碳纳米管阵列-石墨烯复合结构中,形成碳纳米管阵列/石墨烯/二氧化锰复合材料电极,该复合材料电极的表层为氧化石墨烯。本发明的复合材料电极,导电性好,结构稳定且能够自支撑,循环性能及电容性能优异;制备该复合材料电极的方法易于操作、环境友好、能耗低;使用该复合材料电极的超级电容器,电容量高,循环性能好。
本发明公开了一种编织C/C复合材料制动盘的制备方法及其连接方法,属于C/C复合材料应用技术领域。该制备方法的步骤为:a、根据C/C复合材料制动盘的尺寸形状及构件装配要求,进行整体编织结构设计;b、基于整体编织结构设计,将铜丝作为独立的纱束与碳纤维纱束混编制成碳纤维混编铜丝预制体;c、以气相沉积法处理碳纤维混编铜丝预制体,得到C/C复合材料制动盘且C/C复合材料制动盘的装配侧具有可焊接的铜丝。将C/C复合材料制动盘装配侧的铜丝与待连接的零部件直接焊接或者与连接件焊接后再装配。本发明的C/C复合材料制动盘能够降低连接时的表面处理工序,混编的铜丝能够大大提升制动盘的力学性能和稳定性。
还原氧化石墨烯、四氧化三铁和聚苯胺的三元纳米复合材料制备方法及应用,涉及用于水性防腐涂层材料的功能纳米防腐复合材料的制备技术领域。由氧化石墨烯、四氧化三铁和苯胺经还原反应及氧化聚合反应形成三元界面间具有电子转移相互作用的纳米复合材料,氧化石墨烯、四氧化三铁和苯胺的投料质量比为3∶4~7∶6~24。将构建的三元纳米复合材料填充于水性涂料树脂中制备水性纳米涂料,发现水性涂层涂层相比未填充纳米复合材料的涂层,具有更加优异的防腐性能。三元纳米复合材料高效防腐机理纳米复合材料的高效阻隔性能以及金属表面的钝化功能。
本发明公开了一种改性蓝藻生物炭复合材料及在处理电镀废水中的应用,属于生物炭复合材料制备技术领域。本发明将太湖蓝藻烘干、研磨过筛后与活化剂混合经热裂解得到改性蓝藻生物炭;将改性蓝藻生物炭浸泡于含铁溶液中,进一步改性得到改性蓝藻生物炭复合材料。本发明制备的改性蓝藻生物炭复合材料同时具有吸附和催化能力的复合材料,该复合材料在处理电镀废水时,通过吸附和类芬顿反应,能够高效的去除废水中的金属离子。并且该复合材料稳定性强,可重复使用。
本发明公开了一种结构增强型复合材料棒材的制造方法,包括步骤:制作金属芯模,在金属芯模外套设与金属芯模同等长度的复合材料套管,复合材料套管与金属芯模之间填充泡沫夹芯;在金属芯模的圆柱体空腔内设置圆柱体形的硅橡胶棒;将棒材放置于复合材料棒材成型的自加热平台上,利用该自加热平台对棒材进行分阶段加热、加压,本发明所述结构增强型复合材料棒材的制造方法步骤少、操作简单,自动化程度高,成型率高、一次合格率高,生产效率高。根据本发明所述方法得到的增强型复合材料棒材经过抗拉强度、拉伸模量、线膨胀系数等相关力学性能试验,结果表明其保温隔热性能好,抗拉强度高,热膨胀系数低,增强型复合材料棒材的尺寸稳定。
本发明公开了一种增强型绝缘硅复合材料及其制备方法,所述增强型绝缘硅复合材料,包含中间绝缘层;所述中间绝缘层的上表面和下表面分别设置有单晶硅片;所述中间绝缘层,包含二氧化硅基多元无机复合材料层;所述二氧化硅基多元无机复合材料层的上表面设置有第一二氧化硅膜层;所述二氧化硅基多元无机复合材料层的下表面设置有第二二氧化硅膜层;所述二氧化硅基多元无机复合材料层的材质的化学式为SiO2-ZnO-B2O3;本发明方案能够保持有完整的单晶硅晶格结构,不需采用复杂昂贵设备,整体制备工艺简单、易行、低成本;所述增强型绝缘硅复合材料的制备方法可调节中间绝缘层的各组分的厚度和深度分布,不需采用复杂昂贵设备,整体制备工艺简单、易行且制成的产品的电学性能优良。
本发明涉及一种新型复合材料管体的连接结构,其包括两处复合材料管体,所述两处复合材料管体之间设置有补充管体,所述补充管体的外径和壁厚与复合材料管体的外径和壁厚相同,所述两处复合材料管体和补充管体的外周面上包覆有包裹体。该新型复合材料管体的连接结构可以把两段新型复合材料管道进行连接并密封,操作方便,施工效率高,施工成本低。
本发明涉及锂离子电池技术领域,具体而言,涉及一种硬碳复合材料及其制备方法和应用。本发明的硬碳复合材料具有核壳结构,内核包括掺杂有氮元素的硬碳,外壳包括含磷化合物;所述内核的质量为所述外壳的质量的1%~10%。本发明硬碳复合材料的内壳掺杂氮元素以提升复合材料的导电率;外壳中掺杂含磷化合物,依靠磷元素自身的高比容量提升复合材料的比容量及其首次效率,同时通过外壳含磷化合物的包覆降低内核多孔结构的比表面积,降低硬碳复合材料的整个比表面积。通过内核和外壳的搭配,得到的硬碳复合材料具有优异的电化学性能。
本发明公开了一种易回收光热海水淡化三元复合材料及制备方法与应用,该三元复合材料由带有磁性的四氧化三铁纳米材料、碳球以及其他碳材料复合而成;其中碳球来源于可溶性糖类;所述可溶性糖类包括麦芽糖、果糖、葡萄糖、蔗糖、乳糖;其他碳材料为碳纳米管、无定形碳、石墨、石墨烯、氧化石墨烯中的一种。该三元复合材料中四氧化三铁纳米球、碳纳米管、微纳米碳球呈现为不同粒径的材料混合,形成具有大量微纳米空腔的复合材料,有助于水的储存、运输与蒸发。该光热纳米复合材料经过疏水处理可自浮于水面上,通过控制该光热复合材料的铺覆量,使三元复合材料粉末均匀的满铺在一定面积的水面上,形成有效的吸光层加快海水的淡化效率。
本发明涉及材料切割技术领域,公开一种多层复合材料的切割方法。其中多层复合材料的切割方法包括如下步骤:第一刀具切割多层复合材料的阻焊油层和绝缘胶层;第二刀具在所述第一刀具切割的切割槽的基础上,切割所述多层复合材料的硅层;第三刀具在所述第二刀具切割的切割槽的基础上,切割所述多层复合材料的环氧树脂胶水层和玻璃层。本发明解决了一把刀具单次切割造成良品率低,断刀严重,无法正常量产的问题,实现了多层复合材料的顺利量产,提高了多层复合材料的良品率,增加了刀具的使用寿命,降低了生产成本。
一种高刚度复合材料传动轴的制备方法,属于碳纤维复合材料技术领域,具体说是一种以功能化石墨烯改性树脂为基体且采用不同品级碳纤维缠绕的复合材料传动轴及其制备方法。本发明环向缠绕采用高强纤维,螺旋向缠绕采用高模纤维,实现了复合材料各方向强度和刚度的调控,充分利用了各种纤维的性能优势,性价比高,提高了复合材料的整体刚度。此外,采用功能化石墨烯改性环氧树脂体系改善了与碳纤维的界面结合,进一步提高复合材料的整体刚度。采用本发明制造的复合材料传动轴具有刚度高、抗扭性能优异、生产效率高与成本低等优点,在汽车工业、传动机械等领域将具有广泛的应用前景。
本发明公开了一种新型磁性绝缘硅复合材料及其制备方法,所述新型磁性绝缘硅复合材料,包含中间绝缘层;所述中间绝缘层的上表面和下表面分别设置有单晶硅片;所述中间绝缘层,包含二氧化硅基多元磁性复合材料层;所述二氧化硅基多元磁性复合材料层的上表面设置有第一二氧化硅膜层;所述二氧化硅基多元磁性复合材料层的下表面设置有第二二氧化硅膜层;所述二氧化硅基多元磁性复合材料由磁性元素掺入到熔凝材料复合而成。本发明方案能够保持有完整的单晶硅晶格结构,具有优良的电、磁性能,所述新型磁性绝缘硅复合材料的制备方法可调节中间绝缘层的各组分的厚度和深度分布,且制备过程不需采用复杂昂贵设备,整体制备工艺简单、易行、低成本。
一种具有吸音功能的无纺复合材料的加工方法,所述的无纺复合材料包括,涤纶短纤、中空短纤、低熔纤维,还包括以下步骤:a.开松、混棉,将所述的涤纶短纤、中空短纤、低熔纤维的丝束均匀伸展并混合搅拌;b.梳理成网,将a步骤混合的复合材料进行整洁;c.铺网叠加,将b步骤的复合材料多层叠加;d.针刺,对叠加后的复合材料,采取正、反、正三道工艺进行刺紧;e.烘干;f.切边成型。本发明提供一种无纺复合材料的加工方法,加工出的无纺复合材料具有良好的吸音性。
本发明涉及一种聚酰亚胺硅氧烷/碳纳米管纳米复合材料及其制备方法。以聚酰亚胺硅氧烷为基体,经过表面改性的碳纳米管为纳米填料,通过原位共混的方法制备,所述的经过表面改性的碳纳米管为表面化学法接枝了尼龙6分子链的碳纳米管,经过表面改性的碳纳米管的质量为聚酰亚胺硅氧烷/碳纳米管纳米复合材料质量的0.1~20%。在该复合材料中,经过表面改性的碳纳米管分布均匀,复合材料强度高、韧性好,阻燃、加工性和尺寸稳定性优异。本发明中的原位共混法,将聚酰亚胺硅氧烷的制备与纳米复合材料的制备一步完成,大简化了复合材料的制备工艺,降低了复合材料的制备成本。
本发明公开了一种光/生物双降解的PS复合材料及其制备方法。复合材料包括以下重量份数的原料:PS:55‑85份;木薯淀粉:15‑30份;增塑剂:3‑5份;抗氧剂:0.1‑0.5份;光敏剂:0.2‑0.6份;抗老剂:1‑3份;相容剂:0.5‑2份。本发明制备的光/生物双降解PS复合材料具有优良的降解性能。将木薯淀粉与PS共混不仅可以提高复合材料的力学性能还可以提升其生物降解性能,而光敏剂的加入赋予复合材料优异的光降解性能,采用多种光敏剂复合使用可以提高材料光降解速率。该光/生物双降解PS复合材料可以调控降解开始的时间与周期,是一类新型环保的可降解材料。
本发明提出了一种导热屏蔽复合材料及其制备方法,所述导热屏蔽复合材料的结构从上到下依次包括导热绝缘层、导电屏蔽层、胶层、离型膜,其中导热绝缘层的制备原料,按重量份计,包括热塑性弹性体80‑120份、导热填料25‑35份、含环氧基树脂3‑5份、功能助剂1‑2份、色浆4‑5份。本发明得到的导热屏蔽复合材料,通过多层材料的结合,赋予了导电屏蔽复合材料优良的导热性能和散热能力,还赋予了导电屏蔽复合材料良好的延展性、加工性和柔韧性,大大扩展了导电屏蔽复合材料的应用场景。
本发明公开了一种界面改性纤维增强金属基复合材料,体积密度小于3.0g/cm3,由增强纤维、界面层和金属基体组成。制备方法包括以下步骤:将增强纤维织成纤维预制体,先后制备化学气相渗透涂层和化学镀涂层,然后将铝合金或铜合金熔体压铸到纤维预制体中,冷却得到界面改性纤维增强金属基复合材料。本发明制备复合材料纤维和金属基体结合稳定,材料性能优异,抗弯强度、弹性模量、布氏硬度均大幅度提高,服役温度也分别高出铝合金、铜合金100℃以上,在高温动载领域有重要应用价值。
本发明公开了一种钛酸锂‑二氧化钛复合材料及其制备方法与应用,属于锂电池技术领域。本发明的方法将锂源与微米级二氧化钛进行混合,然后在160~200℃反应10~20h,反应后在空气中700℃煅烧2h得到所述的钛酸锂‑二氧化钛复合材料。本发明的方法能够将微米级TiO2合成Li4Ti5O12材料,并且在TiO2表面形成纳米级Li4Ti5O12,提高材料的表面积,减少锂离子和电子在Li4Ti5O12材料上的传输距离,并且本发明在钛酸锂‑二氧化钛的复合材料两相界面处产生掺杂,使得制备得到的Li4Ti5O12材料可以与纳米级TiO2合成的Li4Ti5O12材料媲美。
本发明提供了一种复合材料应变率相关的强度评估方法,针对目前复合材料强度评估方法中未考虑应变率效应、依赖于试验数据经验性地修正而缺乏理论依据的问题,本发明基于能量密度理论,考虑了复合材料在动荷载作用下的应变率效应,推导得到了复合材料在动荷载作用下的畸变能密度方程,建立了应变率相关的强度评估方法,该方法能够准确地评估复合材料在动荷载作用下的极限强度,避免了大量的动态试验测试,为各类复合材料结构的设计提供一种可靠的评估方法。
本发明公开了一种原位混杂颗粒增强铁基复合材料及其制备方法,通过将各组分之间充分混合,压制成型,高温烧结,最终得到由8‑10%Al2O3、2‑4%TiC、1‑2%C、0.2‑0.5%MgF2、0.04‑0.05%Cu、0.01‑0.02%Ni和Fe组成的铁基复合材料。本发明通过原位生成TiC、Al2O3混杂颗粒解决了钢铁材料与Al2O3颗粒材料的密度差较大,界面润湿性较差的问题,进一步提高了铁基复合材料的性能。本发明具有良好的力学性能和成形能力,可以广泛应用于要求高强度、高硬度的形状复杂零件上,在冶金、交通运输等领域有着广泛的应用。
本发明公开了一种考虑纤维增强复合材料复杂非线性行为的弹粘塑性本构模型构建方法,构建考虑复合材料拉伸、压缩屈服不对称性及静水压力影响的粘塑性势函数,通过非关联流动准则获取增量形式的粘塑性应变;基于过应力函数定义动态屈服面,考虑材料各向同性硬化在拉伸、压缩下的区别以及动态屈服面的率相关效应;考虑滞后弹性变形的存在,定义加载阶段和松弛阶段的过应力函数与等效粘塑性应变率的关系,形成描述复合材料复杂非线性行为的弹粘塑性本构模型。本发明可有效地描述纤维增强复合材料的弹粘塑性行为,可应用于商业有限元软件复合材料连续本构的开发、复合材料工程结构力学性能的分析及优化等科研、工程技术领域。
本发明公开了一种功函可调的聚合物复合材料、其制备方法及应用。所述聚合物复合材料包含:至少一种导电聚合物;至少一种掺杂剂;以及,至少一种溶剂,用以与聚合物复合材料中的各组分配合形成均匀混合体系。本发明还公开了基于所述复合材料的复合墨水、复合薄膜及其制备方法。所述聚合物复合材料、复合墨水、复合薄膜可用于制备光电器件为代表的半导体器件。藉由本发明提供的聚合物复合材料可形成功函数能在4.0‑5.2eV之间调节的导电复合物薄膜,使之可以作为阳极电极、阴极电极的修饰层,并改善电极与光活性层之间的界面接触性能,使形成的器件性能表现出更低的薄膜厚度依赖性,从而能够降低对器件制备的工艺要求,有利于提高器件的良品率。
本发明属于电化学技术领域,涉及涂渍型硫化铁/碳复合材料的制备方法,尤其涉及涂渍型镍掺杂硫化铁/碳复合材料电极的制备方法。本发明所述制备方法,先分别配制丹宁酸和硝酸铁水溶液,常温搅拌将硝酸铁水溶液滴加至丹宁酸溶液成胶质溶液;再向六水合氯化镍水溶液加入水合肼,将其滴加至胶质溶液混合均匀;将基地材料浸渍于混合体系内,取出后与硫粉在惰性气体保护下煅烧0.5~2 h,冷却后即得。本发明操作简单易行,可涂渍多种基底,反应时间短,易于工业化。本发明所制得复合材料电极具有较好的电化学性能和稳定性,原料廉价易得,无毒,可直接作为电极用于电催化分解水析氧反应,在电流密度为10 mA•cm‑2时过电位达320 mV,塔菲尔斜率为43 mV•dec‑1。
本发明公开了一种树脂基复合材料表面制备超疏水微结构防覆冰表面的方法,包括以下步骤:1)以树脂基复合材料为基体材料进行相应的预处理;2)将树脂基复合材料基体加热至一定温度,用具有规则多孔结构的氧化铝模板滚刷对其进行模压,使其表面出现规则微柱结构;3)将步骤2)所得的具有微柱结构的树脂基复合材料进行固化,缓慢冷却至室温;4)将步骤3)所得的固化后具有规则微柱结构的树脂基复合材料置于醋酸溶液中浸泡,取出且烘干后再在硬脂酸溶液中浸泡,取出干燥后得到具有规则阵列的树脂基复合材料超疏水表面。采用氧化铝模板法进行微结构加工,能够精确的控制所想要获得的微结构的尺寸,有利于工业化应用。
本发明属于运动器材技术领域,具体涉及用于羽毛球拍的复合材料及其制备方法。该用于羽毛球拍的复合材料包括按照质量份数计的如下原料:钴20-22份、碳纤维5-12份、环氧树脂1-4份、竹纤维1-3份、镍3-6份、铜1-2份、硅1-2份、钼2-4份、锰0.5-1份、氧化锌1-3份、碳化硅1-5份、氟化钙1-2份、氮化硼1-4份。本发明的复合材料强度高、韧性好,利用其制得的羽毛球拍轻便、耐用,且手柄处透气不易湿滑;本发明制备方法简便,适于工业生产。
中冶有色为您提供最新的江苏有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!