本发明公开了一种LaB6?ZrB2共晶复合材料的制备方法,其特征在于:首先将ZrB2粉末和LaB6粉末混合并在放电等离子烧结炉中烧结,获得LaB6/ZrB2共晶预制体;然后通过光学区熔炉对预制体进行定向凝固,即得产品。本发明采用四个高功率氙灯聚焦加热,具有较高的温度梯度;制备过程高纯石英管通入氩气并通过气流带走杂质及挥发物保证了样品的纯度;样品自下而上实现良好的定向凝固,从而获得ZrB2纤维分布均匀的LaB6?ZrB2共晶复合材料,提高了材料的性能。
本发明涉及一种通过热塑性树脂与纤维材料的原位聚合获得的复合材料。更具体地讲,本发明涉及一种通过热塑性(甲基)丙烯酸树脂和含有长纤维的纤维材料的原位聚合获得的聚合物复合材料和其用途,一种用于制备这种复合材料的方法和所制造的包含此聚合物复合材料的机械或结构化零件或制品。
一种原位自生金属基复合材料制备技术,其特征在于:首先将能够反应生成合适增强相的元素均匀混合,要求粒度尺寸<0.1mm,在50MPa~150MPa压力下成型,再按下述步骤制备复合材料:(a)母料的熔炼:将选择的基体合金(如:Al,Zn)熔化,对Al合金过热度要求在120~450℃;对Zn合金过热度要求200~450℃;(b)反应物料的加入:在熔体达到温度时,把反应物料压制块用钟罩压入到熔体中,保持2~20分钟;(c)搅拌:搅拌2~3min;(d)保温:10~30min;(e)浇注成型。本发明简单实用,价格相对低廉。
本发明公开了一种热固性树脂双马来酰亚胺树脂-玻璃纤维复合材料的金属化方法,属于非金属复合材料的表面金属化技术。该方法包括对材料表面的预处理和采用电镀液镀覆铜、或镍、或金、或锡铅合金的过程。所述的预处理包括对材料表面的除油清洗、预蚀处理、醇处理、刻蚀、敏化、活化、还原和化学镀铜的工序。其特征在于,刻蚀处理是经过酸处理、水洗、再酸处理、水洗、硝化、混合碱处理、酸洗等步骤完成的。本发明的优点是该方法制备过程简单,易于操作,各种废液易于处理,金属镀层与基体之间具有良好的结合状态。
本发明涉及一种微-纳米碳化硅/聚丙烯复合材料及其制备方法,以微-纳米碳化硅及聚丙烯为原料,微-纳米碳化硅与聚丙烯的重量比为(5-60)∶(95-40),其中,微-纳米碳化硅包括微米碳化硅和纳米碳化硅,纳米碳化硅在微-纳米碳化硅组合粒子中所占的重量百分含量为1-25%。制备方法包括以下步骤:(1)微-纳米碳化硅表面的改性处理:采用偶联剂对微-纳米碳化硅表面进行改性;(2)微-纳米碳化硅/聚丙烯复合母料的制备;(3)将烘干后的碳化硅/聚丙烯复合母料注塑成型。本发明提供的材料制备工艺简单、适应性强,所制备的SiC/PP复合材料具有强度和模量高、韧性高、耐磨性能好、热性能和电性能优良的特点。
本发明涉及用于获得称作聚烯烃纳米复合材料、微米复合材料和聚合物共混物的材料的增容剂,并且本发明包括获得此类增容剂的方法。此类增容剂由有机化合物衣康酸(ITA)或其衣康酸单十八烷基酯(MODIT)衍生物的单体获得。该增容剂是接枝有那些单体的聚烯烃,该聚烯烃的特征在于具有亲水性性质的官能团和疏水性性质的聚合物主链。本发明的增容剂的特征在于具有这些单体的受控接枝程度,并且它们可以最佳地用于各种应用。本发明还涉及获得此类增容剂的方法。
本发明公开了一种LiVOPO4/LiMPO4/C核壳结构复合材料及制备方法,即首先在正极材料LiVOPO4表面包覆LiMPO4,然后再包覆C层,形成LiVOPO4/LiMPO4/C核壳结构复合材料。制备方法:通过质量分数71~93%的LiVOPO4前驱体、5%~20%LiMPO4前驱体在400~700℃下焙烧1~10h,可得到一定量LiMPO4包覆的LiVOPO4材料,再加入2%~9%碳源,在500~800℃氩气保护气氛下烧结2~10h即可制得LiVOPO4/LiMPO4/C核壳结构的复合锂电材料。本发明经过在LiVOPO4表面包覆LiMPO4、C层,形成核壳结构的复合材料,一方面可以有效降低电荷转移阻抗,另一方面可以减少电解质溶液与电极材料的直接接触,避免电解质溶液与电极材料之间副反应的产生,从而显著提高材料的倍率性能和循环性能。本发明产品可以用在作为便携式电子设备、电动汽车中使用的锂离子二次电池正极材料。
本发明属于电化学全水解领域,具体为基于P‑MoS2@CoP复合材料全水解催化剂的制备方法,本发明通过制备Co(OH)F/CC纳米线前驱体、制备CoMo‑species/CC纳米线阵列和复合物前驱体的磷化处理得到的P‑MoS2@CoP复合材料,本发明制备方法简单,P‑MoS2@CoP复合材料析氢、析氧性能优异,完全可以取代商业的RuO2//Pt/C用于电化学水分解,从而降低电解水产氢、产氧的成本,在电催化全水解方面展现出了可工业化应用的优势。
本发明涉及一种多晶SiC—B4C—金刚石三层复合材料及其制备方法,属于无机非金属材料领域,所述方法以B4C多晶块体或粉末、SiC多晶块体或粉末、金刚石粉末为原料,通过对原料进行净化处理,预压成型,预压成型的原料用金属包裹体包裹,装配高压组装单元,放置于超高压设备中,在600‑2300℃,1‑25 GPa高温高压条件下烧结,制得多晶SiC—B4C—金刚石三层复合材料;利用本发明所制备的SiC—B4C—金刚石三层复合块体材料具有多晶金刚石、多晶B4C与多晶SiC三层结构,金刚石层、B4C层与SiC层经高温高压烧结在一起,三层多晶体结合紧密,晶粒大小分布均匀,致密度高;该多晶SiC—B4C—金刚石三层复合材料既具备金刚石层高硬度高断裂韧性的特点,又结合了B4C密度小以及SiC成本低的优点。
本发明公开一种Al2O3‑Ag@TiO2纳米棒光阳极复合材料及其制备方法,所述复合材料由Al2O3薄膜包覆Ag颗粒修饰的二氧化钛纳米棒阵列组装而成,其中Al2O3的厚度为厚度为5‑50nm,并通过1)TiO2纳米棒阵列制备、2)Ag颗粒制备工艺、3)Al2O3薄膜制备工艺获得Al2O3‑Ag@TiO2纳米棒光阳极复合材料。本发明采用的原子层沉积Al2O3薄膜钝化Ag颗粒修饰的TiO2纳米棒阵列,采用钝化技术和敏化技术相结合提高TiO2纳米棒阵列的简易方法,使TiO2纳米棒阵列具有更高的光电转换效率。
本公开涉及一种纤维增强复合材料的层间改性方法及纤维增强复合材料,该方法包括:S1.将二元纳米复合增强相浆料与基体树脂混合,得到第一混合料;二元纳米复合增强相浆料含有氧化石墨烯、氧化炭黑和有机溶剂;相对于1重量份的氧化石墨烯,氧化炭黑的用量为0.1~0.5重量份;S2.除去第一混合料中的有机溶剂,并与固化剂混合,得到第二混合料;S3.将第二混合料涂覆在至少两层纤维增强复合材料子层板的表面,然后将至少两层纤维增强复合材料子层板叠层并进行热压固化,得到层间改性的纤维增强复合材料。该方法将氧化石墨烯和氧化炭黑进行合理组合得到二元纳米复合增强相,二者互相协同增效,可以使纤维增强复合材料的层间断裂韧性得到有效改善。
本发明公开一种负载氢氧化镍纳米片和钴酸镍纳米晶的碳纳米纤维复合材料及其制备方法和应用。该复合材料中,碳纳米纤维同时均匀负载有钴酸镍纳米晶和氢氧化镍纳米片,其中钴酸镍纳米晶均匀镶嵌在碳纳米纤维内部,共同构成碳纳米纤维骨架,氢氧化镍纳米片垂直交错布设在碳纳米纤维骨架表面。其制备为:(1)得到含有有机碳源、钴源和镍源的碳纳米纤维前驱体;(2)将步骤(1)产品在惰性气体氛围下煅烧;(3)煅烧产物表面生长氢氧化镍即得最终产品。该复合材料比表面积大,结构稳定,电化学性能优良,其中在2A g‑1电流密度下,比容可高达1926F g‑1,可用于超级电容器阳极材料。
本发明公开了一种制备高分子-无机复合材料的方法。该方法包括先用PMR型单体预聚反应生成聚酰胺酸预聚体,再进行亚胺化得到亚胺化预聚体(亚胺化粉末),无机材料可以在上述各个阶段或与PMR型单体或与亚胺化前的预聚体或与亚胺化后的预聚体复合,最后以加成反应热聚合机理,成型为交联的网状结构高分子-无机复合材料。应用该方法能实现高分子与无机材料任意比例复合,且复合均匀,所得复合材料无空隙和气泡,性能优良。
一种复合材料MoO3/Polyaniline/Ti3C2Tx及其制备方法,(1)Ti3AlC2粉体完全浸入到体积分数为40%的HF溶液中,离心得到粉体干燥;(2)四水钼酸铵和酒石酸完全溶于水得到水溶液;(3)将粉体Ti3C2Tx粉体加入到水溶液中;(4)将步骤(3)中悬浮液离心,在真空干燥箱中干燥;(5)将步骤(4)中所得到粉体烧结,保温,得到MoO3/Ti3C2Tx复合材料;(6)将所得粉体超声分散于蒸馏水中,加入苯胺,冰浴中搅拌;(7)将(NH4)2S2O4溶于HCl中,冷却,加入到步骤(6)中;(8)将步骤(7)中的悬浮液离心,水洗,醇洗,并冷冻干燥,得到目标产物;由于该材料成分可调性大,制备工艺简单、合成过程易于控制,拓宽了该复合材料在电极材料的应用范围。
本发明涉及一种蜂窝状陶瓷-金属复合材料磨损性能的检测装置及检测方法,属于金属基复合材料领域。本发明包括工作台、电机支架、可调速电机、传送带、转动主轴、转轴支架、砝码台、转环、试样转轴、磨损轨、挡环、磨料筛网、集料板、夹具、磨料漏斗、磨料回收筒、韧性金属柱、耐磨复合区、试样夹持台阶、进料斜面、硬度计电子输出仪、定量金相显微镜电子输出仪、精密天平电子输出仪、计算机。本发明使多个磨损试样在不同载荷下同样磨损环境条件下进行检测;过滤过细磨料,使磨料保持在合理范围,将有助于检测结果的准确性;可靠地反应出蜂窝状陶瓷-金属复合材料磨损过程中的其结构所特有的耐磨优势。
公开了形成复合材料的方法以及用于形成复合材料的装置。提供了形成复合材料的方法。所述方法可以包括:将悬浮液布置为与载体物理接触,其中,所述悬浮液可以包括电解质以及所述复合材料的第一成分的多个颗粒;引起所述复合材料的所述第一成分的颗粒沉淀在所述载体上,其中,可以在各沉淀的颗粒之间形成多个空间;以及在所述多个空间的至少一部分中通过电镀从所述电解质形成所述复合材料的第二成分。
本发明涉及镁合金-珍珠岩泡沫复合材料的制备方法。本发明的镁合金-珍珠岩复合材料是用真空渗流铸造法,将膨胀珍珠岩复合到纯镁或镁合金中所形成的具有特定结构的闭孔或通孔轻体镁合金-珍珠岩泡沫复合材料。解决了泡沫镁的管、带、片材工业生产中泡孔质量难以控制的技术难题。
本发明提供了纤维水泥复合材料,其加入漂白的和未漂白的纤维素纤维混合物,以作为优质级纤维素浆的部分或全部替代物。漂白的、标准级的纤维素纤维被与未漂白的、标准级的纤维素纤维联合使用,以提供纤维水泥复合产品,其韧性和强度实质上等于或甚至优于用优质级的、未漂白的纤维素纤维增强的等同纤维水泥复合材料。漂白的和未漂白的标准级纤维素纤维的增效并用,生产出具有具有期望的性能的复合材料,该期望的性能以前只能通过使用优质级纤维素浆才能达到。
一种用于对复合材料进行回收的过程包括以下步骤:把一定量的包含至少一种聚合物和铝的复合材料送进至少一个第一反应器内;在该至少一个第一反应器里在非氧化环境中以一温度加热复合材料,该温度足以使所述至少一种聚合物挥发而形成烃副产物和铝;把没有了所述至少一种聚合物的铝送进第二反应器;以及在第二反应器里在非氧化环境中以一温度加热铝,该温度足以使铝熔化。
本发明属于纳米材料制备技术和纳米生物应用领域,涉及一种磁性拉曼纳米复合材料的制备及其在生物分离和免疫检测方面的应用。将磁性纳米粒子、锌盐和碱源溶于无水乙醇中,采用溶剂热的方法制备磁性拉曼纳米复合材料,通过表面修饰技术,实现与生物样品的偶联。本发明方法操作简便,节约成本;可实现磁性拉曼纳米复合材料的磁学性质、共振拉曼散射特征及表面性质的可控;可用于生物样品的分离和检测等领域。
本发明涉及一种PBT/POSS新型纳米复合材料及其制备方法,其复合材料是由以下配方为原料制备得到:聚对苯二甲酸环丁二醇酯(CBT)50-99.99重量份,笼型多面体低聚倍半硅氧烷(POSS)0.01-50重量份,有机锡与POSS等摩尔份。其制备方法采用原位聚合工艺,利用经过改性POSS纳米粒子而合成的引发剂来引发对苯二甲酸环丁二醇酯(CBT)的开环聚合反应,制备出PBT/POSS相容性非常好的纳米复合材料。
本发明提供一种用于制备复合材料扇叶的模具及复合材料扇叶的制备方法。模具包括上模和下模,上模包括上型面,下模包括下型面,上模与下模合模后上型面与下型面拼合形成用于成型扇叶的型腔,扇叶包括相连的叶片和扇毂座;型腔的分型线位于扇叶的最大轮廓处;上模与下模合模后,上模与下模之间形成分型面,分型面为由分型线水平向外延伸形成。本发明通过对模具设计、铺层设计、铺布过程等方面的改进,提供了一种用于制备复合材料扇叶的模具及复合材料扇叶的制备方法,成型的扇叶型面精度高,成品率高,产品性能稳定,成型后只需进行飞边处理即可。
一种含高沸醇木质素衍生物的混凝土复合材料及其制备方法,它解决了现有技术从造纸“黑液”中提取木质素磺酸盐所带来的上述缺陷,提供一种纯度高、加工工艺简单、容易实施,而且对混凝土的改性效果好的含高沸醇木质素衍生物的混凝土复合材料及其制备方法。它包含有高沸醇木质素或它的衍生物5-80份,环氧氯丙烷或环氧丙烷与醇类的混合液10-95份,水泥、砂石类原料5-80份,固化剂0.05-5份。本发明可以根据不同水泥砂浆或混凝土制品改性的需要,挑选合适类型的高沸醇木质素添加剂,改善了水泥砂浆或混凝土制品的韧性,增加抗渗性能,改性效果好。且加工工艺简单、容易实施,可以降低生产成本,提高产品的竞争力。
本发明属于预制体制备技术领域,特别涉及一种碳/碳复合材料用结构增强针刺预制体、碳/碳复合材料及其制备方法。本发明采用0°碳纤维无纬布、网胎、45°碳纤维无纬布、网胎、‑45°碳纤维无纬布、网胎和90°碳纤维无纬布的顺序形成交替层叠结构,该种结构所得的针刺预制体在致密化后,所得的碳/碳复合材料在受到应力时底部0°碳纤维无纬布中的碳纤维最先达到断裂强度,在0°碳纤维断裂后裂纹穿过45°碳纤维无纬布和‑45°碳纤维无纬布的碳纤维时发生偏转并沿界面扩展,发生裂纹偏转,造成层间分层破坏,使得断裂应力得到释放,有利于减缓应力裂纹在纵向的扩展,进而有利于增强碳/碳复合材料的强度和韧性。
本发明公开了一种具有优异力学性能的Cu‑(WC‑Y2O3)复合材料制备方法,其特征在于:包括如下步骤:(一)预制粉;(二)煅烧还原;(三)终制粉;(四)烧结。本发明通过球磨工艺和放电等离子烧结,将WC与Y2O3这两种高硬度颗粒添加到铜基体内得到WC‑Y2O3均匀分布的Cu‑(WC‑Y2O3)复合材料,通过WC‑Y2O3均匀分布产生的弥散强化作用,细化铜晶粒,提高铜合金的硬度,高达112~132HV,使其具有更加优异的力学性能。在各种使用条件下,可以提高铜合金的使用寿命,减少因铜合金硬度强度不足带来的风险。
本发明提供一种能够进一步提高来自附着在碳纤维上的碳纳米管的特性的复合材料、预浸料坯、碳纤维增强成型体及复合材料的制造方法。复合材料(10)在构成复合材料(10)的碳纤维束(12)的各碳纤维(11)的表面形成有由多根碳纳米管(17)构成的结构体(14)。碳纳米管(17)为弯曲的形状。碳纳米管(17)以各种姿势附着在碳纤维(11)的为曲面的表面,另外,通过使其他的碳纳米管进入形成于碳纳米管(17)与碳纤维(11)的表面之间或附着的碳纳米管(17)彼此之间等的空间间隙中,从而由更多的碳纳米管(17)形成结构体(14)。
本发明涉及锌铬合金技术领域,尤其是一种锌铬合金复合材料的冷轧方法,包括以下步骤:S1:材料准备,选取长宽相同的不锈钢板、碳钢板、铝板,S2:通过加热装置对不锈钢板、碳钢板、铝板进行焊前预热处理,S3:取纯铜2~3份、铝合金2~3份、钛合金1~2份、优质纯钼0.5~1份、锌镁合金1~2份进行混合S4:将去应力退火后的不锈钢板放置在加工装置上,S5:利用轧机对复合板材进行轧制,S6:将表面光滑处理完毕的复合板材进行镀锌铬混合物处理。此方法在镀铬合金复合材料的冷轧过程中采用先加热回火,然后再进行冷轧的过程,极大的提高了后续加工中复合板材的处理效率。
本发明属于金属‑有机框架传感器领域,具体涉及一种采用N‑P‑4‑HN@UiO‑66‑NH2复合材料测定HCHO含量的方法。所述方法包括以下步骤:1)制备N‑P‑4‑HN材料;2)制备N‑P‑4‑HN@UiO‑66‑NH2复合材料;3)绘制工作曲线;4)检测。本发明采用的原理如下:N‑P‑4‑HN与HCHO相连接时,HCHO禁止N‑P‑4‑HN分子内能量转移,进而增强N‑P‑4‑HN的在553nm处的荧光,通过内率效应减弱在430nm处的荧光,UiO‑66‑NH2吸附N‑P‑4‑HN使荧光变化更加明显,通过其荧光光谱变化进行测定。本发明的测定方法,具有选择性高、灵敏度高的特点。
本发明公开了一种高熵合金增强铝基复合材料及制备方法。制备工艺包括设计出高硬度的高熵合金体系,按照计算配比后进行真空高能球磨制备高熵合金粉体;按照配比加入铝合金粉并进行混粉;采用热挤压技术制备高熵合金增强的铝基复合材料。获得的复合材料可以改善增强相与铝合金基体界面结合强度,使复合材料具有良好的力学性能。
本发明公开一种氧化石墨烯包覆螺旋碳管三维复合材料及光化学还原氮掺杂的制备方法。以化学氧化制备的氧化石墨烯以及以燃烧化学气相沉积法制备的螺旋碳管为原料,包括将氧化石墨烯和螺旋碳管混合刮涂在泡沫镍上,光照实现高氮掺杂石墨烯的方法,将刮涂了氧化石墨烯和螺旋碳管混合物的泡沫镍在氨气氛围下,通过使用100 到 120 mJ/cm2能量的激光或汞灯可选择的区域位置进行光照,光照时间在1‑30分钟,得到高氮掺杂光还原氧化石墨烯和螺旋碳管三维复合材料。本发明操作方便、成本低、能大批量制备,通过光照时间、强度和混合螺旋碳管独特的交联作用,以达到调控氮掺杂含量以及石墨烯的导电率和的机械性能。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!