一种碳包覆的磷酸铁钠-磷酸钒钠复合材料及其制备方法,所述材料由以下方法制成:(1)将NH4VO3溶液和Fe(NO3)3溶液分别同时滴加入连续反应釜中,搅拌反应,滴加完毕后,再陈化,过滤,洗涤滤渣,得水合钒酸铁;(2)在空气气氛下烧结,得钒酸铁;(3)将钒酸铁与NaH2PO4·2H2O、葡萄糖和草酸置于球磨罐中,再加入乙醇,球磨,烘干;(4)返磨;(5)在惰性气氛下煅烧,得碳包覆的磷酸铁钠-磷酸钒钠复合材料。本发明碳包覆的磷酸铁钠-磷酸钒钠电化学性能优异,可作为二次钠离子电池的正极材料,具有较高的克容量,安全性高,可应用于储能设备、后备电源、储备电源等;本发明制备方法合成温度低,工艺简单。
本发明公开一种复合材料、复合材料的制造方法及活塞,复合材料的制造方法为:使用气相沉积工艺在陶瓷材料的表面形成金属膜层,再使金属材料和带有金属膜层的陶瓷材料贴合,进行扩散焊接,得到复合材料。通过预先对陶瓷材料表面进行处理,使陶瓷材料表面能形成容易与金属材料结合的金属膜层,经过扩散焊接后,能使金属材料和陶瓷材料牢固结合,采用此种方法所制得的活塞具有高可靠性且使用寿命长。
本发明公开了纤维增强复合材料制备方法,其包括以下步骤:S1、在热压机中的模具上涂抹脱模蜡/脱模剂;S2、在所述模具中依次放置一层脱模布、至少两层纤维增强预浸带以及一层脱模布;S3、设置热压机工艺参数并启动热压机,所述热压机中的模具合模后到达预设温度后进行保温,并在所述预设温度下进行保压,最后以预设冷却速率进行冷却得到所述纤维增强复合材料;通过热压机实现所述纤维预浸带的热模压成型,从而使得该复合材料的内部组织均匀且拉伸应力分布均匀,且力学性能高;同时,在热模压之前对所述模具进行涂刷脱模剂或脱模蜡,并上、下铺设所述脱模布,使得成型后的复合材料容易脱模。
本发明公开了一种基于金属有机框架的非贵金属/碳复合材料的制备方法,包括以下步骤:(1)制备金属有机框架配合物;(2)将步骤(1)中得到的金属有机框架配合物与非贵金属化合物和/或杂原子化合物分别置于敞口容器中,再将敞口容器共同放置于一密闭容器中进行热处理,得到金属有机框架配合物复合材料;(3)将步骤(2)中得到的金属有机框架配合物复合材料在惰性气氛下碳化处理即得到非贵金属/碳复合材料。本发明还相应提供一种上述制备方法得到的非贵金属/碳复合材料及其应用。本发明的制备方法可保证金属或金属化合物的高度分散性,大大提高了金属的利用率,催化活性高。
本发明公开了一种在水环境下具有优良减摩耐磨性能的铜‑石墨复合材料的制备方法,属于粉末冶金技术领域,包括以下步骤:(1)铜石墨基体的制备;(2)对铜石墨基体进行打磨并抛光;(3)采用调制好的K2Cr2O7‑H2SO4溶液对抛光后的铜石墨基体进行化学刻蚀;(4)将刻蚀后的铜石墨基体浸泡于十六烷基苯磺酸的乙醇溶液中,得到疏水性的铜‑石墨复合材料。本发明疏水性铜‑石墨复合材料具有良好的导电导热性能,无论在干摩擦条件下还是在水环境中摩擦磨损时,均表现出优异的减摩耐磨性能,可减少磨损量,提高工件使用寿命;采用化学刻蚀法、十六烷基苯磺酸的乙醇溶液处理,获得疏水性表面,工艺简单,成本低廉,一步到位,制备周期短,生产效率高。
本发明公开了一种发泡聚合物基无机纳米复合材料及其制备方法,采用在聚合物基体中直接加入无机纳米粒子和偶氮类引发剂,利用超声波进行分散聚合。此类发泡聚合物基无机纳米复合材料具有多种功能,可作为新型建筑材料,催化剂载体,吸声材料等。
本发明涉及一种铅炭复合材料,是通过电沉积的方法将铅沉积到活性炭颗粒内部及活性炭颗粒之间而制备得到的。本发明的铅炭复合材料中铅所占的质量比为5~65%,是以多面体颗粒状从活性炭孔隙生长出来,实现了铅与炭良好的界面结合。本发明的铅炭复合材料具有更大的比重,更易与铅粉等铅酸蓄电池的负极活性物质实现均匀混合,该种铅炭复合材料在密度为1.28g/m3的硫酸电解液中的比电容为72~115F/g,为此可以直接作为超级电池的负极材料,或作为超级电池负极活性物质添加剂而应用于超级电池的制造。
本发明公开了一种具有室内光催化降解甲醛的木基复合材料的制备方法,包括以下步骤:(1)将氟钛酸铵、尿素和铜盐加入水溶液中,搅拌均匀得到反应液;(2)将步骤(1)中的反应液与木质基底材料混合,在密闭条件下进行恒温加热处理,得到改性木质基底材料;(3)将步骤(2)得到的改性木质基底材料自然冷却至室温,进行洗涤、干燥即得到负载有Cu/TiO2光催化剂的木基复合材料。本发明还提供一种由上述的制备方法制备得到的负载有Cu/TiO2光催化剂的木基复合材料及其应用。本发明的负载有Cu/TiO2光催化剂的木基复合材料在密闭条件下通过特定的一步水热反应,有利于复合材料可循环使用性的提高。
本发明公开了通过喷雾干燥法制备核‑壳钠离子电池正极复合材料Na2CoP2O7@C的方法:将钴源、钠源,磷源按照计量比分别溶解于去离子水中,之后加入一定质量的碳源于上述溶液中。搅拌均匀后用喷雾干燥机进行喷雾干燥得到前驱体,最后在保护性气体下对前驱体进行烧结,得到碳/氮掺杂碳包覆的钠离子电池复合正极材料Na2CoP2O7@C。此外,本发明还公开了采用所述的制备方法制得的钠离子电池正极复合材料。本发明制备方法简单,条件温和。所制备的同心球状钠离子电池正极材料粒度均匀,形貌良好,该材料用于钠离子电池,具有高比容量、高电压,并且展示了良好的循环稳定性能。
本发明公开了一种含Ti3SiC2界面层的SiCf/SiC复合材料的制备方法,采用磁控溅射的方法对SiC纤维编织件进行沉积Ti3SiC2,获得含Ti3SiC2界面层的SiC纤维编织件,然后通过树脂浸渍碳化获得SiCf/C多孔体,再通过气相渗硅获得SiCf/SiC复合材料;所述磁控溅射为先采用TiC靶进行磁控溅射,在SiC纤维束或SiC纤维编织件表面获得0.1~0.2μm的TiC过镀层,然后再采用TiC靶材与Si靶双靶共溅射获得Ti3SiC2,所述Ti3SiC2的厚度控制为0.6~1.0μm;本发明首创的采用磁控溅射的方法获得了含Ti3SiC2界面层的SiCf/SiC复合材料,有效降低了沉积温度,避免了纤维的损伤,所得界面层在抗氧化性能方面优于现有技术常用的C、BN等界面层。同时本发明采用非接触式气相渗硅法进行陶瓷化,有效的降低了密度梯度,且可保证100%的合格率。
本发明公开了一种石墨烯‑金属有机框架复合材料及其制备方法和应用,该复合材料包括石墨烯和金属有机框架化合物,所述石墨烯为三维多孔石墨烯,所述金属有机框架化合物均匀生长于所述三维多孔石墨烯内部孔道结构中。制备方法包括以下步骤:(1)制备三维多孔石墨烯气凝胶;(2)制备含金属有机框架材料前驱体溶液的三维多孔石墨烯气凝胶;(3)制备石墨烯‑金属有机框架复合材料。该应用包括作为电极材料、吸附剂或催化剂的应用。该石墨烯‑金属有机框架复合材料具有导电性好、电容性能佳、性质均匀、结构稳定和循环使用寿命高等优点。制备方法工艺简单、成本低且可制备形状和孔道结构可控、产品性能优异的石墨烯‑金属有机框架复合材料。
本发明公开了一种二硫化钼‑硫化锑复合材料及其制备方法和应用,该二硫化钼‑硫化锑复合材料包括二硫化钼和硫化锑,二硫化钼掺杂在硫化锑中。制备方法包括先用钼酸钠和硫代乙酰胺经水热法合成二硫化钼,将二硫化钼超声分散在氢氧化钠溶液后紧接着加入九水硫化钠,再将含氯化锑的盐酸溶液逐滴加入含二硫化钼和硫化钠的氢氧化钠溶液中形成前驱体,最后经加热得到二硫化钼‑硫化锑复合材料。本发明的复合材料具有稳定性强、循环利用性高,具有高的光催化活性位点等优点,制备方法工艺简单、操作性高、成本低,复合材料具有优越的光催化性能,可广泛应用于光催化降解工业废水领域。
本发明公开了一种压电复合材料直升机桨叶结构及其控制方法,将压电复合材料埋置在旋翼桨叶的复合材料层合结构中,并基于结构模型、气动力模型和压电复合材料模型等,能够准确描述旋翼桨叶的运动规律,进而准确计算旋翼桨叶的动力学特性。本发明提出的采用控制器对旋翼桨叶进行控制,采用Kalman观测器获得白噪声干扰情况下的旋翼桨叶数据,并将其作为控制的输入变量,进而通过控制器对压电复合材料的输入电压进行控制,最终达到控制桨叶动力学响应和变形的目的。本发明提出的模型建立方法及控制方法,具有较大的通用性和准确性,能够准确获得直升机旋翼桨叶的动力学特性,控制效率高。
本发明公开了一种锂空气电池用双功能催化剂材料制备方法。所述空气电极催化剂材料为氮化钴纳米立方‑氮掺杂碳复合材料,其制备方法为将钴盐、聚乙烯吡咯烷酮分散在甲醇中得分散液,再将2‑甲基咪唑溶于甲醇中得到另一分散液;随后将两种分散液混合,充分搅拌反应后静置纯化、洗涤得到纳米级金属有机框架配合物;将所述的配合物在300~400℃下进行分段热处理,前段采用惰性气氛,后段通入氨气;最终得到所述的氮化钴纳米立方‑氮掺杂碳复合材料。将该材料应用于锂空气电池催化剂,氮化物的高电子传输性及稳定的催化性能,可有效的降低锂空气电池充放电过电势、提高电池双程效率、延长电池的循环寿命。本发明的优点是,催化剂材料催化性能优异,制备方法简单可控、操作性强、生产成本低廉。
本发明公开的一种Cu2ZnSnS4‑FeBiO3复合材料及其制备方法和应用。包括以下步骤:1)将铁源和铋源溶于溶剂中,搅拌混匀,同时滴加酸性添加剂,得到稳定的溶胶,溶胶经过陈化、干燥后形成前驱体,前驱体经过焙烧制得FeBiO3纳米晶;2)将铜源、锌源、锡源和硫源依次溶于溶剂,再加入步骤1)制备得到的FeBiO3,搅拌混匀置入反应釜中进行溶剂热反应,反应完成后,离心,洗涤,干燥,得到Cu2ZnSnS4‑FeBiO3复合材料。本发明制备得到复合材料具有可见光活性能够利用LED灯或太阳光,在60min内即可实现废水中六价铬离子98.2%的还原,其光催化活性优异,可见光利用率高,且稳定性好。
本发明公开了一种硅‑天然石墨复合材料及应用和微量无害杂质催化制备硅‑天然石墨复合材料的方法。硅‑天然石墨复合材料的制备方法是将含有微量无害杂质天然石墨经过干燥、球磨及过筛,得到天然石墨颗粒;在天然石墨颗粒表面通过化学气相沉硅纳米纤维和无定型碳,即得,该方法具有成本低,工艺简单,对设备要求低等优点,该方法制备的硅‑天然石墨复合材料中硅和天然石墨结合紧密、机械强度高,结构稳定,电化学活性高,可以用于制备高循环稳定的锂离子电池。
本发明公开的一种预浸渍复合材料的制备方法,由聚酯薄膜聚酯纤维非织布柔软复合材料浸渍耐热树脂预浸液后经烘干制成;所述耐热树脂预浸液由环氧线性酚醛树脂、磷化环氧树脂、多官能基芳香族聚酯、共聚物、催化剂和溶剂制备而成。制备方法是:将聚酯薄膜聚酯纤维非织布柔软复合材料,浸入上述耐热树脂,经130~150℃条件下烘焙,后收卷即可。本发明与传统的预浸渍复合材料相比,固化温度低,固化时间短,且固化物具有优异电气性能、粘结性能、耐热性能及阻燃性,能够满足F级绝缘的要求。
本发明公开了一种LiFePO4/石墨烯复合材料的制备方法。该方法主要包括将LiFePO4材料和石墨烯混合,以N?甲基?2?吡咯烷酮为分散剂,球磨得到。其中,将废旧LiFePO4电池正极片通过有机溶剂浸泡、超声波处理、球磨、焙烧、淬火、与导电炭黑混合焙烧得到LiFePO4材料;将镁粉与四氯化碳发生还原反应得到石墨烯。采用本发明的方法,方法简单,成本低,得到的复合材料导电性能优良。
本发明公开了一种层级多孔状的Fe3Se4@NC@CNTs复合材料及其制备和其在钠离子电池上的应用。用冷冻干燥法将Fe(NO3)3,CNTs,CH4N2O,NaCl纳米颗粒封装入聚合物纤维网络中然后在保护气中煅烧后得到层级多孔状Fe3Se4@NC@CNTs复合材料,Fe3Se4纳米颗粒很好的被包覆在多孔碳结构中,CNT相互缠绕,构成3D导电网络。本发明操作便易,反应条件可控,所得的3D层级多孔结构特殊,比表面积较大,不仅有利于电解液与活性物质的充分接触,而且还有效适应了材料在充放电过程中的体积膨胀,用作钠离子电池负极材料时,极大改善了其电化学性能。
本发明公开了一种Cf/(BN-SiC)复合材料的制备方法,包括以下步骤:将三维针刺碳毡进行真空热处理,然后置于BN浆料中进行真空浸渍,烘干,并将BN浆料均匀注射到烘干后的三维针刺碳毡内部,烘干,得到Cf/BNp中间体;以硼酸和尿素的饱和溶液为BN先驱体,在Cf/BNp中间体内部制备BN基体,得到Cf/BN中间体;以LPVCS为SiC先驱体,在Cf/BN中间体内部制备SiC基体,得到Cf/(BN-SiC)复合材料。本发明的制备方法具有周期短、设备简单、成本低廉、污染和毒害作用小、制品特别适用于作为摩擦制动材料等优点。
本发明公开了一种三维碳化硅纤维预制件增强氧化钇‑氧化锆复相陶瓷复合材料及其制备方法,该复合材料包括三维碳化硅纤维预制件和Y2O3‑ZrO2复相陶瓷,Y2O3‑ZrO2复相陶瓷中,ZrO2的摩尔含量为5%~95%,Y2O3‑ZrO2复相陶瓷均匀填充于所述三维碳化硅纤维预制件的孔隙中,该复合材料的孔隙率为9%~16%。制备方法包括:(1)制备Y2O3‑ZrO2复合溶胶;(2)浸渍;(3)干燥;(4)热处理;(5)重复步骤(2)~(4)的浸渍‑干燥‑热处理过程。该复合材料具有低孔隙率、高致密度、耐高温、抗氧化和力学性能优良等优点,该制备方法制备效率高,且显著提高了复合材料的致密度和力学性能。
本发明公开了一种Fe@FeS2复合材料及其制备和应用方法。以铁粉和黄铁矿为原料,将铁粉和黄铁矿在行星式球磨机中按一定的球料比球磨一段时间,在机械力的作用下,具有延展性的大颗粒铁粉被粉磨为小颗粒铁粉,而不具备延展性的黄铁矿则被粉磨为细小的微晶颗粒,粘附在铁粉颗粒表面,从而形成一种特殊的Fe@FeS2核壳结构,即制备得到的Fe@FeS2复合材料。该方法制备的复合材料颗粒细小、比表面积大、活性强,对水体中砷的去除效果好。处理初始浓度为400mg/L的含砷废水,吸附量达到120.85mg/g,成本低,操作简单,吸附量大,具有良好的工业应用前景。
本发明公开了一种核壳结构Na2Fe2(SO4)3@氧化铝复合材料及其制备方法和应用,该材料是由Na2Fe2(SO4)3颗粒表面包覆氧化铝形成的核壳结构复合材料。本发明通过的有机铝盐热解包覆Na2Fe2(SO4)3,克服了Na2Fe2(SO4)3溶于水难以通过传统水解法进行氧化铝包覆的难题,且合成方法简单,条件温和,产率高,制备得到的复合材料能有效地抑制材料的“表面中毒效应”,应用作为钠离子电池正极材料时具有高比容量、高工作电压、良好的循环稳定性能以及优异的倍率性能。
本发明涉及一种带内孔的碳碳复合材料和碳陶复合材料的制备方法,采用预埋预定形状、尺寸的塑料模具或石墨模具,并在其表面包裹具有特殊结构和功能的石墨纸,或经预处理的石墨纸或碳纤维纸的方法,对碳纤维针刺预制体进行编制成型,再将其在保护气氛下高温脱胶处理,之后进行CVI增密和/或树脂浸渍‑裂解增密,最后进行高温石墨化或渗硅处理后,脱除预埋塑料模具或取出石墨模具,得到具有异形内孔结构及功能的碳碳复合材料和碳陶复合材料。本发明制备工艺简单可控,特别适用于制备对内孔有特殊功能要求,如散热、导热、导电等,且内孔特备复杂的碳碳复合材料和碳陶复合材料。
本发明公开一种耐高温增强增韧Ox/Ox复合材料的制备方法,涉及陶瓷基复合材料技术领域。本发明首先采用重铬酸铵和无水草酸的混合溶液对氧化铝纤维织物进行浸渍‑热处理的预处理,获得表面覆膜的氧化铝纤维,再放入CVI制备热解炭涂层或BN涂层,在涂层上采用电泳沉积方法获得纳米线涂层,然后将氧化铝陶瓷料浆涂覆在带有纳米线涂层的氧化铝纤维织物表面进行热压,烧结,获得高性能的Ox/Ox复合材料。本发明提供一种耐高温增强增韧Ox/Ox复合材料的制备方法,获得了高致密度基体和多微孔纳米氧化物涂层,使氧化铝纤维和氧化铝基体间形成弱界面,从而获得了高强度、高韧性、耐高温的氧化铝纤维增强氧化铝基体复合材料。
一种C/C复合材料表面ZrC-SiC涂层制备方法,将Zr、Si与助渗剂、造渣剂粉末,经真空球磨、真空干燥并过筛后,获得混合均匀的Zr-Si-助渗剂-造渣剂混合粉末;将PVA粉末溶于酒精,获得PVA酒精溶液;Zr-Si-助渗剂-造渣剂混合粉末和PVA酒精溶液经磁力搅拌后,形成Zr-Si-助渗剂-造渣剂陶瓷浆料;将陶瓷浆料涂覆C/C复合材料基体表面;高温烧结,保温,然后随炉冷。本发明将陶瓷浆料原位涂覆在大型异形构件表面,使Zr-Si涂层能够在C/C构件表面形成原位反应层;同时,多余的陶瓷浆料能很容易的从原位反应生成的陶瓷涂层上剥离,容易在大尺寸异形C/C复合材料构件表面实现工程化。
本发明公开了一种以双金属有机骨架材料为前驱体制备掺杂多孔碳@石墨烯复合材料的方法及其在锂硫电池隔膜修饰中的应用。制备方法是以一定比例的锌盐和钴盐为原料,室温液相法合成锌/钴‑双金属有机框架@石墨烯复合材料,将其作为前驱体在惰性气氛下高温反应,酸洗干燥后即得钴/氮双掺杂多孔碳@石墨烯(Co‑N‑C@RGO)复合材料。Co‑N‑C@RGO具有较好的导电性,比表面积高达750~1000m2/g,Co的含量为2~4At%,N的含量为10~20At%。这种材料应用于锂硫电池的隔膜修饰中具有显著抑制多硫化物穿梭效应的效果,能大幅提升锂硫电池的实际比容量和循环性能。而且,该材料合成所需原料简单,操作方便,可实现大规模生产,对锂硫电池体系的商业化有一定的推动作用。
本发明提供了一种γ?Fe2O3?TiO2磁性纳米复合材料及其制备方法和应用,该γ?Fe2O3?TiO2磁性纳米复合材料包括γ?Fe2O3纳米材料和TiO2纳米材料,TiO2纳米材料负载于γ?Fe2O3纳米材料上形成核壳结构。其制备方法包括制备γ?Fe2O3的混合溶液、负载TiO2、煅烧处理。本发明的制备方法具有操作简单、制备成功率高、制备材料稳定等优点,其制备得到的γ?Fe2O3?TiO2磁性纳米复合材料具有纳米级尺寸,同时具有光响应区间宽、光催化降解效率高、方便回收利用的特点,能够广泛用于同时去除废水中双酚A和六价铬,两种污染物协同降解,能高效去除水中的双酚A和六价铬。
本发明提供了一种CuO/Cu2O/Cu三元复合材料的制备方法,包括以下步骤:分别配制铜盐溶液和碱液;取酵母加入水中培养,培养后先后加入至铜盐溶液和碱液中,得到混合液;混合液加热反应得到反应液;将反应液干燥后煅烧并冷却至室温,然后再次煅烧,即可得到CuO/Cu2O/Cu三元复合材料。上述CuO/Cu2O/Cu三元复合材料的制备方法,利用酵母作为微化学反应器,在碳热还原合成的过程中作为碳源并能够调控前驱体形貌,工艺简单,合成周期短。
本发明提供一种新型复合材料制作工艺,所述复合材料由辅助金属材料、母材、压轧黏合构成,其工艺为:辅助金属材料(可以采用不同工艺把黏合表面处理粗糙)→清洗(80-90℃的5-10﹪的金属除油剂请洗干净)→风干→碰焊到母材表面→放料→加热→清洁表面(压缩空气)→压轧→热处理→校平→开料,成品,本发明的优点在于:烹调器具的底部结构采用了传热金属板、导磁金属板使烹调器具加热更快、导热效果更好。
中冶有色为您提供最新的湖南有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!