一种高钙镁型低品位锂辉石矿的选矿方法。本发明方法是将高钙镁型低品位锂辉石原矿进行擦洗分级后,依次采用光电选脱钙镁和浮选脱钙镁除去其中的钙镁杂质,得到脱钙镁浮选精矿,然后通过单次或多次浮选得到锂辉石精矿产品。本发明选矿方法可除去锂辉石中大部分钙镁杂质,实现采用高钙镁型低品位锂辉石生产高品质锂辉石精矿的目标。
本发明公开了一种锂硫电池复合正极材料及其制备方法和应用,复合正极材料由包括单质硫、导电碳材料和含锂过渡金属氧化物在内的原料复合而成;其制备方法是将溶有单质硫的有机溶液或者能反应生成单质硫的溶液与分散有导电碳材料和含锂过渡金属氧化物的水溶液搅拌混合后,挥发溶剂,所得混合体高温下热处理,即得。制得的复合正极材料导电性能好,富含锂源,且能将多硫化物稳定束缚在正极区域,提高活性物质硫利用率,用于制备锂硫电池正极,可以显著提高锂硫电池的放电比容量,改善电池的循环性能稳定性,且复合正极材料的制备方法简单、工艺条件温和,成本低,满足工业生产要求。
一种制备磷酸锰锂电池正极材料的方法,包括以下步骤:(1)将锰源、磷源、碳源加入到高能球磨机中球磨;(2)在400~600℃保护气中保温5~8h,冷却后即得到磷酸锰前驱体;(3)称取步骤(2)所得磷酸锰前驱体和锂源,再加入还原剂,然后超声震荡,在20000~50000Hz条件下超声30~60min;超声后可干燥处理;(4)在550~800℃保护气中保温10~15h,冷却后即得。本发明通过两段合成的方法得到的磷酸锰锂正极材料,一方面可以缩小材料的微观尺寸,从而缩短锂离子的扩散距离,提高锂离子的扩散速率;另一方面,通过合成特定形貌的磷酸锰锂可以改善材料的循环性能和倍率性能。
本发明公开了一种锂离子电池固态电解质及应用,所述电解质包括聚氧乙烯和/或聚氧乙烯衍生物、无机有机杂化框架、锂盐组成;所述无机有机杂化框架选自金属有机框架(MOF)、共价-有机框架(COF)、沸石-咪唑框架(ZIF)中的一种。本发明制备的锂离子电池电解质可以避免传统锂离子电池因漏液引起的电池燃烧甚至爆炸等安全问题,具有较高的锂离子电导率,并且能使锂离子电池薄型化,从而扩展其应用范围。
磷酸镧嵌入型点缀式包覆钒酸锂复合正极材料及制备方法,所述复合正极材料中,钒酸锂和磷酸镧的质量比为1:0.005~0.050;所述磷酸镧颗粒以非连续的嵌入型点缀式,包覆在片状钒酸锂表面,形成点阵式网络排列。所述制备方法为:(1)将偏钒酸铵与还原剂加入水中,加热搅拌溶解,水热反应,过滤,洗涤,干燥;(2)与锂源、磷酸盐和聚乙二醇在水中混合均匀,再将镧盐水溶液滴入,搅拌,蒸发,干燥;(3)在含氧气氛下,焙烧,冷却,即成。本发明复合正极材料包覆量少,材料稳定性好,所组装的电池首次放电比容量高,在高倍率下,容量衰减平缓,循环性能优异;本发明方法简单,条件温和,不使用有机溶剂,成本低,适于工业化生产。
本发明提供了一种稀土元素改性的锂离子电池正极材料及制备方法和应用,所述改性锂离子电池正极材料包覆层相、岩盐相和材料本体相三相复合,所述岩盐相位于包覆层相和材料本体相之间;岩盐相由元素掺杂诱导产生;包覆相和材料本体相的之间的材料近表面区域存在氧空位。其制备方法为:将锂离子电池正极材料粉末与稀土元素化合物混合均匀,经过烧结获得稀土元素氧化物包覆与稀土元素掺杂的改性锂离子电池正极材料。本发明所得产品可抑制氧气释放,隔绝电极材料与电解液直接接触,所形成的岩盐相可进一步稳定晶体结构,减少Li+/Ni2+阳离子混排,提高材料的循环稳定性和倍率性能,同时,材料的离子电导率和电子电导率等性能也有明显提高。
本发明公开了一种废旧三元锂离子电池正极材料固相再生的方法,包括以下步骤:(1)电池精细化拆解,取出正极片,将正极片洗涤、烘干;(2)正极片,在300~500°C,热处理实现三元正极材料和铝箔或导电剂筛分分离;(3)三元正极材料进行元素分析,再配入锂源、钴源、镍源和锰源调节元素摩尔比;(4)添加锂源、钴源、镍源和锰源混料球磨,在惰性气氛或真空气氛下,高温烧结得到预烧结固体;(5)随后加入导电剂和掺杂金属离子,在空气气氛下二次烧结得到三元正极材料。本发明的废旧三元锂离子电池正极材料固相再生的方法具有操作简单、经济合理、循环回收率高且环境友好的特点。
本发明公开了一种锂硒电池正极的制备方法,该制备方法是将含氮导电聚合物沉积或生长在纸片表面,再经过碱活化,高温炭化,得到以碳纤维网络结构为自支撑体的含氮层次孔碳复合集流体,再进一步与硒复合,得到含硒量高、固硒效果好、机械性能好、电化学性能优良的锂硒电池正极;该制备方法操作简单,无污染,成本低,制得的锂硒电池电极无需使用粘结剂及相应的涂布工艺,直接用于制备出循环性能和倍率性能优异的锂硒电池。
本发明公开了一种金属氧化物包覆锂离子电池正极材料的制备方法及应用,将纳米级金属粉末与正极材料球磨混合后,在所得混合物中加水进行反应,得到表面包覆金属氢氧化物胶体的正极材料;所述表面包覆金属氢氧化物胶体的正极材料置于高温下进行煅烧,即得到表面形成一层致密均匀、稳定性好的金属氧化物包覆层的正极材料,制得的金属氧化物包覆锂离子电池正极材料可制备出循环稳定性好,循环寿命层的锂离子电池;且金属氧化物包覆锂离子电池正极材料的制备方法具有成本低,操作简单,环境友好等特点,可以被大规模的应用于工业化生产。
本申请实公开了一种温域宽长寿命的磷酸铁锂电池电解液及配制方法:电解液组成为:锂盐,碳酸酯类化合物、添加剂及离子液体;其中,所述碳酸酯类化合物的质量分数为:60.0%~65.0%;所述离子液体的质量分数为:10.0%~15.0%;所述添加剂的质量分数为:5%~10%。采用本申请实施例示出的电解液制成的磷酸铁锂电池?40℃条件下,首次容量发挥率高于80.0%,且按照3C充放电制度在?40℃、25℃、60℃条件下循环3000次后容量保持率分别均高于60.0%、80.0%、80.0%,可见,采用本申请实施例示出的电解液制成的磷酸铁锂电池在常温及高低环境条件下经过多次高倍率充放电制度循环后仍具有较高的容量保持率。
本发明涉及一种制冷机的冷却方法,具体是指对溴化锂吸收式制冷机的浓溶液进行预冷却的工艺方法。其特征在于,它采用三泵循环方式,将温度较高的溴化锂浓溶液先由吸收器(5)内冷却水系统预冷却,再由吸收器泵(10)再泵入吸收器(5)中进行喷淋,吸收水蒸汽。其优点是可大大降低吸收器泵(10)的温度,不易产生气蚀,不受制冷机负荷变化等因素的影响,整机运行稳定。
本实用新型提供一种锂电池快速充电及电量管理系统。所述锂电池快速充电及电量管理系统包括充放电电路、电量管理电路及微控制电路,微控制电路通过I2C协议控制电量管理电路,同时电量管理电路将充放电过程中的情况实时反馈给微控制电路;电量管理电路通过监测锂电池输出电流值实时计算锂电池内部动态阻抗进而判断出锂电池电压和容量值,得到锂电池的充放电动态参数图,再通过I2C协议控制充放电电路决定充放电进程。本实用新型提供的所述系统具有精确预测电池充放电曲线模型、缩短充电时间、自动调整电池老化优化电池寿命等功能,支持电量检测,可提供诸如剩余电池容量(mAh)、充电状态(%)、续航时间(分钟)、电池电压(mV)、温度(℃)等信息。
本发明公开了一种高温稳定性镍钴锰酸锂复合电极及其制备方法与应用,所述高温稳定性镍钴锰酸锂复合电极,包括以下原料:镍钴锰酸锂、磷酸铁锂、丙烯酸聚氨酯、氧化铜、氧化锰、氧化钒、石墨烯、端氨基聚醚、2‑甲基丙烯酸甲酯调节剂、科琴黑、乙烯‑醋酸乙烯共聚物、乙烯基双硬脂酰胺、银粉、分散剂、表面活性剂、硝酸。本发明的高温稳定性镍钴锰酸锂复合电极是经过制备溶液、高压反应、煅烧、研磨、模压成型等步骤制得的,具有高电池容量、高温稳定性和高循环稳定性,可广泛应用于太阳能电池、燃料电池、电容器等贮能材料领域中。
本发明公开了一种氯化锂溶液深度除镁的方法,该方法是在含镁的氯化锂溶液中加入沉淀剂,使镁与之结合生成难溶化合物沉淀,锂则保留在溶液中,从而获得高纯氯化锂溶液;该方法不仅除镁效果好,产品纯度高,锂损失小,而且具有流程短、操作简单、生产成本低等优点,易于实现工业化应用。
本发明公开了一种提高锂离子电池正极材料循环稳定性的方法。所述方法是先制备磷酸铁锂层,再制备石墨烯层;在锂离子电池正极材料表面涂上一层磷酸铁锂层,干燥后,再在磷酸铁锂层上涂上一层石墨烯层,干燥后,再在石墨烯层上涂上一层磷酸铁锂层,以此类推,制得磷酸铁锂层和石墨烯层交替叠加的极片;所述极片至少包括两层磷酸铁锂层和一层石墨烯层。传统的磷酸铁锂正极材料在电池充放电过程中由于表面不均匀会产生过电势,导致电池容量衰减较快,循环稳定性比较差。为了克服这一难题,我们采用在其表面涂上一层超薄的石墨烯导电层来疏散过电势,以提高磷酸铁锂电池的循环稳定性。该发明的制备工艺具有操作简单、成本低、效率高、易于实现规模化、产业化生产的优点。
本发明公开了一种锂电池板安全管理检测的方法,所述锂电池板包括多个锂电池组,所述锂电池组包括多节锂电池,包括以下步骤:S1:获取处于工作状态中的各锂电池组的温度参数以及各锂电池组对应的预设温度阈值和安全时间,所述预设温度阈值以及安全时间均通过热失控反应过程获取得到;S2:判断各锂电池组的温度参数是否处于相应的预设温度阈值内,如果否,则发送报警信号。本发明还公开了一种电子设备、计算机可读存储介质和锂电池板安全管理检测的装置。本发明的锂电池板安全管理检测的方法其能对其进行分区域温度监测,从而使得检测到的温度参数更加的细致,并且可以针对相应的区域采取相应的降温或者隔离措施。
本发明公开了一种锂硫电池用多孔碳球及其制备方法和应用,该锂硫电池用多孔碳球是由带状石墨无序缠绕而成。制备方法包括以下步骤:(1)制备Si-C-O颗粒;(2)制备多孔碳球。该锂硫电池用多孔碳球适合制备锂硫电池正极材料,且能提高锂硫电池容量和循环稳定性及硫电极的导电性。制备方法简单、产率较高且可批量生产。
本发明公开了一种低成本氟化磷酸铁锂正极材料的超临界连续合成法,包括以下步骤:将冶铁工业酸洗废液经除杂、过滤、还原得到铁源;在搅拌状态下按比例铁源、锂源、磷源和氟源溶液,控制体系的温度为150~220℃,压力为3~5Mpa,反应后得到浆料;将浆料压滤,洗涤,烘干得到粉体;将烘干后的粉体热处理,即得到氟化磷酸铁锂正极材料。本发明选择低成本冶铁工业酸洗废液作为原材料,利用超临界水的强溶解性和离子迁移能力,一步合成纳米化氟化磷酸铁锂正极材料。本发明所得材料物相纯、结晶性良好、成本低廉,且工艺简单、调控方便,易于大规模连续化工业生产。
本发明属于锂硫电池技术领域,具体公开了一种锂硫电池复合正极活性材料,其包括Li2S和R1‑Se‑Se‑R2结构式的诱导剂。本发明还提供了包含所述的复合正极活性材料的正极以及锂硫电池。本发明通过式1诱导剂与正极材料Li2S之间产生的诱导效应,降低Li2S充电时初始过电位,促进Li2S的氧化,减少Li2S在锂负极的沉积,从而减少活性物质的损失,提升了电池的放电比容量和循环稳定性。
本发明公开了一种制备锂电池负极材料的方法,包括以下步骤:(1)将偶氮苯硫醇、缚酸剂加入到甲苯溶液中,混合均匀,加入氯化亚锡,氮气保护下室温反应6h。(2)反应液过滤,滤饼用无水乙醇洗涤,然后将滤饼在80℃-120℃的鼓风烘箱中保温4-8h,得到干燥的SnS前驱体。(4)SnS前驱体在惰性气氛的保护下升温进行煅烧,制得黑色氮掺杂SnS/C复合纳米材料。本发明制备的复合材料用作锂离子电池负极材料,能够有效缓解充放电时SnS体积膨胀,抑制充放电效率降低和容量衰减过快的问题。
一种具有高容量与库仑效率的锂离子电容电池负极系统,属于电化学领域。本发明针对由石墨基负极材料和活性炭构成的锂离子电容电池负极材料,采用由LiPF6或LiN(CF3SO2)2作为锂盐、1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐或N-甲基,丙基哌啶双三氟甲磺酰亚胺盐离子液体作为溶剂构成的电解质溶液。在上述电解质溶液中,还可添加有机溶剂碳酸丙烯酯、碳酸乙烯酯、碳酸二甲酯或碳酸甲乙酯作为功能添加剂。在此电解质溶液中,锂离子电容电池负极材料容量与库仑效率得到明显提高。
一种新型的软包装锂离子电池的铝转镍方法,在软包装锂离子电池装配前,在软包装锂离子电池的铝材质正极耳的末端采用激光焊接方法焊接固定镍带,完成正极耳铝转镍激光焊接后,再进行锂离子电池的结构组装。本发明操作简单,焊接效果好,报废率低,节能降耗,可实现连续操作、提高生产效率。
本发明属于锂离子电池正极材料技术领域,具体涉及一种钨修饰的高镍三元锂离子电池正极材料及其制备方法。本发明提供一种改性高镍三元材料,包括钨掺杂镍钴锰三元材料内核和包覆于所述钨掺杂镍钴锰三元材料内核表面的钨酸锂壳层;所述钨掺杂镍钴锰三元材料内核中,镍的摩尔百分含量≥50%。本发明提供的改性高镍三元材料采用金属掺杂和包覆两种改性方式协同作用来改善高镍三元材料的电化学性能,改性效果好;而且,本发明以钨作为掺杂金属,协同钨酸锂进行包覆,得到的改性高镍三元材料掺杂、包覆效果好,从而使本发明提供的改性高镍三元材料具有较高的电化学容量、能量密度和循环稳定性。
本发明公开了一种废旧锂离子电池负极材料资源化的方法。首先,将废旧锂离子电池负极石墨材料在含有一定浓度H+的水溶液中进行上下震荡洗涤或回流循环洗涤。在回收锂资源的同时,使石墨层间膨胀。然后,以洗涤液中含有的锂为原料,利用沉淀法制备了碳酸锂产品。最后,以洗涤后的废旧石墨为原料,利用液相机械剥离的方法制备了石墨烯材料。该方法简单、便于大规模生产应用。再生了碳酸锂材料和高附加值的石墨烯产品,提高了废旧锂离子电池负极材料回收的经济性,实现了废旧锂离子电池负极材料的资源化利用。
本发明涉及一种锂离子电池无机固体电解薄膜的制备方法,技术特点在于:以甲醇、乙醇、苯、甲苯、有机溶剂为媒介,在密闭的反应体系中,在一定的温度及溶剂的自生压力下,反应物溶解呈离子状态,溶解所形成的带电荷离子在电场的作用下定向移动,带电离子在电极附近形成较大的过饱和度,因此在电极上形核长大成电解质晶体,即在基片上形成锂离子电池无机固体电解质薄膜。由溶剂热电化学法制备的锂离子电池无机固体电解质薄膜均匀、致密,这种无机固体电解质薄膜具有锂离子导电率高,导电激活能低的特点。这种低能耗、环保的制备工艺,为制备锂离子电池无机固体电解质薄膜及其它薄膜材料提供了新的研究思路,具有较大的实用价值。
本发明公开了一种高倍率兼顾低温高比能量锂离子电池,包括正极、负极、集流体、隔膜和电解液;所述正极的活性物质由镍钴铝和镍钴锰酸锂组成,所述负极包含中间碳微球石墨与复合硅碳材料,所述电解液由溶质、溶剂、添加剂组成,其中溶质为六氟磷酸锂,溶剂为由碳酸乙烯酯、碳酸二甲酯、碳酸甲基乙基酯、线性羧酸酯、四氟丙基醚组成的混合液,添加剂选自氟代碳酸乙烯酯、四氟硼酸锂、二氟(草酸根)硼酸锂、丙烷磺酸内酯中的至少3种。本发明通过正、负极、集流体、隔膜、电解液各物质的协同作用,进而使得该低温倍率型锂离子电池在低温环境下具有优异的放电性能。
本发明提供一种铕‑硫/硒共掺杂的锰酸锂正极材料及其制备方法和应用,在该共掺杂的锰酸锂材料结构中,铕以三价阳离子Eu3+,硫/硒以二价阴离子S2‑/Se2‑分布在锰酸锂正极材料主体,通式为LiMn2‑xEuxO4‑y‑zSySez;其中,0
一种磷酸钛镓锂修饰的三元正极复合材料及其制备方法。本发明正极复合材料的化学式为LiNixCoyMnzGa0.01qO2·nLipGaqTiw(PO4)3,其中,x、y、z、p、q、w、n为摩尔数,0.6≤x<1,0<y≤0.2,0<z≤0.2,x+y+z=1,3.2≤p+q+w≤3.6,1.2≤p≤1.5,0.2≤q≤0.6,1.4≤w≤1.8,0<n≤0.05。材料呈粒径为2~3.5μm的单晶颗粒,表层有磷酸钛镓锂形成的均匀包覆层,厚度为2.5~4nm。本发明方法包括以下步骤:将镓源包覆在前驱体或正极材料表面,然后与锂源混合烧结,得Ga3+掺杂的正极材料;然后与锂源、磷源、钛源经高温烧结,得到Ga3+掺杂且LipGaqTiw(PO4)3表面包覆的三元正极材料。本发明提高了锂离子电池的倍率性能和循环性能,且在大倍率下性能优异;本发明绿色无污染,经济适用,适用于大规模生产。
本发明公开了一种废旧锂离子电池正极材料高效回收与再生的方法,包括以下步骤:对回收的废旧锂离子电池完全放电、拆解、剥离、煅烧和研磨获得LiNi0.5Co0.2Mn0.3O2活性材料;将该活性材料用浸出剂浸出,得到富含锂的浸出液和含有镍钴锰的沉淀;将所得沉淀分散于水中,加入碱液,调节pH值得到氢氧化镍钴锰沉淀;将氢氧化镍钴锰沉淀过滤得到三元前驱体,按三元前驱体物质的量计与过量锂源配比锂化,经研末混合、煅烧,得到正极活性材料;将过滤后所得滤液加入无机酸,生成新的有机酸,实现有机酸的循环使用;使用本发明的方法,可实现三元正极材料循环利用,而且工艺简单,能有效降低加工成本,并且可实现有机酸的循环使用。
中冶有色为您提供最新的湖南长沙有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!