本发明属于材料检测技术,具体涉及一种复合材料X射线成像灵敏度的替代性测定方法。GJB5364《射线实时成像检测方法》与GJB1038.2A《纤维增强复合材料无损检验方法第2部分X射线照相检验》中对所使用的像质计的图样、规格虽作了相关规定,但由于复合材料的特殊制造工艺以及其组分的多样性等,使得复合材料像质计加工困难;再加上复合材料的多相性,国内还未制作出统一的复合材料像质计。本发明提出一种能够简易、快速测定复合材料的X射线成像灵敏度方法,有效地测定复合材料成像的灵敏度。
一种复合材料环形齿强度检测工装,包括连接在万能试验机测试平台上被测复合材料环形齿的芯轴,所述芯轴一端设有环形齿,环形齿连接检测环形齿强度的测试复合材料,测试复合材料置于圆形筒体空腔内,筒体一端设有前盖板,前盖板经前衬套连接测试复合材料,筒体另一端设有后盖板,后盖板经后衬套连接测试复合材料,所述后盖板上设有导柱,导柱与芯轴同轴。通过该工装可以缩减研制周期、减少试验费用,具有方便快捷的特点,为复合材料环形齿强度的结构设计、成型工艺改进和产品的检验验收提供了依据。
本发明公开一种复合材料格栅加筋结构成型工装,包括若干块复合材料平板和壳体壁板,所述平板间形成60°夹角,并由角片相连,形成稳定格栅结构;所述格栅与壳体壁板胶接为一体。本发明提供的一种复合材料格栅加筋结构成型工装制造方法,利用复合材料热胀系数低的优点,解决复合材料产品热变形问题,从而达到提高复合材料产品精度的目的。采用的复合材料工装制造的复合材料反射器型面精度可达到0.1mm以内,满足设计要求。
本发明属于导弹弹翼梁结构设计技术,涉及一种复合材料弹翼回形梁结构及其成型方法。本发明中的一种复合材料弹翼回形梁结构,包括上凸缘主梁、下凸缘主梁、前C字型梁和后C字型梁;所述上凸缘主梁和下凸缘主梁组合形成复合材料回形梁结构主梁;前C字型梁和后C字型梁作为复合材料回形梁结构主梁成型时的加强结构,分别位于复合材料回形梁结构主梁的前后。本发明在不削弱复合材料弹翼回形梁承载能力的前提下,将复合材料弹翼回形梁结构进行合理拆分,拆分后的各零部件制造工艺简单,需要的模具简单成本低,易于脱膜;回形梁结构成型后不需要进行额外的机械连接即可保证结构完整性,达到整体承载效果。
本发明涉及纳米复合材料技术领域,提供了一种球形二氧化硅‑二氧化钛‑稀土氧化物复合材料制备方法。本发明通过表面修饰剂修饰纳米二氧化钛,再吸附稀土元素,对纳米二氧化钛进行元素掺杂;再利用廉价的硅源作为纳米二氧化钛的载体,采用微乳液法,制备出微米级的球形二氧化硅‑二氧化钛‑稀土氧化物复合材料,该球形结构的复合材料可改善其在化妆品中应用的滑爽性的肤感,且效果显著;所获得的球形二氧化硅‑二氧化钛‑稀土氧化物复合材料粒径1~20um,降低了纳米二氧化钛在应用过程中被人体吸入的风险,通过掺杂稀土元素,拓宽了其光响应范围,实现对紫外线UVA(320~400nm)的屏蔽;该复合材料也可作为防老化剂,应用于橡胶、塑料、涂料、食品等领域。
本发明提供了一种复合稀土氧化物强化钨基高比重合金复合材料及其制备方法,该复合材料由钨合金基础粉末和0.1~1.0 wt%的复合稀土氧化物颗粒组成,其中复合稀土氧化物为CeO2、DyO2、Y2O3和Nd2O3中的两种或两种以上,主要包括原料预混合、一次球磨、二次球磨和活化烧结等步骤。本发明在活化烧结步骤之前采用复合稀土氧化物添加和二次球磨联合的方式既可以使添加物细化和均匀化,又可以改善粘结相的均匀分布和体积分数,使合金兼具优良的显微组织、更为细小的W晶粒尺寸和98%以上的致密度,复合材料综合性能得以提高,对高强韧、超细晶钨合金的开发应用具有重要意义。
本发明属于新材料技术领域,涉及一种内嵌贵金属Pd/BiVO4@RuIII‑TA核壳结构纳米复合材料的制备方法。通过一次性组合BiVO4、RuCl3、PdCl2和单宁酸溶液,巧妙利用单宁酸的双重作用,既能和Ru3+形成络合物壳层又能还原Pd2+得到钯纳米粒子,在常温常压搅拌下可直接一步合成内嵌贵金属Pd/BiVO4@RuIII‑TA核壳结构纳米复合材料,大大提高了BiVO4和单宁酸的应用范围。本发明具有环境友好、简单易得等优点。合成出的纳米复合材料稳定性高、吸附降解性能优异,可广泛用于生物医药、生物传感器、催化、废水中有机污染物的去除、重金属离子还原等领域。
本发明属于柔性电子印刷技术领域,具体涉及一种铜基导电油墨及其制备方法、一种铜基柔性复合材料及其应用。本发明提供了一种铜基导电油墨,包括以下质量百分含量的组分:0.1~0.7%石墨烯/铜复合材料,52.1~59.1%纳米铜,2~5%粘结剂和38~43%有机溶剂。由本发明提供的铜基导电油墨制备得到的铜基柔性复合材料中含有石墨烯/铜复合材料,当铜基柔性复合材料受到外力作用时,烧结后的纳米铜组织间会产生裂纹,当裂纹扩展至石墨烯/铜复合材料处,由于石墨烯具有较强的机械性能,能够阻止裂纹的进一步扩展,从而提高了铜基柔性复合材料的耐疲劳性能,进而保证由铜基柔性复合材料制备得到的柔性电路具有较低的电阻率变化率。
本发明公开了一种雷达天线罩/天线窗用SiO2f/SiO2复合材料及其制备方法,制备步骤包括:制备短切石英纤维改性的SiO2f/SiO2复合材料,将SiO2f/SiO2复合材料放入化学气相沉积炉,在真空条件下通入含有三卤化硼、NH3和B(N(CH3)2)3的先驱体气体,沉积即得到BN改性的SiO2f/SiO2复合材料。本发明制备得到的BN涂层力学性能好,介电性能优良,同时在天线罩/天线窗表面形成了压应力层,提高了雷达天线罩/天线窗的力学性能和抗热震性能。
一种多壁碳纳米管/环氧树脂吸波隐身复合材料的制备方法,该制备方法包括以下步骤:对多壁碳纳米管进行预处理、纯化处理、高温碱处理后,将其分散到环氧树脂中,制成一种多壁碳纳米管/环氧树脂吸波隐身复合材料。本发明的有益效果在于:通过对多壁碳纳米管进行高温NaOH处理,使碳管在其表面产生比较多的孔洞,提高碳纳米管的表面活性;制备的吸波隐身复合材料具有良好的雷达吸波效果和可控吸收频段,这种吸波复合材料的体积电阻率在106-107Ω·cm数量级,具有优良的抗静电的能力。
本发明叙述了一种防结冰硅橡胶复合材料表面的制备方法。将氯化钾、二氧化硅和硅藻土颗粒在丙酮中混合得到改性的氯化钾粉末填料,然后将改性氯化钾粉末填料与α,ω–二羟基聚二甲基硅氧烷,固化剂四乙氧基硅烷和溶剂正己烷球磨混合均匀后加入催化剂二月桂酸二正丁基锡后继续球磨;将混合均匀的悬浮液在玻璃板上浇铸成膜,室温固化得到硅橡胶复合材料。将此硅橡胶复合材料表面简单打磨后即具有防结冰性能,能够显著降低结冰条件下表面覆冰量,最多降低91%以上,循环10次后最多仍能降低覆冰量83%以上。本发明的防结冰硅橡胶复合材料表面的制备方法简单,使用原料来源广泛,价格便宜,防结冰性能显著并能循环使用,可用于建筑材料表面或重要设施表面防结冰。
本发明公开了一种利用定向凝固制备高强高导Cu-Fe-Ag原位复合材料及方法,该复合材料的配方由如下以质量百分比计的原料组成:铁:3.0~15%,银:0.01~3.0%,杂质总量≤0.1%,余量为铜。本发明的方法采用定向凝固方法进行铸造,再经过固溶处理—冷拉变形—退火处理—冷拔变形—时效处理等工艺流程,制备出高强高导Cu-Fe-Ag复合材料。该复合材料的纤维强化相是在凝固过程中形成的,具有连续性好,热稳定高,相界面结合牢固等优点,具有很高的抗拉强度和良好的导电率,在电子、信息、交通、能源、冶金和机电等线领域具有广泛的应用前景。
本发明提供了一种聚丙烯改性用复合材料的制备方法,包括以下步骤:将硅灰石粉用水调成50%?60%的浆料,加入硬脂酸钠;将硫酸钡和钛白粉按质量比为(4?6) : 1用水配成65?70%的复合浆料,加入硬脂酸钠和硅烷偶联剂;将配好的钛白粉—硫酸钡复合浆料湿法研磨至3000?4000目;将配好的硅灰石浆料加入制备好的钛白粉?硫酸钡复合浆料,钛白粉?硫酸钡与硅灰石的质量比为(10?12) : 1,再添加硅烷偶联剂进行包覆;将复合浆料干燥得到复合材料干粉;将复合材料干粉打散解聚,再经旋风分级处理,收集2500?3000目的粉体。本发明能够得到一种具有高耐候、高光泽、高化学稳定性的复合材料产物。
本发明属于复合材料零件的制造,涉及一种树脂基复合材料零件铺层定位方法。(一)按照有效数模在模具型面上刻出铺层轮廓线或根据图纸的尺寸在模具型面上画出临时标记;(二)在模具的非型面处安装定位点,(三)用预浸料或其余等效材料按照型面的形状铺出包括定位点在内的型面样板,(四)将铺好后的型面样板固化后并修出铺层轮廓,并对铺层位置作出相应标记。本发明采用在模具内按照不同铺层的定位位置分别制做铺层的方法,在极大程度上可以保证零件的铺层位置的准确性,满足了设计要求,提高了产品质量,并可以极大的降低复合材料成型技术的成本。树脂基复合材料零件铺层定位方法可以将铺层者的操做难度和劳动强度降低之至50%。
本实用新型涉及一种复合材料铺贴模具,尤其是一种模具曲面可以调节的复合材料铺贴模具。一种可调节曲面的复合材料铺贴模具,所述模具包括底座、高度可调的支撑件、吸附装置及铺贴钢板,所述支撑件安装于底座上,吸附装置安装于支撑件的顶端,铺贴钢板吸附于吸附装置上。本实用新型具有如下优点:可用来进行各种单曲率复合材料零件的小批量铺贴工作,减少了复合材料零件铺贴生产专用工装使用量,可有效解决生产该类零件工装带来的长周期和高成本的问题,同时也避免了小批量模具的利用率偏低问题。
一种异型结构纳米碳材料增强镁基复合材料的方法,按1‑3g:200‑600ml的比例,将直径>200 nm的多壁碳纳米管加入混酸液中(浓硫酸:浓硝酸=1~3:3~6)。然后,再加入0.005‑0.1g/ml比例的高锰酸钾,60‑100℃水浴加热2‑8h,清洗和真空冷冻干燥得到异型结构纳米碳材料。采用液态分散法制备异型结构纳米碳材料含重量比为5‑20%的预制块体生坯,并碾碎至粒度<10目的粉体颗粒,加入到熔炼好的镁合金溶体中,熔化后,机械搅拌分散,最后浇铸。本发明工艺简单,异型结构纳米碳材料均匀分散到镁溶体中,形成强界面结合,细晶效果明显,复合材料力学性能较好,有利于制备性能优异的镁基复合材料。
本发明公开了一种添加稀土氧化物改善搅拌摩擦加工制备复合材料均匀性的方法,通过以下步骤实现的:取一定比例的REO粉末和合金粉末M均匀混合保存;在基体板材上打盲孔,将混合均匀的粉末填入准备好的基体板材中并且压实;对基体上填充粉末区域进行搅拌摩擦加工,在搅拌头摩擦产热以及搅拌针的旋转搅拌作用下,REO促进M与Al充分反应形成Al-M金属间化合物且均匀分布于复合区,最终得到均匀的金属间化合物增强复合材料。本发明具有以下优点:解决了纯合金粉末搅拌摩擦加工原位合成复合材料过程中出现的团聚现象,通过添加REO使得金属间化合物增强相在基体中均匀分布。
本发明公开了一种玻璃纤维复合材料弯压损伤声发射特征参数表征方法,采用声发射信号的能量、计数两个特征参数信息反映玻璃纤维复合材料损伤的全过程。通过提取玻璃纤维复合材料弯曲加载损伤过程中所产生声发射信号的特征参数,找出各特征参数与玻璃纤维复合材料不同损伤阶段间的内在联系,从而实现声发射特征参数对玻璃纤维复合材料损伤表征,达到玻璃纤维复合材料全寿命定量评价和损伤预警的目的。本发明优点:适用于其他增强纤维复合材料的健康监测,在工程检测中具有重要的实际应用价值。
本发明提供了一种金属基复合材料的制备方法、搅拌摩擦转角挤压装置,涉及复合材料制备技术领域。本发明提供的金属基复合材料的制备方法,包括以下步骤:在金属基体上打孔,在孔内添加增强体,得到待制备试样;在搅拌摩擦头的搅拌作用下金属基体与增强体混合,得到混合后的材料;将所述混合后的材料进行等通道转角挤压,得到金属基复合材料。本发明通过搅拌摩擦头的搅拌作用将增强体均匀分散在金属基体中,进行等通道转角挤压时,剪切变形使复合材料晶粒进一步细化,同时起到形变强化作用。本发明的制备工艺简单,制备过程不需要任何保护气体,且能避免金属基体可能被污染和氧化问题,制备的金属基复合材料具有优异的强韧性。
一种镁基纳米复合材料触变塑性成形本构模型的建立方法,首先根据镁基纳米复合材料的触变塑性成形实验所得的数据,得到应力σ、应变ε、应变速率温度T、液相率fL、增强相纳米颗粒的体积分数fp之间的非线性关系,同时考虑由于纳米颗粒会引起Orowan增强机制对复合材料的屈服强度影响,其本构模型由以下式子表达 : 结合触变塑性成形实验数据,通过计算得到本构关系模型中的参数。本发明可以准确的再现触变塑性成形过程中应力应变变化,为数值模拟提供准确的材料本构模型,获得的模拟结果精确度高,对于分析镁基纳米复合材料的触变塑性成形特性,优化成形工艺参数具有重要的意义。
本发明提供了一种制鞋材质用的球形Ag/SiO2微纳米复合材料制备方法,经过球形CaMg(CO3)2模板合成、球形核壳结构CaMg(CO3)2@SiO2·xH2O中间体制备和球形Ag/SiO2微纳米复合材料制备三步骤,与现有技术相比,本发明的一种制鞋材质用球形Ag/SiO2微纳米复合材料制备方法利用球形碳酸盐模板合成了直径~6μm球形Ag/SiO2微纳米复合材料,其中Ag纳米粒子尺寸可以控制在~60nm,壳层厚度可以控制在~45nm;制备Ag/SiO2微纳米复合材料的煅烧温度从400℃增加到600℃时,产物形貌会遭到破坏,而且Ag纳米粒子尺寸也会随之增大;本申请制备的微纳米复合材料相比于单独的Ag纳米粒子表现出更优异的抗菌性能。
本发明属于无机有机复合材料制备技术领域,公开了一种四氧化三铁/聚苯胺复合材料及制备方法,将三价铁盐溶于去离子水中形成溶液并置于聚四氟乙烯的内胆中;将这个内胆置于另一直径更大的聚四氟乙烯内胆中;然后往内径更大的聚四氟乙烯内胆中倒入苯胺和水的混合液,将此套装的内胆置于水热釜中,于烘箱中加热处理一定时间后过滤、洗涤和干燥即可制备得到该复合材料。本发明制备步骤简单,制备过程中不需要额外添加氧化剂,本发明的铁盐既是氧化剂又是四氧化三铁的前躯体。本发明采用气‑液界面法可一步制备得到四氧化三铁/聚苯胺复合材料,大大简化了复合材料的制备步骤,且所制备的复合材料对碘具有良好的吸附性能。
一种预埋支撑件的复合材料壁板结构,包括金属接头、支撑件、内蒙皮、外蒙皮及泡沫层,其中,支撑件与泡沫层组成组合体,内蒙皮、外蒙皮与组合体固化形成复合材料壁板组件,且支撑件置于复合材料壁板组件内,金属接头通过抽芯铆钉与复合材料壁板组件连接。本发明有效提高预埋支撑件的复合材料壁板结构刚度与飞机表面气动外形质量;同时减轻预埋支撑件的复合材料壁板结构重量;适用于飞机护板、减速板等各类舱门、口盖结构,具有结构简单、可靠性高、结构刚度高、装配工作量小等优点。
本发明公开了一种密封凹槽的复合材料法兰结构,所述法兰结构作为复合材料产品部件或零件连接的部分,包括法兰1和法兰2,法兰1是复合材料产品部件或零件的平面开口端,法兰2是复合材料产品部件或零件的带凹槽开口端;法兰1和法兰2随复合材料产品部件或零件同步成型,实现法兰1和法兰2连接的复合材料产品部件或零件间的密封。本发明法兰1平面和法兰2凹槽大小、位置均可根据需要连接的复合材料部件或零件密封要求设计,便于复合材料材料部件和零件的一体化成型,保证了复合材料部件或零件本身密封性。
本发明涉及一种石墨烯与聚合物介电复合材料, 即不同含氧量的石墨烯掺杂聚偏氟乙烯的复合材料。该复合材料中各成份所占的质量比为:石墨烯0.5-3%,聚偏氟乙烯97-99.5%。本发明将不同含氧量石墨烯掺杂到聚偏氟乙烯中,在频率100Hz条件下掺杂有低含氧量石墨烯的聚偏氟乙烯复合材料的介电常数最高可达83。本发明提供了一种不同含氧量石墨烯与聚偏氟乙烯介电复合材料;同时提供了一种通过改变石墨烯的含氧量调节石墨烯与聚偏氟乙烯介电复合材料介电性能的方法。
本发明公开了一种连续纤维增强金属基复合材料的深冷处理方法,属于先进复合材料技术领域。具体的工艺流程为:先采用真空气压浸渗法制备连续纤维增强金属基复合材料,经线切割及表面抛光处理后装入线膨胀系数低的石墨模具内,再对装有连续纤维增强金属基复合材料的石墨模具进行‑130℃以下的多次深冷循环和不同回温的组合工艺处理。从而消除或减少了连续纤维增强金属基复合材料内部残余应力,改善了复合材料内部浸渗缺陷和复合材料的组织均匀性,更重要的是,在这种冷热组合工艺作用下,可以调控复合材料界面结构和纤维与金属之间界面强度,界面性能的改善可进一步提升复合材料的综合力学性能。其在航空航天及汽车等领域中具有广泛的应用前景。
本发明提供了一种锂硫电池正极用复合材料,包括聚萘/硫复合材料和多孔二氧化钛;所述多孔二氧化钛包覆在所述聚萘/硫复合材料表面。本发明还提供了上述锂硫电池正极用复合材料的制备方法,以及由这种锂硫电池正极用复合材料制成的正极和电池。本发明所提供的锂硫电池正极用复合材料,通过将多孔二氧化钛包裹在聚萘/硫复合材料表面,使得电池在放电时正极产生的多硫化锂不易溶于电解液中。其次,本发明提供的锂硫电池正极用复合材料大大提高了电极材料的载S量,使得聚萘/硫复合材料中硫的含量高达65%~80%。此外,由于聚萘与二氧化钛都有一定的弹性,两者结合在一起,对电极的体积膨胀具有双重减缓作用。
一种等通道转角挤压制备弥散强化铜基复合材料的方法,将热挤压、轧制、拉拔或旋锻加工成型后的弥散强化铜基复合材料,经200-900℃预热保温0.5-5h后送入已预热至100-500℃且涂抹润滑剂的等通道转角挤压模具(3)中,以挤压力(1)100-1000MPa,挤压速度1-100mm/min对弥散强化铜基复合材料棒材、板材、管材、方形料等进行挤压成型,每道次挤压后,再进行下一道次的挤压,共进行2-10道次挤压。本发明有效地细化了弥散强化铜基复合材料的晶粒,提高了弥散强化铜基复合材料的强度、硬度、导电率等综合性能,具有操作简单、加工效率高、成本低等优点。本发明制备的弥散强化铜基复合材料可广泛地应用于航空、航天、电子、制造等领域。
一种梯度强度桥墩防撞复合材料夹层结构,其特征是一种以纤维材料为增强材料、聚合物树脂为基体材料的复合材料外壳(1)、内部隔板(2)以及以泡沫塑料为填充材料(3)的梯度强度桥墩防撞复合材料夹层结构。本发明根据船舶撞击桥墩防撞装置时复合材料夹层结构的受力状况,在复合材料夹层结构不同高度层布设间距不相等的内部隔板,从而在高度方向上形成上端强度大、下端强度小的梯度强度桥墩防撞复合材料夹层结构。本发明在满足桥墩防撞复合材料夹层结构强度要求的同时,可节约原材料,降低原材料成本与制造过程成本。
本发明提出了制备C/SiC复合材料的方法,该方法包括多个重复周期,每个重复周期包括:(1)将C/C多孔复合材料浸渍在SiC陶瓷前驱体中;(2)对浸有C/C多孔复合材料的SiC陶瓷前驱体进行加压浸渍;(3)对加压浸渍后的C/C多孔复合材料进行交联裂解。本发明所提出的制备方法,通过多次反复的先驱体浸渍裂解法制备出高致密化且材料机械性能更好的C/SiC复合材料,相比于现有的反应熔融渗透法,不仅不会对C/C多孔复合材料表面造成损伤,且能使复合材料的性能提高10~20%。并且,每个先驱体浸渍裂解周期中的加压浸渍步骤,可使SiC陶瓷前驱体更容易进入样品内部细微的孔隙,从而可减少为了满足致密化要求的重复周期数,还可使该方法制备出的C/SiC复合材料致密度近似于反应熔融渗透法。
中冶有色为您提供最新的江西有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!