本发明涉及航空设备领域,具体涉及一种碳纤维复合材料叶栅的加工方法及叶栅。这种碳纤维复合材料叶栅的加工方法使用加工装置,加工装置包括底座和多个加工芯模,底座与加工芯模可拆卸地连接,加工芯模与底座相连时,加工装置上形成用于碳纤维复合材料成型的成型腔,该加工方法包括以下步骤:a.在加工芯模上包裹碳纤维复合材料的原材料片;b.将加工芯模安装到底座上;c.使碳纤维复合材料的原材料片固化,并再次凝固成型;d.使成型的碳纤维复合材料与加工装置分离。这种叶栅通过上述的加工方法制成。本发明提供的加工方法能够在模具加工中使叶栅一次成型,能够减少加工工序,得到碳纤维复合材料制成的叶栅。
本发明提供一种高韧性PBS/淀粉复合材料及其制备方法,其中,高韧性PBS/淀粉复合材料,其中,以重量份计,玉米淀粉50~90份,PBS 50~90份,非离子表面活性剂5~30份,相容剂5~20份,甘油10~30份,尿素10~30份,KH550 2~10份,水5~15份。本发明能改善PBS与淀粉的相容性,能显著改善PBS/淀粉复合材料的力学性能,特别是韧性得到较大的提高。本发明制备的PBS/淀粉复合材料能全部生物降解,不会产生“白色污染”,并且对环境和人的身体健康无危害。
本发明提供了一种高储能密度聚合物复合材料及其制备方法。该高储能密度聚合物复合材料是以聚合物为基底,以多环芳烃为填料制得的复合材料。与不添加多环芳烃的聚合物复合材料相比,本发明添加多环芳烃后所得聚合物复合材料的储能密度明显提高,介电常数和击穿强度综合性能也明显提高。本发明提供的高储能密度聚合物复合材料简单易得,在提高复合材料的介电常数、击穿强度和储能密度的同时,保持了聚合物本身优良的性能,为高储能密度聚合物电介质材料的制备提供了一种新思路,应用前景广阔。
本实用新型公开了纤维增强复合材料输配电杆的连接结构,包括芯棒,芯棒的一端连有法兰盘,芯棒外套设有复合材料电杆,芯棒上设有多个垂直于芯棒轴线的定位杆,复合材料电杆上有定位孔B,所述为复合材料电杆在缠绕成型工艺中,定位杆在复合材料电杆上形成的孔。本实用新型通过在复合材料电杆缠绕成型过程中,将带有芯棒的法兰盘预埋入复合材料电杆一端,并预留出定位孔B,因此通过芯棒与复合材料电杆之间的摩擦力就可以实现法兰盘与复合材料电杆的固定连接,通过设置在芯棒上的定位杆与定位孔B的相互作用,加强复合材料电杆与芯棒之间连接,此种结构避免了胶接带来的强度不够的问题,同时解决了打孔对电杆的结构造成破坏的问题。
本发明属于高分子材料加工技术领域,公开了一种聚酯复合材料、制备方法及应用,所述聚酯复合材料制备方法包括:将硼酸盐分散至二醇体系搅拌,获得无色透明的硼酸盐分散液;加入聚酯聚合前驱体、催化剂和/或成核剂至硼酸盐分散液,在高温反应釜中经酯化缩聚制备得到聚酯复合材料。本发明是聚酯和硼酸盐填料在反应釜中分别原位聚合和生长,而不是采用常规聚酯聚合、填料改性及螺杆挤出等分步加工的方式制备聚酯复合材料,极大地简化了聚酯复合材料加工工艺和降低了加工成本。本发填料分散性和两相界面相容性可控,可加工成纤维、薄膜及塑料制品,确保聚酯复合材料具有优异物理性能,如力学性能、电学性能和辐射防护性能。
一种聚偏二氟乙烯基导热复合材料的制备方法,其步骤是:A、氧化石墨烯/N,N-二甲基甲酰胺溶液的制备:将Hummers法制备得到的质量百分比为25%-50%的氧化石墨烯水溶液,溶于N,N-二甲基甲酰胺中减压蒸馏,氧化石墨烯水溶液与N,N-二甲基甲酰胺的体积比为2:1;将蒸馏液超声处理;B、复合材料制备:将聚偏二氟乙烯和碳纳米管加入蒸馏液中,在80-90℃下,磁力搅拌3-6h得混合液,其中聚偏二氟乙烯,碳纳米管和氧化石墨烯的质量比为80-90:5-15:1-5;再将混合液在80-90℃超声处理,再加热至100-120℃得粘稠液,再将粘稠液放入50-80℃的烘箱中烘干,即得。该方法制得的聚偏二氟乙烯基导热复合材料具有高的导热性能,且力学性能良好。
本发明公开了一种消除复合材料残余应力控制固化变形的装置和方法,属于复合材料固化成型的技术领域,包括热压罐和设于热压罐内部的试样平台,还包括置于所述试样平台上的模具构件,模具构件上装配有振动器和模具;所述模具的表面上方设有复合材料构件且模具的侧面设有加速度传感器,复合材料构件的外部覆盖有真空袋,真空袋与模具表面之间形成密封模腔,且真空袋连接有与密封模腔相通的密封阀;所述复合材料构件由模具的表面向上依次铺贴第一脱模织物、第一脱模层、复合材料铺层、第二脱模织物、第二脱模层和透气毡而成,通过调控振动器的激振力和激振频率对复合材料固化过程中的残余应力进行消除,以达到控制复合材料固化变形的目的。
本发明涉及一种高分子复合材料的制备方法,属于高分子复合材料技术领域。本发明的制备方法包括制备聚氨酯预聚体、接枝反应和制备高分子复合材料等步骤。本发明先制备了结构不同的聚氨酯预聚体,再让其与环氧树脂进行接枝反应,制备了带有聚氨酯预聚体的环氧树脂。然后再按照一定的固化体系及工艺使其固化,获得了制备增韧改性环氧树脂-聚氨酯复合材料的工艺技术。
本发明公开的同时具备阻燃和增韧的聚丙烯复合材料,其特征在于该复合材料按质量百分比计是由以下组分经熔融共混而成:等规聚丙烯65~77%、聚磷酸铵20~35%、聚氧化乙烯5~15%、以及以等规聚丙烯、聚磷酸铵和聚氧化乙烯的总质量计为1.5~3.0%的有机蒙脱土,且该复合材料的拉伸强度为26.24~28.87MPa,抗冲击强度5.34~12.97KJ/m2,氧指数28~36%,垂直燃烧性能UL-94为V-2~0级。本发明得提供的聚丙烯共混材料阻燃性能和抗冲击性能优良,原材料来源广泛,制备工艺简单,操作方便,易于产业化生产,使所获聚丙烯复合材料的成本也较为低廉。
本发明公开了一种基于MoSe2@Fe纳米复合材料的荧光‑比色双信号传感器检测Fe3+和GSH的方法,利用加入Fe3+,Fe3+抑制了MoSe2@Fe的荧光强度,再加入GSH后材料的荧光强度有所恢复,构建MoSe2@Fe纳米复合材料的荧光传感器,通过荧光光度计测定的荧光强度建立标准曲线来检测Fe3+和GSH浓度;利用TMB作为比色使用的氧化还原指示剂,在加入Fe3+后,Fe3+增强纳米复合材料的酶活性,使蓝色加深;接着加入GSH,GSH可以直接还原oxTMB,使得蓝色变浅,从而可视化检测Fe3+和GSH的浓度。本发明具有省时省力,具有检测限低,准确性好,简单快速检测的优点。
本发明公开了一种制备复合材料的方法,所述方法包括如下步骤:S1:以氧化石墨烯、可溶性三价铁盐和二价铁磁性金属盐为原料,用一步原位法制备得到铁磁/石墨烯纳米复合材料;其中:所述二价铁磁性金属盐为Zn盐、Co盐、Ni盐、Mn盐或Cu盐;S2:纤维表面去油处理,编织纤维预制体,电化学浸入制备金属基复合材料,若是金属材料采用有机溶剂法或加热法进行处理;S3:将铁磁/石墨烯纳米复合材料修饰到电极表面,利用电化学沉积法将贵金属沉积到复合材料表面,得到基于磁性纳米复合材料基的电化学传感器。
本发明公开了一种高韧聚丙烯基复合材料的制备方法,主要步骤是将聚丙烯和成核剂按90‑99:1‑10的质量比,通过双螺杆挤出机制得聚丙烯/成核剂复合材料,烘干后作为母料1;将三元乙丙橡胶和碳纳米管按80‑95:5‑20的质量比,通过双螺杆挤出机制得三元乙丙橡胶/碳纳米管复合材料,烘干后作为母料2;将母料1、母料2与聚丙烯、三元乙丙橡胶按0.2‑10:1‑20:70‑90:0‑19的质量比,通过双螺杆挤出机制得复合材料。得到的聚丙烯基复合材料中,三元乙丙橡胶的含量为10‑20%,碳纳米管含量为0.1‑3%,聚丙烯成核剂的含量为0.01‑0.5%。该方法制得的聚丙烯基纳米复合材料冲击强度高且拉伸强度较好,且其工艺简单,有利于大规模生产。
一种环氧玻璃钢复合材料制造用脱模剂的制备方法,其特征是按5~20份重量的硅脂、10~60份重量的硅橡胶、20~120份重量的高级脂肪酸盐、30~90份重量的石蜡的配比分别取量,采用汽油作为溶剂,将各组份分别加入反应容器中并使固体的重量百分含量为10%-80%,在50℃~120℃加热,在回流状态下搅拌使各组份溶解为均相,即制得脱模剂溶液。采用本发明制备的产品主要用于制造环氧玻璃钢复合材料时作为脱模剂,具有脱模效果好、无腐蚀、无毒、耐温、久放不衰之特点,可增加产品光洁度,不影响产品二次着色、喷涂加工的功效。可应用于电子业、塑料业、橡胶业、大型发电机组线圈绝缘制造等采用环氧树脂为基体树脂的复合材料制造、加工场合。
本发明一种连续纤维增强复合材料连接结构的制造方法,涉及材料性能处理领域。本发明的连接结构包括金属件和复合材料,金属件预埋于复合材料中,复合材料固化成型与金属件结合;通过对金属件表面通过表面渗氧处理,金属件表面粗糙度增大,使复合材料与金属件的结合强度增加,从而提高复合材料整体结构承载能力。
本发明属于材料科学与工程领域,特别涉及一种耐蚀锆基非晶合金复合材料涂层的制备方法。通过气雾化制粉技术制备获得Zr50.4Cu28Ni9Al12.3非晶合金球形预合金粉体,将SiC纳米粉均匀包覆在球形预合金粉体表面,在激光熔熔覆过程中使SiC和合金发生原位反应析出强化相,实现了高非晶相含量的复合涂层制备,获得了优异的耐蚀性能,为耐蚀锆基非晶合金复合材料涂层的制备提供了新的技术途径。本发明提出的耐蚀Zr基非晶合金复合材料涂层的制备方法,可有效实现高非晶含量的复合涂层制备,获得优异的耐蚀性能,具有适用范围广、成本低廉的特点。
本发明提供了一种微观具有聚合物纳米结构的高韧性环氧树脂复合材料,它是由下述重量配比的原料制备而成:环氧树脂40‑60份、PDMS‑b‑PCL两嵌段共聚物0.01‑16份、固化剂16‑23份。实验结果证明,与纯的环氧树脂相比,本发明制备得到的PDMS‑PCL/EP复合材料的韧性显著增强:当PDMS1‑PCL4含量为40wt%时,具有10‑60nm蠕虫状纳米结构的热固性材料的断裂韧性比纯环氧树脂提高约255%,而球形纳米结构,在相同的添加量下断裂韧性比纯环氧树脂仅提高了42%。与PCL‑b‑PDMS‑b‑PCL/EP复合材料相比,在相同添加量下,本发明制备的PDMS‑PCL/EP复合材料的韧性明显优于PCL‑b‑PDMS‑b‑PCL/EP复合材料,提升幅度达到了97%。这说明本发明在特定比例下制备得到的PDMS‑PCL/EP复合材料的韧性具有显著的优势,取得了预料不到的技术效果,拓宽了环氧树脂的应用领域。
本发明提供一种羟基磷灰石包覆银纳米颗粒的核壳结构纳米复合材料,该复合材料是以银纳米颗粒为核,以包覆银纳米颗粒的多巴胺涂层为内壳,以包覆内壳的羟基磷灰石涂层为外壳的核壳结构纳米复合材料。本发明还提供了上述材料的制备方法:先分别配制C4H11NO3‑HCl缓冲溶液、钙盐溶液、磷酸盐溶液,然后将银纳米颗粒均匀分散于C4H11NO3‑HCl缓冲溶液中,使银纳米颗粒表面包覆一层均匀的聚多巴胺膜,再分散于钙盐溶液中,使银纳米颗粒表面包覆一层羟基磷灰石涂层。所述材料具有优良的生物相容性、较低的细胞毒性和持久的抗菌性能,可用于医用种植体表面的涂层,骨修复植入材料和抗菌辅料的体外使用等。
本发明公开了一种用于制备交替多层结构的高 分子复合材料挤出口模,包括有两个连接器、一个汇流器和一 个分叠器,连接器的进口与挤出机挤出口相连接,出口与汇流 器进口相连,汇流器的出口与分叠器进口相连,所述分叠器含 有数个由单元模块和与单元模块匹配的单元壳体构成的将熔 体分层叠合的分叠单元,前一分叠单元出口与后一分叠单元进 口对接相连。熔体在每一个分叠单元内经历分流-变流-叠合 过程,每经一个分叠单元层数就曾加一倍,经历n个分叠单元 后层数就增加到2 (n+1)层,被加 工成交替多层结构的复合材料。本发明具有结构简单,加工制 作容易,拆装方便,复合材料层数和层厚比易于控制,可广泛 用于生产制备交替多层结构复合薄膜、板材等。
本发明公开了一种聚偏二氯乙烯/石墨烯复合材料,该复合材料由基材和覆盖在基材上的聚偏二氯乙烯或石墨烯复合材料层组成,或者由基材、依次覆盖在基材上的粘结剂层和聚偏二氯乙烯/石墨烯复合材料层组成,所述聚偏二氯乙烯/石墨烯复合材料层包括聚偏二氯乙烯和石墨烯,该复合材料层中石墨烯的含量为0.1~10wt%。本发明还提供了该复合材料的制备方法。本发明的复合材料在聚偏二氯乙烯基体中引入了二维填料石墨烯,由于片状的石墨烯能够使气体分子在聚偏二氯乙烯基体中的扩散通路发生弯曲,从而有效提高聚偏二氯乙烯的气体阻隔性,同时,由于石墨烯具有优异的导电性,因此石墨烯的引入还能赋予本发明所述复合材料优良的导电性能。
本发明涉及一种复合材料及其制备方法,具体涉及一种碳包覆四氧化三铁/氮掺杂石墨烯复合材料及其制备方法,属于材料和电化学技术领域。本发明提供一种复合材料,所述复合材料由碳包覆四氧化三铁和氮掺杂石墨烯组成,所述复合材料中,四氧化三铁均匀地分布在石墨烯片层的表面。本发明的复合材料由碳包覆四氧化三铁和氮掺杂石墨烯复合材料组成,该复合材料作为锂离子电池负极材料使用过程中,具有优异的循环和倍率性能。此外,本发明所得碳包覆四氧化三铁/氮掺杂石墨烯复合材料不仅能有效缓冲四氧化三铁在电化学反应中的体积效应,同时还提高了材料的导电性,大大降低电池的阻抗,从而有效地提高了材料的电化学性能。
本发明公开了一种复合材料零件表面涂料的去除方法,用喷砂机向复合材料零件表面的涂料层喷射树脂砂的去除复合材料零件表面的涂料层,包括以下步骤:S1)将清洁后的复合材料零件固定放置在工作台上,有涂料层的一面朝上;S2)将喷嘴对准复合材料零件的涂料层,启动喷砂机,用喷射的树脂砂去除复合材料零件表面的涂料层,得到去涂层零件;S3)清洁去涂层零件的表面,得到清洁零件;S4)对清洁零件表面进行涂料去除均匀性测试;S5)干燥。本发明依靠树脂砂对涂料的冲击、摩擦和剪切作用而使得涂料层快速去除,不易损伤复合材料零件纤维,剥离涂料层效率高,且能为下一次喷涂提供崭新的均匀的粗糙的表面,提高涂料与复合材料基体的结合力。
本发明公开了聚苯硫醚纳米晶须复合材料及其制备方法,各原料组分质量百分比含量为:聚苯硫醚(PPS):24-39%,硫酸钙晶须:15%,玻璃纤维(GF):40%,纳米无机填料:2.5-17.5%,稀土偶联剂(DN-930)0.8-2.5%,硅烷偶联剂(KH-550):0.5%,抗氧剂(1010):0.5%;制备工艺包含如下步骤:交联PPS树脂;稀土偶联剂处理过的纳米无机填料和硅烷偶联剂处理过的硫酸钙晶须制备;配比混合;挤出成型,制得聚苯硫醚纳米晶须复合材料材料颗粒。本发明所得聚苯硫醚纳米晶须复合材料具有复合材料力学强度高,材料流动速率好,单位生产成本低的优点。
本发明公开了一种磁浮列车用纳米碳增强铜基复合材料,其特征在于:经过表面改性的碳纳米管0.1~5%、经过表面改性的石墨烯0.1~5%、石墨粉末2~10%、铬粉末1~4%、铅粉末1~8%、锡粉末2~10%、锆粉末0.1~1%、镧粉末0.01~0.5%、余量为铜粉末;其中经过表面改性的碳纳米管是将碳纳米管采用没食子酸水溶液改性得到的碳纳米管,经过表面改性的石墨烯是将石墨烯采用芦丁水溶液改性得到的石墨烯。本发明铜基复合材料杂质含量低,且保持添加增强相成分结构完整,多种添加成分能够发挥共增强作用,显著提高了铜基复合材料的强度、硬度和载流摩擦磨损性能。另外,本发明还公开了一种上述铜基复合材料制备方法,该方法工艺简单,易于生产,具有广阔的应用前景。
本发明涉及一种水泥基电磁显影复合材料、制备方法及其应用,属于工程物探、检测领域。所述水泥基电磁显影复合材料,按重量份数计,由水泥100份、纳米石墨烯0.4‑0.6份、纳米Fe304粉末0.4‑0.6份和石墨烯分散剂0.1‑0.5份组成。本发明还公开上述水泥基电磁显影复合材料的制备方法及其应用。本发明的复合材料具有高介电常数的特点,其能够对地下介电常数相近的地质介质产生显影作用,增强界面的反射效果,增加探地雷达的探测深度和精度。
本发明公开的能形成无机纳米粒子网络的高性能聚合物复合材料是由本发明提供的母料法制备的,它包括聚合物基体材料、弹性体,其特征在于该复合材料还含有无机纳米粒子,基于该复合材料的总重量,各组分的重量百分比含量为:聚合物基体材料70~94%,弹性体3~20%,无机纳米粒子3~10%,其中无机纳米粒子包覆在分散的弹性体外,并在聚合物基体材料中分布形成网络状。这种结构不仅同时实现了对聚合物基体材料的增强增韧作用,还成为了应力传递中心,使得到的复合材料具有更优异的性能。
本发明提供了嵌段共聚物用于环氧树脂中特定纳米结构构筑及制备高韧性复合材料的应用。实验结果证明,与纯的环氧树脂相比,本发明制备得到的PDMS‑PCL/EP复合材料的韧性显著增强:当PDMS1‑PCL4含量为40wt%时,具有10‑60nm蠕虫状纳米结构的热固性材料的断裂韧性比纯环氧树脂提高约255%,而球形纳米结构,在相同的添加量下断裂韧性比纯环氧树脂仅提高了42%。与PCL‑b‑PDMS‑b‑PCL/EP复合材料相比,在相同添加量下,本发明制备的PDMS‑PCL/EP复合材料的韧性明显优PCL‑b‑PDMS‑b‑PCL/EP复合材料,提升幅度达到了97%。这说明本发明在特定比例下制备得到的PDMS‑PCL/EP复合材料的韧性具有显著的优势,取得了预料不到的技术效果,可作为涂料、电气材料、浇注封装材料、胶黏剂、密封胶的基体材料,广泛的应用于航空航天、汽车、造船、建筑、铁路交通等领域。
本申请公开了一种聚晶金刚石复合材料及其制备方法与应用,涉及复合材料领域,旨在解决现有技术中复合材料抗冲击性不足的技术问题。所述聚晶金刚石复合材料,包括:硬质合金基体和通过烧结复合在所述硬质合金基体上表面的聚晶金刚石复合材料主体;所述聚晶金刚石复合材料主体包括:金刚石晶粒和增强相;所述金刚石晶粒包括:晶粒度>7.0级的金刚石晶粒。本申请所述聚晶金刚石复合材料以晶粒度>7.0级的金刚石晶粒和增强相为主要原料,通过与硬质合金基体烧结复合而成;本申请所述的聚晶金刚石复合材料通过改进原料组分,大大降低了脆性转变温度,提高了晶粒和晶界,增大了裂纹扩展的阻力,因此显著提升了聚晶金刚石复合材料的抗冲击性能。
本实用新型公开一种Λ型整体复合材料零件的脱模工具。所述脱模工具包括通过圆弧形部分相连的两根拉杆(1),所述两根拉杆(1)的另一端分别设有向内弯曲、带起模尖角的钩子(2),所述拉杆和钩子的尺寸,以及两根拉杆之间的夹角是根据Λ型整体复合材料零件的结构和尺寸确定的。脱模时,将所述脱模工具的起模尖角分别插入Λ型整体复合材料零件与工装型面之间,拉动所述脱模工具,对复合材料零件施加向上的外力,同时,通过真空管路将压缩气体输入复合材料零件与工装型面的缝隙中,最终在脱模工具与压缩气体的共同作用下实现脱模而不损伤复合材料零件的效果。
本发明公开了一种DMD柔软复合材料胶黏剂,其成分按重量百分比计包括:环氧树脂占30%-40%;酚醛树脂占5.5%-15.5%;聚氨酯树脂占17.5%-27.5%;固化剂占25%-35%;促进剂占1%-5%。所述DMD柔软复合材料胶黏剂的制备步骤为:将环氧树脂、酚醛树脂和聚氨酯树脂加入丙酮中混合,搅拌均匀,得到混合树脂溶液;然后将自制固化剂和促进剂加入混合树脂溶液中,搅拌均匀,得到胶黏剂。本发明中原料之一的环氧树脂具有优良的粘结强度和介电性,酚醛树脂具有较高的耐热性,因此制备的胶黏剂具有耐热等级高,固化速度快等优点,从而使该胶黏剂达到生产DMD柔软复合材料的技术要求。
本发明公开了一种生物玻璃/氨基酸聚合物复合材料的制备方法,它包括以下步骤:取ε-氨基己酸与其它α-氨基酸,加入水,氮气保护下,于150℃~160℃下脱水后,升温至200℃~220℃反应2小时~3小时,再升温至230℃~235℃反应1小时~2小时后,生成氨基酸聚合物,再加入生物玻璃,混匀,冷却,即得生物玻璃/氨基酸聚合物的复合材料。本发明方法制得的复合材料,既可以在初期提供足够的力学强度,又可以在后期快速降解,可以同时满足力学强度和降解性能两方面的要求;而且,本发明方法简便,容易操作,便于控制,安全、环保,能耗低,周期短,生产效率高,非常适合产业上的应用。
中冶有色为您提供最新的四川有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!