本发明公开了一种用于高能二次锂电池的金属锂负极。所述的金属锂负极包括平面金属集流体,所述的平面金属集流体带有第一表面和第二表面;所述的平面金属集流体上设置有多个贯穿第一表面和第二表面且彼此独立的孔道,孔道的横截面呈矩形;平面金属集流体第一表面和/或第二表面的金属上复合有绝缘层A,孔道中的任意相对的两个表面的金属上复合有绝缘层B。覆盖在矩形微米孔道长面的绝缘层有利于金属锂在微米孔道的宽面沉积,有利于保证在金属锂沉积和溶解过程中SEI膜在宽面上下浮动,从而避免在锂沉积溶解过程中发生SEI膜的挤压和破裂。如此设计的金属锂负极可以实现超稳定和超长时间的循环。
一种同时实现对正极材料预脱氧化、对负极材料预锂化的装置及方法,属于锂离子电池领域。本发明通过将富锂层状氧化物正极材料与硅类负极材料匹配,进行充放电处理,将富锂层状氧化物正极材料中多余的锂用于硅类负极材料的预锂化,实现资源再利用。本发明工艺简单,可以同时实现对正极材料的预脱氧和对负极材料的预锂,成本低廉,可规模化生产。
本发明公开了一种锂钾选择性分离的方法,该方法是将磷酸根金属络合离子溶液加入至含锂离子和钾离子的溶液中进行反应,反应所得混合溶液依次经过陈化、结晶、沉淀和固液分离,得到磷酸钾金属盐固体产品和锂富集液。该方法打破了现有技术的不足与欠缺,弥补了锂钾分离不彻底、分离效率低等问题,实现了溶液体系中锂离子和钾离子的高效选择性分离,同时生产出的磷酸钾金属盐具有低热膨胀系数,可广泛用于市场水泥的销售,且该方法过程简单,经济安全,无污染,满足工业化生产技术指标和资源可持续发展的目标。
本发明提供了一种高强高淬透性铝锂合金及其制备方法,涉及航空航天飞行器结构材料制备与加工技术领域。以质量百分含量计,本发明提供的高强高淬透性铝锂合金包括以下元素:Cu 3.6~4.3%、Li 0.7~1.5%、微合金化元素0.1~1.8%和余量的Al;所述微合金化元素包括Mg、Zn和Ag中的一种或多种。本发明通过控制Cu、Li元素的含量,保证了铝锂合金的基本强度;同时添加微合金化元素,进一步提高了铝锂合金的强度和淬透性能,能够满足当前航空航天用大尺寸厚板(≥40mm)铝锂合金材料的性能需求。
本发明公开了一种利用磷酸锂废料制备电池级磷酸铁的方法,包括以下步骤:S1、将磷酸锂废料调制成浆料,加入硫酸溶液溶解制备成混合溶液;S2、向混合溶液中依次加入铁盐和碱液在搅拌下进行反应,控制反应体系的pH值为1.8~3.0,得到非晶态的磷酸铁沉淀I和可溶性锂盐溶液I;S3、向可溶性锂盐溶液I中加入碱性除杂剂,调节溶液pH值至3.0~4.5,收集固相部分得到含铁滤渣I;S4、对非晶态磷酸铁沉淀I和含铁滤渣I洗涤;S5、将洗涤后的产物混合后制浆,加入磷酸,反应完成后陈化结晶,将沉淀洗涤后,煅烧,得到无水磷酸铁成品。该方案对锂和磷的回收率高,且制得的磷酸铁可直接用作锂电池材料的前驱体。
本发明公开了一种废弃锂离子电池电解液的处理方法,其包括以下步骤:S1、向废弃锂离子电池的电解液内添加过量的碱性物质;S2、对废弃锂离子电解液进行过滤;S3、将废弃锂离子电解液通向温度可控的精馏装置,对各组分可燃的碳酸酯按照各自的沸点进行精馏处理;S4、将各组可燃的碳酸酯分别通向冷凝装置并作回收处理;本发明还提供了一种废弃锂离子电池电解液的处理装置;本发明通过添加碱性物质来消除锂离子电解液的腐蚀性,降低其毒害性;经过处理后的电解液可替代煤进行燃烧提供热量,成为燃料使用或另作它用,从而变废为宝。
本发明公开了一种锂硫电池电解液及其制备方法,其特征在于锂硫电池电解液包含有烃基多硫化合物;所述烃基多硫化合物具有R1‑Sx‑R2结构,R1、R2的总碳数不低于3;x的值为2~500。本发明通过在电解液中加入烃基多硫化合物,改变了传统的锂硫电池放电机制,有机多硫化物取代多硫化锂成为主要放电中产物,大大抑制了穿梭效应;烃基多硫化合物本身含有不同数量的S‑S键,充放电过程中的断裂可以提高锂硫电池放电比容量;最终明显提高锂硫电池的初始容量及循环稳定性。
本发明涉及一种储能器件补充锂的方法。该方法为:首先采用除放置芯包的腔室外,还具有m个其他腔室的器件壳体;并将芯包和补锂电极分别放置于芯包腔室和其他腔室中,注入电解液后使芯包和补锂电极所在腔室富含电解液;然后对芯包进行化成处理后,进行电化学嵌锂,得到A;或;以先进行电化学嵌锂;再对芯包进行化成处理,得到B;得到A、B后,对其进行n次充放电循环处理后,抽出芯包腔室所含气体和富余电解液,封闭芯包腔室和其他腔室之间的连通通道,得到C;最后对所得C经除腔处理后,得到D,加工整形D,得到储能器件成品。本发明操作简便,不对现有锂电池生产工艺产生大的改动,极易连续化生产。本发明所取得效果明显,便于大规模工业化应用。
本发明涉及一种纳米级锂磷酸盐系LiFe1-xMxPO4/C复合正极材料的制备方法。将磷酸二氢锂、铁粉、M元素源及有机碳源在溶剂介质中均匀混合,通过高能球磨处理2~7h,在机械力活化下发生化学反应获得分散均匀的前驱体。将前驱体在气氛保护下600-800℃热处理2~10h后冷却至室温,制得纳米级锂磷酸盐/碳复合正极材料。本发明具有工艺简单、高效,而且整个过程中没有氨气、废水等污染性物质产生,适合于工业化生产。本发明所制备材料一次粒子为纳米级颗粒,分布均匀,具有比容量高,倍率循环性能好的特点。
本发明属于吸附剂领域,公开了一种铝基锂离子筛及其制备方法和应用,该铝基锂离子筛为Al(OH)3包覆的Li2SO4·2Al(OH)3·nH2O,n为1~4。制备方法:利用锂盐、铝盐与碱反应得到吸附剂中间体LiOH·2Al(OH)3·nH2O,再通过稀硫酸,得到铝基锂吸附剂Li2SO4·2Al(OH)3·nH2O,将吸附剂过滤洗涤后,最后与偏铝酸盐混合,再调pH,得到Al(OH)3包覆的Li2SO4·2Al(OH)3·nH2O。本发明的铝基锂离子筛具有吸附量高、稳定性好的优点,可对工业废水中的低浓度锂进行高效回收,同时使用氢氧化铝包覆,可有效保证结构不受腐蚀。
本发明提供一种锂离子电池材料回收分筛的方法,包括如下步骤:将废弃电池破碎、气流分选;磁选分离铁质外壳;对电极片进行二次破碎;根据集流体粉末与电极材料粉末的粒度差异对两者进行筛分;对筛分后的电极材料粉末进行球磨处理;通过二次磁选去除磁性杂质,并筛选得到含钴或者含镍正极材料;对剩余粉末材料采用浮选法,得到磷酸铁锂;对含钴或者含镍正极材料进行三次磁选,筛分出Ni、Co、Mn不同含量的各类三元材料;从集流体粉末中分离得到Cu粉与Al粉。本发明提供的锂离子电池材料回收分筛的方法,能高效回收锂电池中的正负极材料,不仅可以分筛出磷酸铁锂和三元材料,而且分筛出不同牌号的三元材料,以适应工业大规模自动化回收锂离子电池。
本发明公开了一种废旧锂离子电池材料中有价金属组分回收的方法。首先,将废旧锂离子正极材料和负极材料充分混合,在800~1000℃进行热处理。其次,将烧结产物磨碎,并进行水浸‑气浮处理,回收上浮的石墨后,将剩余的固液混合物过滤、干燥。然后,采用沉淀或蒸发结晶的方法从滤液中回收碳酸锂。最后,将固体物质进行电化学溶解,提取镍、钴金属资源。该方法可充分利用废旧锂离子电池负极石墨作为还原剂,并回收负极材料中所含的锂资源,实现废料资源的最大化利用。且选择性提取镍、钴、锂等高价金属资源,分离过程简单。同时该方法不易产生大量的酸碱性废水,极具产业应用价值。
本发明公开了一种废旧锂离子电池正极材料再生方法包括以下步骤:(1)将锂盐与添加剂混合配成电解液,所述锂盐由锂盐LS1和锂盐LS2组成;所述添加剂由添加剂A1和添加剂A2组成;(2)以拆解获得的锂离子电池正极极片为阴极,所述阴极用强碱性阴离子交换膜包裹,惰性电极为阳极,在电压为(2.5‑4.5)V和步骤(1)的电解液存在的条件下进行电解;(3)将正极材料从电解后的极片上剥离,并将锂源和正极材料按质量比(1‑2):1混合进行热处理,冷却后经洗涤并烘干得到再生正极材料。本发明通过电解的方式实现了废旧正极材料充分均匀补锂,缩短了补锂时间,再结合热处理恢复材料结构,实现了废旧正极材料的有效再生。
本实用新型公开了一种具有防盗功能的电动车用锂电池,涉及电动车技术领域。本实用新型包括锂电池本体,锂电池本体上固定有防护壳,且防护壳上对称位置分别固定有第一散热风扇和第二散热风扇,防护壳内部放置的干燥盒的内部放置有干燥剂,防护壳的上端固定有顶盖,且顶盖下端抵接的防护组件与锂电池本体的上端抵接连接,顶盖的下端中间位置固定有GPS定位器。通过GPS定位器可将锂电池的定位数据传到手机上,可实时跟踪,而通过第一散热风扇和第二散热风扇可将热快速地吹到外界空气中,便于散热,然后通过干燥剂能除去防护壳内部空气的水份,最后通过防护组件可防护锂电池本体的上端,本实用新型防盗、散热效果佳、防潮效果佳和防护效果佳。
本发明提供了一种含锂氧化物前驱体及其制备方法,其特征在于,包括以下步骤:S1,混料:将锂源与前驱体进行混合,得到混合物;其中,所述锂源中锂与前驱体中的总过渡金属元素摩尔比r为:0<r<1;S2,烧结:将S1得到的混合料在高温下进行烧结,得到含锂氧化物前驱体。本发明通过将锂源与前驱体混合物烧结,大幅度减少后续正极材料制备过程中前驱体和锂源分解形成的H2O和CO2等气体,减少废气带来的热量损失,同时有效解决后续正极材料烧结过程中炉内气氛难以控制的问题,大幅度降低成本。且制备的含锂氧化物前驱体形貌呈多孔状,有利于后续正极材料固相烧结过程中锂离子在材料内部的扩散,改善正极材料的电化学性能。
本发明属于锂硫电池电极材料领域,具体涉及一种锂硫电池正极材料,包含正极活性材料、稳定剂、导电剂和粘结剂,所述正极活性材料为不溶性硫磺;所述的稳定剂是能与正极活性材料两端的硫原子形成共有电子对的化合物,优选为卤素、有机卤化物和噻唑类化合物中的至少一种。本发明所述的正极活性材料极大的减少了多硫化物的溶出,搭配使用的不溶性硫磺稳定剂,可有效抑制了电极反应过程中“死硫”产生和“穿梭效应”。由本发明提供制备的正极组装的锂硫电池首次放电比容量高、循环性能好,另外,本发明提供的硫正极制备方法成本低廉、操作简易、易于实现大规模商业化制造。
本发明提供了一种简单、高效、环保地从废旧锂离子电池正极材料中回收有价金属的方法,包括以下步骤:盐溶液放电;拆解分离出正极片;正极片破碎分离正极材料和铝箔;正极材料与焙烧剂硫酸铵和/或硫酸氢铵混合低温焙烧;焙烧料水浸,分离得到碳和浸出液;向浸出液中加入沉淀剂,并使用含NH3烟气调节pH,沉淀除Li以外的其他金属,固液分离;使用含NH3烟气调节滤液的pH,加入碳酸铵或碳酸氢铵或者鼓入CO2气体,沉锂,得到碳酸锂产品。本发明制备过程简单、工艺条件温和、流程所需时间短、不需消耗大量酸和碱、成本低,而且能有效实现正极材料中的有价金属和碳的回收,绿色环保,不会产生大量固废和废水。
本发明实施例提供了锂电匣钵用莫来石制备工艺,该工艺首先选用铁、钾、钠含量较低的煤矸石为基础,根据所制作的莫来石加入合适的氧化铝,外稀土氧化物和氧化锆,经球磨、成型、干燥后高温烧成,再经破碎分级制作出锂电匣钵用莫来石,其所制备的锂电匣钵使用寿命(次数)提高达到25%。该工艺采用独特的二段式烧成方式,使莫来石相的生成率提高超过5%,气孔率下降超过10%,该制备工艺中,稀土氧化物可以采用含氧化钇、氧化镧、氧化铈的混合稀土,也可以采用单独的稀土氧化物和稀土废料,节约了成本。
本发明公开了一种锂离子电池硅@石墨烯/CVD碳复合负极材料及其制备方法和应用,硅@石墨烯/CVD碳复合负极材料由石墨烯增强CVD碳复合层包覆硅纳米颗粒构成,其制备方法是在硅纳米颗粒表面修饰氨基丙基三甲氧基硅烷后,与石墨烯分散液搅拌混合,再进行离心洗涤及冷冻干燥处理,得到硅@石墨烯复合材料;所述硅@石墨烯复合材料通过CVD沉积碳后,即得硅@石墨烯/CVD碳复合材料。该复合材料作为锂离子电池负极材料应用,不但大幅度提高锂离子电池充放电效率,且延长其使用寿命。
本发明公开了一种生物质废料协助下的废旧锂电池正极材料回收再生方法,属于资源循环利用技术领域。本发明以生物质废料为还原剂,将废旧动力锂电池的回收与三元正极材料的再生有机地结合起来,低成本实现了废旧动力锂电池的循环利用;工艺流程短、合成成本低、适合大规模生产,再生的镍钴锰三元正极材料性能优异,具有很好的经济效益和社会效益。
本发明属于净化除杂技术领域,具体涉及一种从含镍、钴、锰和锂的溶液中除钙、镁的方法。从含镍、钴、锰和锂的溶液中去除钙和镁的方法为两段法工艺,包括一段除钙镁步骤和二段除钙镁步骤;在二段除钙镁步骤加入氟化物作为钙和镁的沉淀剂,过滤后的二段钙镁渣作为一段除钙镁步骤的沉淀剂。利用相同的原理,可回收一段钙镁渣中的有价金属。本发明去除钙镁的氟化物消耗较低,同时通过复分解反应,释放了二段钙镁渣中的有价金属离子,提高了镍、钴、锰和锂的收率,显著提高了经济效益。
本发明提供了一种废旧锂离子电池正极回收及再利用的方法,具体包括以下步骤:将废旧锂离子电池正极煅烧,煅烧产物进行磁选分离,分离出的磁性组分进行氧化烧结制得三元金属氧化物,将其配成三元NiCoMn氧化物,加入锂源后进行锂化煅烧,得到正极活性材料。本发明采用铝热法对正极片进行直接热处理,利用正极集流体铝箔充当铝源,直接对极片上的活性材料进行原位还原,这不仅减少了回收工艺流程,还一定程度的降低了回收成本。磁选分离得到非磁性组分经过后续结晶处理可作为锂源,直接用于正极材料的合成,不溶性含铝成分经过净化处理后可以用于正极集流体铝箔的制备,实现了零添加、零污染的回收工艺过程。
一种铝锂合金双级连续时效处理方法。本发明属于铝合金加工技术领域,涉及铝锂合金的双级连续时效热处理方法。所述铝锂合金的时效工艺的主要特点是在温度连续变化的过程中对铝合金进行时效处理,在这一过程中,该工艺包含在2个连续变温区间进行不同的升温速率,通过时效析出的特点与温度区间和升温速率的合理控制,以及减弱位错回复的影响,显著的提高了合金的拉伸性能。该双级连续时效工艺在提高铝锂合金性能的同时,缩短了时效工艺时间、降低能源消耗,提高了生产效率,能有效满足目前对高综合性能铝锂合金的需求。
一种多金属复合氧化物包覆改性锰酸锂正极材料,以锰酸锂为基体,在基体的表面包覆有Li(M1)β(M2)γO2包覆层,其中,0<β≤1,0<γ≤0.5,M1为Mn、Co、Ni中的至少一种;M2为Al、Mg、Zr、Ti、Sr、Y、W、Bi、La、Sd、Ba、Ce、V、Se、Mo、Nb、B中的至少一种。其制备方法包括:按照制备锰酸锂基体的化学计量比将原料混合,混合料在不低于900℃下进行煅烧,得一烧产物;一烧产物再与含M1化合物、含M2化合物混合,再煅烧,得多金属复合氧化物包覆改性锰酸锂正极材料。本发明的改性锰酸锂正极材料,既具有长循环寿命,尤其在高温条件下的循环性能较为突出,同时还具有高容量水平。
本公开实施例中提供了一种基于数值模型分解锂离子电池直流内阻的方法,属于电学技术领域,具体包括:将锂离子电池数值模型涉及到的控制方程和及其边界条件按照质量守恒、电荷守恒、能量守恒分类、联立和耦合;针对待分解的锂离子电池确定其对应的控制方程中与电池内阻分解关联的电化学参数,得到电化学参数对应的一体化方案;根据一体化方案将待分解的锂离子电池分成无限多个单元,根据欧姆定律将每个电池单元上所产生内阻作平均化处理,根据电池结构确定内阻来源并在该结构区间内将平均内阻进行变形处理,然后积分从而得到不同组分的内阻。通过本公开的方案,能高效精准地分解锂离子电池直流内阻,实现预测电池性能的目的。
本发明涉及二氟草酸硼酸锂生产技术领域,具体公开了一种二氟草酸硼酸锂制备工艺;其包括如下步骤:1)设计一款制备装备;2)原料加热混合;3)加入反应促进剂后继续搅拌反应;4)反应后的液体排入过滤箱中进行过滤,再将过滤后的液体液泵入浓缩结晶釜中,通过抽真空泵将其内部抽至负压,进行加热对其滤液进行负压浓缩,然后再向水冷却夹套通入冷却水,从而对浓缩液进行冷却结晶;5)在负压浓缩过程将蒸汽通入冷凝回流器进行冷却回流,然后将浓缩液过滤后,并将滤液通过第三液泵重新泵入搅拌混料罐中;本发明公开的二氟草酸硼酸锂制备工艺生产二氟草酸硼酸锂的效率更高,原料利用率也得到了极大提升,降低了制备二氟草酸硼酸锂的生产成本。
本发明提供了一种电动汽车用锂电池包,包括有电池包箱体,电池包箱体内水平设置的第一绝缘板将电池包箱体内分隔成上腔室和下腔室,上腔室和下腔室内均固定安装有一个或多个电池组,多个电池组经串联后连接在锂电池包正负高压接头之间;电池包箱体上腔室内还设置有电池管理系统,电池管理系统通过采集均衡线与每个电池组保持连接。本发明能够在有限空间内容纳大量的单体锂电池,排布合理,空间利用率高;且单体锂电池与其他各部件连接稳固,能够有效防止由于电动汽车震动而造成单体锂电池与其他各部件脱落,提高了电池包的可靠性。
一种制备锂离子筛吸附剂H4Mn5O12及其前躯体的方法,涉及一种用于从盐湖卤水、海水、地热水等液态锂资源中吸附锂的无机吸附剂的制备方法。以低熔点锰盐和锂盐为原料,采用有机羧酸为配合剂经软化学合成、低温焙烧得到所需前躯体Li4Mn5O12;然后对前躯体进行酸处理,抽提出其中的Li,转变为H-型离子筛H4Mn5O12(或表示为MnO2·0.31H2O);将H4Mn5O12过滤、洗涤、干燥后即得到对锂离子具有筛分效果的吸附剂。本发明的方法工艺简单,获得的离子筛具有溶损小、吸附速度快、吸附容量高的优点。
本实用新型公开了一种具有防水防潮功能的锂电池保护机构,包括壳体、安装组件和限位组件,所述壳体的表面通过铰链活动安装有门体,所述壳体的内部固定安装有限位组件,所述壳体内部的顶端贯穿安装有风扇,所述壳体的两侧皆固定安装有把手。本实用新型通过在壳体的表面通过铰链活动安装有门体,能够利用壳体对锂电池进行保护,接着采用聚氨酯防水层对锂电池进行防水,然后利用橡胶绝缘层对锂电池受到外接干扰,接着利用观察窗对壳体内部的情况进行观察,然后利用钥匙打开门锁,便于工作人员对壳体内部的锂电池进行检修与维护,接着利用散热孔与风扇对壳体内部锂电池进行快速降温,提高锂电池的使用寿命。
本发明属于锂离子二次电池领域,公开了一种三维金属锂负极@碳基材料无粘结剂电极的制备方法。包括以下步骤:(1)将薄壁多孔的微米碳球和碳基材料均匀分散在有机溶剂中得有机悬浮液;(2)采用电泳沉积工艺,将所得有机悬浮液做为电泳涂液,在金属负极上沉积成三维复合电极;(3)将锂均匀沉积到三维复合电极,得到三维金属锂负极@碳基材料无粘结剂电极。本发明制备工艺简单、原料易得、操作简单、制备成本较低、有利于实现规模化应用。
中冶有色为您提供最新的湖南长沙有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!