本发明公开了一种高比能量锂离子电池的制造方法,该方法步骤包括:配制电池正极‑配制电池负极‑配制电解液‑电池制备,本方法中正极材料使用了高电压钴酸锂(LiCoO2),该种材料充电电压大于4.35V,便于快速充电,负极材料使用了硅基材料,电解液中添加了碳酸亚乙烯酯(VC)、氟代碳酸乙烯酯(FEC)、二氟磷酸锂(LiPO2F2)、1‑氟代硅烷中一种或者几种物质,显著提高了动力锂电池的能量密度、延长了循环寿命。
用于生产用作锂离子可再充电电池中的阳极材料的硅颗粒的方法,其特征在于以下步骤:a)任选地,将硅晶种颗粒和/或锂晶种颗粒引入可旋转反应器中,或在可旋转反应器中生产硅晶种颗粒或锂晶种颗粒或内部芯材,作为单独的任选步骤或作为包括于步骤b)中,b)将用于CVD的含硅的第一反应气体引入反应器中,将反应器设置为在CVD条件下旋转;在晶种颗粒上生长富含硅的芯颗粒,同时反应器以在所述芯颗粒上产生向心加速度的旋转速度旋转,向心加速度超过自然重力加速度至少1000倍,c)任选地,将第二反应气体、液体或材料引入步骤a)和步骤b)的反应器中,或引入步骤b)的芯颗粒已经被引入其中的第二反应器中;生长硅含量低于芯材的第二材料,并且第二反应气体、液体或材料不同于第一反应气体。本发明还提供了用作锂离子可再充电电池中的阳极材料的硅颗粒、用于所述方法的旋转反应器的用途以及用于操作所述方法的反应器。
一种电池结构,包括:多个电池,每个电池由锂离子二次电池构成;以及多个配设部,多个电池配设在多个配设部内。多个配设部被分成如下两组:上位热传递组,所述上位热传递组的热传递顺位比热传递顺位的中间值高,其中,所述热传递顺位是从按照降序排列的电池的相应热传递量;以及下位热传递组,所述下位热传递组的热传递顺位比中间值低。多个电池中表示锂析出耐性的最高值的电池配置在多个配设部中的、属于上位热传递组的高耐性配设部上,其中,所述锂析出耐性的最高值表示在充放电操作期间锂不可能析出的程度。
本发明公开了一种锂电池生产用绝缘片自动贴合装置,包括机体,机体内分别转动设置有主轴与辅轴,主轴上固定套设有送料叶轮。本发明在机体中设置套设有叶轮的主轴与U型结构的辅轴,利用一级齿轮与二级齿轮实现对三级齿轮与四级齿轮的啮合旋转,通过在承重上设置直线往复运动的推板,以对经导料通道运动的锂电池进行有序控制;通过在二级支架中设置由三级齿轮牵引旋转的转盘,并在一级支架上分别设置相连接的转杆与压杆,使得由转盘带动的转杆带动压杆在倒料通道内进行垂直方向上的往复运动,实现锂电池下落过程中的重力势能向动能的转化,并最终带动压杆对锂电池与绝缘片的的加压,使其二者进行一一对应的贴合连接。
本发明公开一种双节串联锂电池保护电路,属于电子电路技术领域。所述双节串联锂电池保护电路包括电源管理芯片N1、MOS管V2和二极管V1,其中,所述MOS管V2源极接二极管V1的正极,二极管V1的负极接电源管理芯片N1管脚,MOS管V2漏极与电池正电极连接,栅极与电池负电极连接;当电池安装正确时,MOS管V2栅极为低电平,所述MOS管V2导通;当电池反接时,MOS管V2栅极为高电平,所述MOS管V2关断。本发明提供的一种双节串联锂电池保护电路不仅具有过充保护、过放保护和短路保护功能,还具有防电池装反功能;所述双节串联锂电池保护电路基于国产芯片和MOS管设计,满足了保护电路国产化的发展需求。
本发明公开了一种锂电池运输存储设备及其使用方法,包括万向轮、底板、拉环、立柱、海绵套、第一压力传感器、第一伸缩弹簧、储存盒、压板、红外测距传感器、速度传感器、电动推杆、顶板、滑槽、操作面板、位移传感器、第二压力传感器、连接杆、滑块和第二伸缩弹簧;本发明是将锂电池运输过程中的货物运载稳定情况,经阶梯式的压力状况解析和运载状况处理,来得到相关联的货物稳定态信号,并据此做出针对性的执行动作,以提升货物运载过程的安全稳定程度和合理性,避免因锂电池的装载不规范、不合理而导致运输时的锂电池的运动势能对储存盒侧壁造成冲击、损坏。
本发明公开一种用于直流电源的锰系锂离子电池及其制备方法,包括:分别制取正极片和负极片,将所述正极片和负极片按照设定的正负极容量N/P比进行电芯叠片,得到电芯;将电解液注入所述电芯中,获得用于直流电源的锰系锂离子电池;所述正极片由锰系材料制备而成。本发明提供的技术方案制备工艺简单,对电池生产环境要求较低,实用性强,生产成本低;本发明提供的锰系锂离子电池,跟传统的各锂离子电池体系相比,成本明显下降。
本发明公开了一种改善锂电池隔膜褶皱的方法,包括:(1)将正极片、负极片和隔膜叠片后进行极耳焊接、封装和烘烤,以便得到电芯;(2)将所述电芯放入真空腔内,使用第一夹具夹住所述电芯且对所述电芯施加预定压力,然后在真空环境下将电解液注入到所述电芯内部,并对注液后的电芯进行真空封装;(3)采用第二夹具对步骤(2)得到的电芯进行加压静置;(4)对步骤(3)得到的电芯进行化成处理。该方法可以显著改善锂电池内部干法隔膜褶皱的问题,从而提升锂电池品质,提高锂电池安全性能。
本发明涉及电池回收利用技术领域,尤其涉及一种废旧三元锂电池的回收方法。该回收方法包括以下步骤:电池前处理,至少对所述废旧三元锂电池的正极片进行粉碎过筛;浸出,将粉碎过筛后的所述正极片浸于碱性溶液中形成反应体系,所述碱性溶液至少包括氨水和还原剂溶液,控制所述反应体系的pH和温度进行浸出反应,得到固体和含有价金属的溶液,所述含有价金属的溶液中有价金属包括锂、钴、镍。本申请的回收方法操作简单、可实现工业应用。本申请仅需要对废旧三元锂电池进行简单的初步粉碎,即可进行后续浸出操作,实现有价金属的回收、解决有价金属难以分离的问题。
公开了一种带有消防灭火功能的锂离子电池及其管理系统和控制方法。本申请一实施例中,带有消防灭火功能的锂离子电池,包括:电池本体和微型灭火装置,所述电池本体包括外壳、盖板和设有防爆阀的电芯,所述微型灭火装置安装在所述盖板内部且遮住所述防爆阀的至少一半。本申请实施例可以在锂离子电池发生热失控或有着火风险之时第一时间进行灭火,从而在单体电池起火爆炸之前留出充足的时间以便采取必要措施,同时保障相应电池包中其他部分及其所属设备的安全,减少因锂离子电池热失控而导致其他电池及其所属设备而报废的情况,降低成本。
本发明涉及一种含有洋葱状富勒烯的锂离子电池正极材料及其制备方法,包括如下组分以及各组分的质量百分比分别为:锂盐50~55%、洋葱状富勒烯1~4%、导电剂1~3%、粘合剂1~3%、分散剂0.1~0.5%、N‑甲基吡咯烷酮33~48%。该方法为在0MPa压力下,将锂盐、洋葱状富勒烯、导电剂、粘合剂、分散剂至于双行星真空搅拌机内,以20~25r/min的转速搅拌10~15min;在0MPa压力下,向预混完成的粉料中加入NMP,以300~500r/min的转速搅拌20~25min;在‑0.08MPa压力下,以2000~3000r/min的转速搅拌200~300min;在‑0.08MPa压力下,以10~15r/min的转速搅拌15~25min;将混合好的正极浆料过120目筛子,筛去大颗粒杂质。本发明使用洋葱状富勒烯材料可以有效改善正极材料的稳定性,进而提升锂离子电池的循环寿命、降低电池内阻。
本发明实施例提供一种锂电池充电电流确定方法、装置、设备及可存储介质,具体实现方案为,该方法包括:获取目标锂电池在充电过程中实际电芯电压变化率和实际充电电流;将所述实际电芯电压变化率和实际充电电流输入预设的充电电流模型中,以输出优化充电电流;根据所述优化充电电流给所述目标锂电池充电,并获取充电过程中对应的优化电芯电压变化率;若所述优化电芯电压变化率小于等于预设的阈值,则将所述优化充电电流确定为锂电池充电电流。本发明实施例的方法通过可以保证电芯电压在持续上升的同时,电芯电压变化率也没有过高,从而可以确定得到较优的充电电流,充电效率较高。
本发明涉及一种制造用于锂二次电池的负极的方法。利用该方法,可以通过在负极的预锂化之后进一步执行压缩负极的工序使得预锂化之后的负极的孔隙率保持在一定范围内来制造具有优异循环性能的用于锂二次电池的负极。
本发明公开了一种用锂辉石矿渣作助熔澄清剂生产玻璃纤维的方法,包括称量、配料、熔制、通路、拉丝、烘干等步骤;按以下重量份称取个组分:高岭土:100~120,叶腊石:150~410,生石灰:150~200,白云石:50~70,硬硼钙石:50~70,白泡石:130~310,萤石:20~30,锂辉石矿渣10~30,各组分重量份之和为1000。本发明采用锂辉石矿渣为助熔澄清剂,可防止制得的玻璃纤维潮解结块,而且锂辉石矿渣可以降低高岭土的耐火度,同时不需要熔制温度保持稳定,因此降低了工业生产难度。采用本发明提供的方法生产玻璃纤维,不仅降低了成本,还可以减小矿渣对环境的污染,具有较好的经济效益和社会效益。
本发明公开了一种制备锂离子电池正极材料前躯体的方法,该方法包括:将复合锰矿进行研磨,其中,所述复合锰矿主要由硫化锰、二氧化锰和氧化锰组成;将复合锰矿预焙烧,生成预焙烧产物;将预焙烧产物加入硫酸溶液进行反应,待反应完全,过滤,留滤液;对滤液进行除杂,干燥后析出硫酸锰;将硫酸锰溶于去离子水中,加入碳酸盐的水溶液混合干燥后得到球形碳酸锰;将球形碳酸锰分散于水中得到分散液,滴加高锰酸钾溶液和稀酸,干燥后得到球形二氧化锰;将球形二氧化锰与氢氧化锂混合进行焙烧,加入到氯化锰溶液中,烘干得到锂电池前驱体。通过本发明提供的方法制备锂电池前驱体成本低,充放电性能好。
本发明公开了一种高容量三维石墨烯锂亚电池正极载体及其制备方法,该制备方法包括以下步骤:将乙炔黑和三维石墨烯粉体在搅拌机中均匀,然后向搅拌机中加入纯水、无水乙醇、聚四氟乙烯乳液和电解铜粉,搅拌均匀;将搅拌好的正极载体材料在抛丸机中挤压抛丸成直径为2mm的椭球颗粒,然后采用分段式热处理,共分成2段,即得高容量三维石墨烯锂亚电池正极载体。本发明的制备方法制备得到的三维石墨烯锂亚电池正极载体克服了电极极化加剧和容量大大受限的问题,用本发明制备得到的正极载体组装成锂亚电池,放电容量高达1064.33mAh。
本发明公开了一种改性高镍三元正极材料,其是在高镍三元正极材料表面包覆一层含有快离子导体的包覆层;快离子导体的化学通式为Li3x1La2/3‑x1Ma1TiNz1O3、Li2+2x2Zn1‑x2GeO4或LiM′2(PO4)3,其中,M为Ba2+和/或Sr2+,N为Al3+和/或Zr4+,0.04≤x1≤0.167,0≤a1≤1,0≤z1≤1,‑0.3<x2<0.8,M′为Zr、Ti、Ge、Hf中的一种或几种。相对于现有技术,本发明通过在高镍三元正极材料表面包覆一层含有快离子导体的包覆层,既可与材料表面的残锂进行反应,降低材料表面的残锂,抑制其与电解液的副反应,提高材料表面稳定性和循环性能;还具有良好的锂离子脱嵌能力,可提高材料的首次放电容量和首次库伦效率,具有良好的应用前景。本发明还公开了改性高镍三元正极材料的制备方法和锂离子电池。
本发明属于锂电池领域,并公开了一种储锂用S掺杂的TiO2/C复合材料、其制备方法及应用,该复合材料中的S掺杂的TiO2纳米颗粒均匀分布在碳材料上。该方法包括以下两个步骤:(1)利用热注射法制备得到表面吸附有机物的TiS2前驱体;(2)将得到的前驱体在空气中热处理得到S掺杂的TiO2/C复合材料。该复合材料可应用于锂离子电池。本发明的复合材料中的TiO2为S掺杂的锐钛矿相,在原位包覆C之后,导电性得到了极大的提高,应用于储锂,获得了优异的电化学性能。
本发明公开了铷铯化合物在锂离子电池领域中作为高压电解液中的添加剂的新用途、高压电解液添加剂、高压电解液及锂离子电池。该高压电解液包括电解质锂盐、有机溶剂和0.05%‑5%的铷铯化合物。铷铯化合物作为锂离子电池用高压电解液添加剂,能够保护正极材料,有效降低电解液在正极表面氧化分解,大大提升电池的循环稳定性,增加电池寿命,推进高压正极材料的真正商业化应用。使用铷铯化合物或者本发明的高压电解液添加剂的高压电解液,能有效提高高压正极材料在高电流密度的放电容量,提升高压正极材料电池的循环寿命,同时提升电池在高电流密度下的功率特性。
一种辐照提高锂电池聚偏氟乙烯胶黏性能的方法,属于锂电池技术领域。制备含聚偏氟乙烯(PVDF)粘结剂的锂电池,将整个电池放置在电子加速器下或者地那米加速器的束下装置上对锂离子电池整体进行辐照,使得辐照剂量为20~200kGy,辐照剂量率为50~15000Gy/s,使得PVDF部分交联,从而改变其胶黏性能,降低电池厚度膨胀率,提高电池的容量保持率,进而改善电池稳定性,延长电池的使用寿命。
本发明公开了一种锂离子电池用圆盘形、圆柱形保险装置,圆盘形保险装置包括:第一环形导电体,电连接于锂离子电池的第一电极;第二环形导电体,包含相互隔离的第一金属环和第二金属环,第一金属环电连接于锂离子电池的第二电极;保险丝,电连接于第一金属环和第二金属环;环形绝缘基材,填充于第一环形导电体和第二环形导电体之间;导电孔,开设于第一环形导电体并贯穿环形绝缘基材和第二金属环,导通第一环形导电体和第二金属环。本发明两电极通过电镀的内圈表面或者通孔连通,顶部电极蚀刻出两个金属区域,两个金属区域分别与锂离子电池的正负电极连接,并在该两个金属区域之间形成保险丝,能够在过电流时切断通过电池的电流来阻止着火和爆炸。
本发明公开了一种锂掺杂金属-有机框架DM0.5Li0.5MnF单晶材料及其制备方法, 锂掺杂金属-有机框架DM0.5Li0.5MnF单晶材料是由尺寸为1.5×1.5×1.5~2.0×2.0×2.0mm3,并且化合物中二甲氨根离子DM+1和锂离子Li+1的摩尔百分比为1 : 1的白色半透明DM0.5Li0.5MnF单晶组成。所用试剂为商业产品,无需繁琐制备;利用水热法和液相法相结合获得新型金属-有机框架单晶材料以及尺寸更大的单晶;工艺可控性强,易操作,制得的产物纯度高。本发明所得的锂掺杂DMMnF单晶材料,有望在新型金属-有机框架半导体、信息存储和光学器件方面得到广泛的应用。
本发明公开了一种柠檬酸法制备锂离子电池正极材料LiFeBO3/C的方法。其具体步骤为:(1)将一定化学计量比的锂源、铁源、硼酸根源和柠檬酸溶于水中,在室温下搅拌10分钟得到水溶液;(2)将此溶液于85℃水浴搅拌4h,使之形成凝胶;(3)将此凝胶在140℃下烘干,形成疏松多孔固体,取出研磨成粉末;(4)将粉末在Ar气保护下于200℃~250℃预烧2h,于450~650℃烧结10h,自然冷却到室温,即得LiFeBO3/C。本方法原材料来源广泛,操作工艺简单、生产周期短,所需设备成本低,煅烧温度低,节约了生产成本。用本方法合成的硼酸铁锂的粒径细小,均匀,结晶度高,并且柠檬酸分解实现了原位碳包覆,使其具有较好的可逆容量和良好的循环寿命,能满足锂离子电池实际生产应用的需要。
本发明涉及一种锗-介孔碳纤维复合锂电池负极材料的制备方法。本发明通过配置不同比例的LN与PAN混合溶液,采用静电纺丝得到LN/PAN复合纤维,将LN/PAN复合纤维置于溶剂中进行刻蚀,然后通过预氧化、碳化处理得到特殊介孔结构的碳纤维;最后将所制备的介孔结构的碳纤维与GeCl4复合,于管式炉中N2/H2混合气氛下煅烧制成Ge@MCF复合材料。本发明采用水系溶剂刻蚀制备介孔碳纤维,绿色环保,工艺简单,将其作为纳米反应器制备介孔碳纤维复合锗电极材料,利用介孔碳纤维的限域作用,有效地缓冲锗电极材料在嵌脱锂过程中的体积变化,显示出高的比容量和优异的循环稳定性。
本发明涉及一种低温锂离子电池的制造方法,它采用薄长极板、LiPF6的EC(碳酸乙烯酯)/EMC(碳酸甲乙酯)/EB(丁酸乙酯)/甲苯低熔点复合电解液,有效地提高了锂离子电池低温放电特性,电池在-40℃的低温环境下具有优异输出性能并可在-60℃环境下工作。
本发明涉及锂-二硫化铁电池设计,更具体地涉及具有胶辊电极组装件的电化学电池,所述胶辊电极组装件包括锂基负极、具有涂层的正极,所述涂层包含大于大约94wt%的二硫化铁。
本发明公开了一种制备锂电池负极材料的方法,包括以下步骤:(1)将锌盐和分散剂加入到乙二醇中,混合均匀,配制成锌盐浓度为0.01M-5M的溶液。(2)将溶液转移至高压反应釜中,150℃-200℃保温反应8-20h,然后冷却至室温。(3)过滤,滤饼先用去离子水洗涤,再用无水乙醇洗涤,然后将滤饼在80℃-120℃的鼓风烘箱中保温4-8h,得到干燥的ZnO前驱体。(4)将ZnO前驱体和铜盐混合均匀,研磨,得到混合粉体。(5)混合粉体在惰性气氛的保护下升温进行煅烧,制得黑色碳修饰的ZnO/Cu复合纳米材料。本发明制备的复合材料用作锂离子电池负极材料,能够有效缓解充放电时ZnO体积膨胀,抑制充放电效率降低和容量衰减过快的问题,解决无定形碳导电性能差的问题并增强材料导电性。
磁悬浮冷水机组与溴化锂冷热泵机组双运行系统及方法,该方法包括:冷却塔回水进入溴化锂冷热泵机组的第一蒸发器的换热管中,溴化锂冷热泵机组的冷剂水骤然蒸发,使第一蒸发器内换热管中的冷却水降温,降温的冷却水进入磁悬浮冷水机组的冷凝器换热管内,冷凝器内的制冷剂蒸汽放热液化,使冷却水升温,再次回冷却塔,如此循环制冷。本发明还包括一种磁悬浮冷水机组与溴化锂冷热泵机组双运行系统。本发明既提升了冷却效率,又利用了冷却过程中的热量,达到既可制冷又同时制热的目的。
本发明公开了一种反应效率高的六氟磷酸锂合成工艺,来自调配罐的氟化锂无水氟化氢溶液经中间罐由氟化锂无水氟化氢溶液中间泵转至恒温混合冷却釜,混合冷却釜中料液由循环吸收泵打至反应塔进料口,通过雾化嘴雾化后与来自五氟化磷纯化工段的五氟化磷气体进行充分的传热、传质及合成反应,反应温度控制在0‑10℃,反应压力为常压,少量未反应的五氟化磷气体经尾气平衡吸收器中的氟化锂无水氟化氢溶液进一步反应吸收,反应液进入混合冷却釜,继续进塔参与循环吸收反应;反应塔、尾气平衡吸收器、恒温混合冷却釜组成密闭反应系统。本发明实现连续化、自动化生产,生产成本低,产品一致性好。
中冶有色为您提供最新的有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!