本发明公开了一种Mg2+双重掺杂提高镍酸锂正极材料电化学性能的制备方法。通过溶胶‑凝胶法结合高温焙烧的方法将Mg2+同时掺杂到镍酸锂LiNiO2的锂位和镍位,制备Mg2+双重掺杂镍酸锂Li1‑xMgxNi1‑xMgxO2(x≤0.1)。利用Mg2+在镍位的掺杂抑制合成过程中杂质的形成,利用Mg2+在锂位的掺杂抑制Ni3+由镍层迁移到锂层,避免镍锂混排的产生,提高锂离子在活性材料颗粒内部的扩散,从而提高镍酸锂的容量、倍率性能和循环性能。
本发明公开了一种锰酸锂电池大电流均衡FPGA控制系统。该系统包括至少两个串联的锰酸锂电池、与锰酸锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、锰酸锂电池电压检测模块、FPGA控制器和保护装置。FPGA控制器通过锰酸锂电池电压检测模块获得各个锰酸锂电池电压,当锰酸锂电池之间的均衡度大于设定阀值时,将电压最大的锰酸锂电池根据设定的时间通过大电流放电电阻放电。本系统采用FPGA作为主要均衡控制器,提高控制速度。本系统采用接触器矩阵方式,实现对锰酸锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电。本系统结构简单,操作方便,安全可靠,均衡效果好。
本发明公开了一种锂离子电池电芯,其正极材料是由按质量百分比计的以下原料组成:镍钴锰酸锂/镍钴铝酸锂/钴酸锂98.0-98.1%,导电剂0.9-1%,聚偏氟乙烯1%。所述正极材料的导电剂是由按质量百分比计的以下原料组成:鳞片石墨(KS-6)30-70%,碳纳米管(CNT)30-70%。本发明所述锂离子电池电芯的正极材料中的导电剂在干粉中占有的比例降低到1%以下,提高了涂布的效率,提升极片压实,将锂离子电池电芯的综合性能提升并降低生产成本。本发明还提供了该锂离子电池电芯的制备方法,该方法具有溶剂使用量少、涂布的效率高和能耗低的特点。
本发明公开了一种全回收废旧锂离子电池并实现金属分离的方法,将废旧锂离子电池芯粉碎,将所得黑色粉末加入空气焙烧,所得焙烧渣加入氨性溶液浸出,收集滤渣和滤液,滤液为含锂镍钴的液体;对所得滤液加热蒸发,收集蒸发的气体,返回氨浸工序,对蒸发后的液体过滤,收集滤渣,得到镍钴混合氢氧化物、氢氧化镍或氢氧化钴;再将滤液加热结晶,收集并干燥结晶产物,得到碳酸锂。该方法同时回收了废旧电池中的正极材料和负极材料,并实现了铁、锰、锂和镍钴的分离,回收过程没有二次污染,工艺流程短,成本低。
本发明提供一种锂离子电池正极材料的粘结剂配方及其制备方法,属于电池正极材料领域,由镍钴铝酸锂/镍钴锰酸锂35‑75%、锰酸锂21‑63.5%、石墨烯0‑0.5%、科琴黑0.5‑1.5%和复合胶1‑2%组成。复合胶由CMC0.3‑0.6%、共聚丁苯乳胶0.5‑0.8%和亲水改性的聚偏氟乙烯0.2‑0.6%组成。本发明锂离子电池的正极材料制浆减少了使用NMP作为溶剂的安全风险和环境污染问题,每个电池节省0.03元的成本,并且能够提升生产效率15%以上,节省电费能耗减少35%以上。
本发明公开了一种基于DSP控制的锰酸锂电池大电流均衡方法。设置一套锰酸锂电池控制系统,包括至少两个串联的锰酸锂电池、与锰酸锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、锰酸锂电池电压检测模块、DSP控制器和保护装置;DSP控制器通过锰酸锂电池电压检测模块获得各个锰酸锂电池电压,当锰酸锂电池之间的均衡度大于设定阀值时,将电压最大的锰酸锂电池根据设定的时间通过大电流放电电阻放电。本发明采用DSP作为主要均衡控制器,提高控制速度;本发明采用接触器矩阵方式,实现对锰酸锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电;本发明方法操作简单,安全可靠,均衡效果好。
本发明提供一种废旧磷酸铁锂电池正极材料再生工艺,属于资源回收利用技术领域。包括以下步骤:(1)粉料分离,通过有机溶剂分离正极铝箔和磷酸铁锂粉料;(2)消解浆化,通过微波消解得到磷酸铁锂溶液,同时分离含碳金属残渣;(3)铁氰沉淀,通过铁氰化物沉淀分离溶液中的铁;(4)氟化锂制备,通过氟化物制备得到氟化锂;(5)铁氰再生,通过碱性溶液进行铁氰溶液的再生并分离铁沉淀;(6)磷酸铁制备,分离所得的铁沉淀返回剩余溶液制备磷酸铁。本发明工艺实现了对废旧磷酸铁锂中磷、铁与锂的资源化利用、实现了铁氰化物的再生循环利用及磷酸铁锂的再生制备,提升了资源化利用水平。
一种超细纳米磷酸铁锂电极材料的制备方法,首先用铁源化合物与磷源化合物为原料,制得纳米磷酸亚铁盐作前驱体,然后再用磷酸亚铁盐和锂源化合物制备超细纳米磷酸铁锂电极材料,本发明提供的磷酸亚铁盐制备方法其生产工艺简单,用所得的纳米磷酸亚铁盐不但可制得高纯精细纳米磷酸铁锂,而且用磷酸亚铁盐制备磷酸铁锂过程中亚铁价态不改变,所以无需加入碳源化合物或还原剂改变铁的价态,从而可以选择直接制备碳包裹磷酸铁锂或无碳包裹磷酸铁锂,用制备的纳米磷酸亚铁盐前驱体制成的纳米磷酸铁锂性能优良,具有高容量、高倍率下放电容量和电压平台性好,循环寿命长。
本发明的钼、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、钼源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Mo∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在普通纯氮气氛中,经500-750℃高温煅烧24h,即得钼、钡活化磷酸铁锂正极材料;由于掺杂少量取代钼、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明的铍、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、铍源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Be∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧24h,即得铍、钡活化磷酸铁锂正极材料;由于掺杂少量取代铍、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明公开了一种基于单片机控制的三元锂电池大电流均衡方法。设置一套三元锂电池系统,该三元锂电池系统包括至少两个串联的三元锂电池、与所述三元锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、三元锂电池电压检测模块、单片机控制器和保护装置。单片机控制器通过三元锂电池电压检测模块获得各个三元锂电池电压,当三元锂电池之间的均衡度大于设定阀值时,将电压最大的三元锂电池根据设定的时间通过大电流放电电阻放电。本发明方法采用单片机作为主要均衡控制器,降低系统的成本,并采用接触器矩阵方式,实现对三元锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电;本发明方法操作简单,安全可靠,均衡效果好。
本发明的镍、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、镍源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Ni∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧24h,即得镍、钡活化磷酸铁锂正极材料;由于掺杂少量取代镍、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明的镉、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、镉源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Cd∶0.0003-0.003mol?Ba∶1molFe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在氮气氛中,经500-750℃高温煅烧24h,即得镉、钡活化磷酸铁锂正极材料。由于掺杂少量取代镉、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明公开了一种锂电池精准回收方法,包括:1)废锂电池进行放电处理;2)采用废锂电池电解液回收装置,将废锂电池内部的电解液抽到第一收集箱内,并对抽除电解液的废锂电池的内外干燥;3)将废锂电池的外壳剪切分离,回收外壳并得到电池极芯;4)将电池极芯进行切割粉碎,得到电池极芯粉碎物;5)将电池极芯粉碎物置于石墨分离装置的打粉器中,将电池极芯粉碎物中的石墨打粉,并在打粉器内打粉扬尘、在打粉器底部喷气、在打粉器的上侧壁或顶部抽吸打粉器内的扬尘气体、在抽吸管道内设置多级过滤网,通过过滤网收集不同粒径的石墨粉。本发明的能够精准地将电解液、外壳、正极金属和负极石墨分离回收,提高废锂电池的资源化利用。
本发明公开了一种基于ARM控制的三元锂电池大电流均衡方法。设置一套三元锂电池控制系统,包括至少两个串联的三元锂电池、与所述三元锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、三元锂电池电压检测模块、ARM控制器和保护装置。ARM控制器通过三元锂电池电压检测模块获得各个三元锂电池电压,当三元锂电池之间的均衡度大于设定阀值时,将电压最大的三元锂电池根据设定的时间通过大电流放电电阻放电。本发明采用ARM作为主要均衡控制器,提高控制速度。本发明采用接触器矩阵方式,实现对三元锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电。本发明方法操作简单,安全可靠,均衡效果好。
本发明公开了一种三元锂电池大电流均衡控制系统。该三元锂电池大电流均衡控制系统包括至少两个串联的三元锂电池、与所述三元锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、三元锂电池电压检测模块、单片机控制器和保护装置。单片机控制器通过三元锂电池电压检测模块获得各个三元锂电池电压,当三元锂电池之间的均衡度大于设定阀值时,将电压最大的三元锂电池根据设定的时间通过大电流放电电阻放电。本发明采用单片机作为主要均衡控制器,降低系统的成本,并采用接触器矩阵方式,实现对三元锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电;本系统操作简单,安全可靠,均衡效果好。
本发明公开了一种铁锂电池大电流均衡控制系统。该铁锂电池大电流均衡控制系统包括至少两个串联的铁锂电池、与所述铁锂电池数目相等的第一接触器和第二接触器、大电流放电电阻、铁锂电池电压检测模块、单片机控制器和保护装置。单片机控制器通过铁锂电池电压检测模块获得各个铁锂电池电压,当铁锂电池之间的均衡度大于设定阀值时,将电压最大的铁锂电池根据设定的时间通过大电流放电电阻放电。本发明采用单片机作为主要均衡控制器,降低系统的成本;本发明采用接触器矩阵方式,实现对铁锂电池的大电流放电,能够提高均衡的可靠性,并实现大电流放电;本系统操作简单,安全可靠,均衡效果好。
本发明公开了一种用于电动汽车中的锂电池模组,包括锂电池壳体、锂电池组件和断路器,锂电池组件由层叠状布置的多个单层锂电池组组成,多个单层锂电池组由上到下依次串联连接,断路器串联设置在相邻的单层锂电池组之间,单层锂电池组由多个锂电池串联组成,锂电池包括正极片、负极片、隔膜和有机电解液,隔膜设置在正极片和负极片之间,隔膜由无纺布基层和贴附在无纺布基层上、下表面的聚丙烯薄膜层组成,负极片包括集流体和形成于集流体表面上的负极材料,负极材料为包覆有碳层的氧化铁与掺氮石墨烯的复合材料。本方案结构简单,安全性高,在不影响单包锂电池的化学性能的情况下,解决了锂电池内部短路以及降低锂电池内部热量和电池形变的问题。
本发明涉及锂带生产领域,具体涉及一种锂带卷取装置,包括机架,机架设置呈凹型框架结构,机架内从前向后依次设置有厚度检测机构、压平机构、定宽机构、上带机构、裁断机构、喷胶机构以及卷取机构,机架右外侧设置有卷动机构,机架后部左外侧设置与驱动机构,喷胶机构位于卷取机构正上方,卷取机构包括转盘、均匀固定连接在转盘右侧盘面且位于偏心处的若干组套管、倾斜固定连接在机架后部底侧的下料槽、固定连接在机架后部左侧的下料气缸;本发明不仅实现对锂带厚度进行压平与宽度裁剪,有效保证卷取锂带厚度与宽度的均匀,避免造成锂带厚度与宽度波动较大,同时实现锂带的自动化卷取,从而减轻员工工作压力,并提高生产效率,进而提高产能。
本发明的锰、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、锰源、钡源的原料,按照1mol?Li∶0.00002-0.00005mol?Mn∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在普通纯氮气氛中,经500-750℃高温煅烧24h,即得本发明的锰、钡活化磷酸铁锂正极材料;由于掺杂少量取代锰、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
本发明涉及锂离子电池电极材料制备技术领域,具体而言,涉及一种碳包覆纳米级磷酸铁锂的方法和用途,包括以下步骤:(a)、水热法合成纳米磷酸铁锂材料;(b)、将步骤(a)得到的纳米磷酸铁锂材料与碳源混合后,干法研磨,再进行热处理,得到碳包覆磷酸铁锂复合材料;其中,所述碳源包括有机碳源和无机碳源,所述纳米磷酸铁锂材料、所述有机碳源和所述无机碳源的质量比为100:0.1‑10:0.001‑2。本发明所提供的碳包覆磷酸铁锂复合材料的制备方法,通过无机碳源和有机碳源相结合的方式,以减少纳米级磷酸铁锂包覆碳材料时碳的使用量。并且,采用干法研磨的方法,不需要使用有机溶剂,减少了工艺流程,降低了生产成本。
本发明公开了一种含溴化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法包括以下步骤:1)在气氛保护条件下,按质量百分比计,称取35?50%的硫化锂和余量的硫化磷,混合均匀,得到锂硫磷三元混合物;2)在气氛保护及安全红光条件下,取锂硫磷三元混合物及相当于其质量2?10%的溴化银,置于球磨罐中球磨,得到含溴化银的非晶态锂硫磷混合物;3)所得溴化银的非晶态锂硫磷混合物在气氛保护及红光条件下密封后,于真空或气氛保护条件下升温至60?150℃进行热处理,即得。采用本发明所述方法制备硫化锂系固体电解质材料时能够形成大量可用于锂离子扩散的原子空位,进而有效提升硫化锂系固体电解质的离子传导性能。
本实用新型公开了一种无人机锂电池检测装置,包括壳体,其表面设有数据输入输出模块和若干用于插入锂电池的电池插口;壳体内设有单片机和充放控制单元,单片机分别与数据输入输出模块、充放控制单元和电池插口电连接,电池插口与充放控制单元电连接;单片机用于读取插入电池插口的锂电池的基本数据,单片机还可用于控制充放控制单元给所述锂电池充电或放电,然后通过核算所述基本数据的变化测得所述锂电池的性能数据;数据输入输出模块用于显示所述基本数据和所述性能数据,以及用于向单片机输入所述充电放电的控制参数。该实用新型可用于检测无人机锂电池的容量,辅助用户对无人机锂电池的性能进行评估。
本发明提供一种软包锂离子电池及该电池负极耳电镀镀层的方法,属于软包锂离子电池技术领域。本发明针对电池内部接触电势大、极耳成本高的现象,涉及一种软包锂离子电池,其包括正极耳3、负极耳1、电解液、隔膜和外壳2,极耳与外壳由极耳胶4连接,所述负极耳为铜带制成,其中一部分在电池外壳内,另一部分在电池外壳外,露在外的部分为铜带外露端,且外露端表面有易焊锡的镀镍层。所述方法是将正、负极耳焊接在软包锂离子电池上,然后将正负极耳同时浸入镀液5,利用电池自身电能给铜带外露端电镀的方法。本发明通过电池自身电能电镀方法给负极耳镀镍,操作简单、快捷,既降低了电池及负极耳生产成本,也降低了电池内部接触电势和电能损失。
本发明涉及镍钴锰酸锂正极材料,具体说是溶胶凝胶法合成镍钴锰酸锂正极材料的方法,其包括按化学计量比称取Mn(NO3)2、CoCO3、Ni(NO3)2·6H2O和Li2CO3,加入浓HNO3溶解并反应,再将溶解后的反应物进行恒温水浴;然后边搅拌边加入柠檬酸,直至液体成粘稠状,得到凝胶;烘干凝胶后加入分散剂进行机械活化;然后将活化后的浆料置于干燥箱内干燥,得到前驱体;将前驱体在电阻炉内进行预烧,再将研磨后的物料置于回转式焙烧炉内,最后获得钴镍锰酸锂正极材料。从以上技术方案可知,本发明采用溶胶凝胶法合成镍钴锰酸锂正极材料在合成过程中将前驱体进行机械活化,使前驱体颗粒分布均匀,粒径均匀;再通过预烧和焙烧获得电化学性能优良的钴镍锰酸锂正极材料。
本发明的钡活化磷酸铁锂正极材料制备方法,其特征在于:其锂源、铁源、磷酸根源、钡源的原料,按照1mol?Li∶0.0003-0.005mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇(AR)介质中,高速球磨20h(转速200r/mimn,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在普通纯氮气氛中,经500-750℃高温煅烧24h,即得本发明的钡活化磷酸铁锂正极材料;所的材料其化学通式可表述为:Li?Ba?FePO4,由于掺杂少量取代钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,钡离子占据取代锂离子,其晶格得到了活化,提高了锂离子扩散系数,其首次放电容量达145.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过162mAh/g,100次充放电循环后容量约衰减3.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高;由于钡的价格要比锂价格低百倍以上,生产成本可降十倍以上。
本实用新型一种水系锂离子电池电子烟,包括壳体,所述壳体的一端可拆卸地连接有雾化器,所述壳体内设有开关组件、电池组件,所述开关组件包括相互连接的PCB控制电路板、开关,所述电池组件由多节水系锂离子电池串联组成且与所述开关组件、雾化器电连接。其目的在于提供一种水系锂离子电池电子烟,该电子烟采用水系锂电子电池为电子烟供电,更环保、电池安全性更高,保证了用户安全。
本实用新型涉及安装装置技术领域,尤其是一种锂电池的安装装置,包括底座,所述底座的外侧上部均设有转轴,所述转轴上均通过连接杆连接有夹板,所述底座的上部两侧均设有限位孔,所述限位孔位于转轴的右侧上部,所述限位孔内插接有限位杆,所述夹板贴合在锂电池本体的一侧,所述底座的中部等距设有通风管,每个所述通风管均通过空心管连接,其中靠近中部的一个所述空心管的上端通过连接管连接有导风管,所述导风管位于两个锂电池本体之间,所述导风管的两侧均等距开设有吹风口。本装置对现有的技术,安装方便,效率更高,节省人力,同时具有散热的效果,大大的保证了锂电池本体的实用寿命,节约了成本,值得以后推广使用。
本实用新型涉及锂电池的平衡保护电路,其包括:采样电路、平衡电路、欠压保护电路、比较电路、驱动电路、第一基准电压、第二基准电压、电源电压和状态输出电路;比较电路,用于将第一基准电压和第二基准电压分别与对应的锂电池的采样电池电压进行比对,并输出一第一电平信号;状态输出电路,用于根据所有比较电路输出的第一电平信号,输出一第二电平信号;驱动电路,用于根据第二电平信号和对应的第一电平信号,判断是否向对应的平衡电路输出驱动信号;平衡电路,用于根据对应的驱动信号,控制对应的锂电池的正极与负极连接,以使对对应的锂电池进行放电处理。本实用新型具有制作成本低的优点。
本发明的硒、钡活化磷酸铁锂正极材料制备方法,其锂源、铁源、磷酸根源、硒源、钡源的原料,按照1mol?Li∶0.00002-0.00005molSe∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在无水乙醇介质中,转速200r/mimn高速球磨20h,用105-120℃烘干,得到前驱体,将烘干得到的前驱体置于高温炉内,在普通纯氮气氛中,经500-750℃高温煅烧24h,即得本发明的硒、钡活化磷酸铁锂正极材料;由于掺杂少量取代硒、钡,有利于控制产物的形貌和粒径,获得稳定的磷酸铁锂化合物,其晶格得到了活化,提高了锂离子扩散系数,所得材料其首次放电容量达160.52mAh/g;其充放电平台相对锂电极电位为3.5V左右,初始放电容量超过168mAh/g,100次充放电循环后容量约衰减1.2%左右;与未掺杂的LiFePO4对照实施例相比,比容量和循环稳定性有较大的提高。
中冶有色为您提供最新的广西有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!