本发明提供一种三元锂电正极材料前驱体及其制备方法、三元锂电正极材料及制备方法和用途。三元锂电正极材料前驱体的制备方法包括:将可溶性镍盐、可溶性钴盐和可溶性锰盐溶于去离子水中,使溶液中金属离子总浓度为1.2‑2.4mol/L;将硫酸铵、氨水溶于去离子水中制备络合剂,络合剂中氨的浓度为1‑3mol/L,络合剂pH为8‑10;将络合剂与盐溶液在保护气氛下搅拌进行络合反应;将沉淀剂与络合溶液加入到共沉淀反应釜中反应、陈化、过滤、洗涤、干燥得到三元锂电正极材料前驱体。采用本发明制备方法制备出的三元前驱体及正极材料拥有较高的纯度、粒度分布均匀、振实密度高、具有优良的电化学性能。
本发明公开了一种锂离子电池正极材料LiFePO4/C的制备方法。首先在惰性气体吹扫的条件下,将铁盐、锂盐和含磷化合物于溶剂中溶解或分散,制成反应前驱体; 然后将上述反应前驱体转移入高压反应釜,于一定温度反应一段时间;经过滤、洗涤和干燥后与碳源混合,然后煅烧处理,得到LiFePO4/C锂离子电池正极材料。采用该方法可以解决传统制备方法中高结晶性、特殊形貌和纳米尺度粒径不可兼得的难题,制备得到结晶完全、片状、纳米尺度的LiFePO4/C锂离子电池正极材料。
本发明公开了一种锂离子电池用复合隔膜及应用该隔膜的锂离子电池,复合隔膜包括隔膜基体和聚电解质复合层,隔膜为陶瓷复合隔膜;陶瓷复合隔膜由氧化钇稳定的氧化锆和聚电解质组成,氧化钇稳定的氧化锆中,氧化钇的比例为8-13wt%,氧化锆的比例为87-92wt%;陶瓷复合隔膜聚电解质的比例占隔膜总重量的0.1-2.0wt%。用该复合隔膜的锂离子电池,包括电极组和非水电解液,电极组和非水电解液密封在电池壳体内;复合隔膜为陶瓷复合隔膜。本发明通过陶瓷与聚电解质的复合,可以有效提高有机电解液对陶瓷隔膜的润湿性,增强陶瓷孔隙的保液能力,并提高电池的工作安全性。
本实用新型涉及锂离子电池制造技术领域,提供了一种锂离子电池真空注液机及其锂离子电池注液头结构。该锂离子电池注液头结构包括注液头本体和密封设置在注液头本体的出液口内的密封件,密封件上开设有隔离槽和通向注液头本体内的注液腔的注液通道;当密封件与电池上盖板抵触时,注液通道连通注液腔与电池上盖板上的注液孔,隔离槽罩设在电池上盖板上的铆钉外。由此,在电解液由注液腔注入到电池的过程中,电解液并不会泄漏到注液通道之外,因此在注液完毕后不会大量残留在电池上盖板上,避免造成浪费;同时也不会进入到隔离槽中而与铆钉接触而造成对铆钉的腐蚀,最终提高了注液质量,使注液操作更加高效、简单。
一种氮化钴/多孔碳片/碳布自支撑锂硫电池正极材料制备方法,属于新能源材料电化学储能领域。这种制备方法使用金属有机骨架化合物为前驱体,碳布为载体,金属有机骨架化合物垂直均匀生长在柔性的碳布上,通过碳化氮化等处理得到氮化钴颗粒镶嵌的纳米碳片,且该多孔纳米碳片以垂直生长方式负载于碳布的纤维表面之上,作为锂硫电池正极材料展现出良好的电化学性能。该复合型自支撑锂硫电池电极材料具有发达的孔隙结构,大幅度缩短了离子、电子和电解液等物质的扩散距离,纳米级尺寸的氮化钴颗粒对多硫化合物兼具吸附和催化转化多硫化物的作用,因此,多硫化物的溶解和穿梭得到有效的抑制,同时碳布显著增强材料的导电能力,具有广泛的应用前景。
本发明涉及一种掺杂硼的磷酸钒锂正极材料在锂离子电池中的应用,所述正极材料组成为:Li3V2-xBx(PO4)3/C(0.01≤x≤0.15);正极材料中硼原子半径大于钒,掺杂硼后能扩充锂离子运输通道,促进离子扩散。掺杂硼的磷酸钒锂的正极材料与没有掺杂的磷酸钒锂正极材料相比电子导电率和离子电导率得到很大提高;做为锂离子正极材料的初次放电比容量,循环性能和倍率性能都得到很大的提高。
本发明涉及一种锂离子电池用层状锰酸锂正极材料制造方法,以电解二氧化锰为原料,在高温下煅烧,得到三氧化二锰。将三氧化二锰和无水碳酸钠按照摩尔比1∶1混合,进行烧结,得到NaMnO2。按照摩尔比6-10∶1称取锂源和NaMnO2,将混合液过滤,沉淀物洗涤、干燥即为层状锰酸锂。本发明方法制造的锂离子电池正极层状锰酸锂,其充电容量大于200mAh/g,放电容量大于180mAh/g,首次放电容量高,循环性能较好。
本发明提供了一种磷酸铁锂/碳复合材料及制备方法、正极极片、锂离子电池。该磷酸铁锂/碳复合材料的制备方法包括:在造孔剂的存在下,将含有LiFePO4和碳源的原料进行烧结,所述造孔剂选自ZnCl2、ZnBr2、ZnI2中的一种或两种以上。本发明提供的磷酸铁锂/碳复合材料和具备其的正极极片、锂电池,即使在低温环境下也能够显示出优异的充放电能力。
本发明涉及一种新型锂二次电池正极材料及使用此正极材料的锂二次电池。所述正极材料为硫代羰基化合物,至少含有一个碳硫双键,为硫代羧酸,硫代酰胺,硫代醛,硫代酮,硫代异氰酸酯,硫代酸酐,硫代酰基过氧化物的至少一种,采用金属硫化物与含有羰基的羧酸或者酰胺,醛,酮,异氰酸酯,酸酐,酰基过氧化物反应制得。应用于锂二次电池中,其首次放电容量大于600mAh/g,10C放电100次以后,放电比容量大于150mAh/g。
本实用新型公开了一种锂电池及锂电池极片,所述锂电池极片包括正极极片和负极极片,每个正极极片的周边设有两个及以上的极耳,每个负极极片的周边设有两个及以上的极耳。每个正极极片上的极耳于正极极片的周边均匀分布或中心对称,每个负极极片上的极耳于负极极片的周边均匀分布或中心对称。本实用新型通过增加锂电池中每层电池极片的极耳个数,提高锂电池充放电电流分布的均匀性。本实用新型提供的方案可以有效改善充放电电流在极片中的分布,使充放电电流分布更加均匀,充放电过程中的极化降低,可有效提高电池的放电功率性能和减少充电时间。
本发明提供一种锂电池盖板及锂电池壳体组件。该锂电池盖板包括:基板,基板构造有第一凹槽,第一凹槽的两侧设有向上的第一凸起,第一凸起的外侧设有第一安装部,且第一凸起与对应的第一安装部之间通过第一斜面连接;保护罩,保护罩包括支撑部,支撑部的一端构造有与第一凸起适配的第二凹槽,支撑部的另一端设有与第一安装部适配贴合的第二安装部,且第二凹槽与第二安装部之间通过第二斜面连接,且第二斜面与第一斜面适配贴合。本发明的锂电池盖板及锂电池壳体组件,减小了盖板厚度,能够增大盖板与电芯壳之间间隙,为铝连接片厚度的改善与连接片弯折度优化提供空间,提高卷芯高度,增加极片的宽度,增大电芯容量。
一种超临界水热合成反应制备锂离子电池正极材料磷酸铁锂的方法,属于新材料技术领域。该方法包括以下步骤:(1)水热合成反应:将铁源、磷源、锂源和模板剂溶于水后,置混合液在反应釜中,采用真空泵抽出釜内空气,加热反应釜至380℃~500℃,用注水泵调节釜内压力为23MPa~40MPa,反应10s~100min,加入物质的配比控制为:Li∶Fe∶P摩尔比为3.0~3.15∶1∶1.0~1.15。(2)生成物的过滤、洗涤和干燥:反应完成后,对反应釜进行水冷降温,最后生成的产物经过过滤、洗涤和干燥,得到灰白色LiFePO4粉末。(3)煅烧包碳处理:所得产物在保护性气氛下于500℃~800℃煅烧1~8小时,得到碳包覆的磷酸铁锂。该方法所得产品电化学性能优良,粒径分布均匀,颗粒大小在300nm~800nm之间,物相纯度可达99%以上,提高了材料的电子导电性和锂离子的扩散性能。
本发明公开了一种三维石墨烯复合锂合金负极及其制备方法,属于锂金属电池领域。本发明主要制备了三维石墨烯为骨架的锂金属合金化负极,通过熔融的方式实现合金化锂负极,并通过毛细管力将合金化锂负极灌入到三维石墨烯骨架当中,合金金属的使用,能够充当锂金属成核位点,保证锂金属的均匀沉积,三维网络石墨烯骨架的使用,能够充当锂沉积的载体并大大降低电流密度,极大地抑制了锂枝晶的生长并缓解锂金属循环过程中的体积膨胀,最终获得高库库伦效率和长循环寿命的锂金属电池。有利于金属锂负极的商业化应用。
本发明提供了一种锂离子电池正极三元材料及其制备方法、正极极片、锂离子电池。该锂离子电池正极三元材料的制备方法包括:将金属化合物通过先还原再氧化的方式,在镍钴锰前驱体的至少部分表面包裹金属氧化物层,得锂离子电池正极三元材料半成品;其中,所述金属化合物包含钴源化合物、镍源化合物和锰源化合物;将所述锂离子电池正极三元材料半成品与锂源混合后进行烧结,得到锂离子电池正极三元材料。本发明提供的锂离子电池正极三元材料有效改善了正极极片与电解液的浸润性,提高了正极极片的保液能力,减小了锂离子充放电迁移距离,减小了锂离子的界面反应阻抗,电池的低温性能、倍率性能得到优化。
一种多孔碳材料在锂-亚硫酰氯电池正极中的应用,所述碳材料所述碳材料由颗粒粒径为1-30um的碳颗粒混合组成,碳颗粒本身呈由碳片层构成的类蜂窝状多孔结构,碳材料中碳颗粒的孔容为0.5~5cm3/g;碳颗粒内部包括两种孔,一种是由碳片层作为孔壁而构成的交错贯通孔,另一种是均匀分布于碳片层孔壁内的孔;交错贯通孔主要为孔径范围为5~90nm的孔,其占贯通孔体积的80%以上;碳片层厚度为2~50nm;孔壁内的孔主要为孔径范围为1~10nm的孔,占孔壁内孔体积的90%以上。将该碳材料用于锂-亚硫酰氯电池正极中,可最大限度地提高碳材料在放电过程中的空间利用率,有效提高电池的能量密度及功率密度。
本发明涉及一种LiCr(MoO4)2化合物在锂离子电池正极中的应用。采用高温固相反应法和溶胶凝胶法可制备LiCr(MoO4)2锂离子电池正极材料;具有较好的锂离子电池充放电性能,循环稳定性良好, 工作电压合适,可用作锂离子电池正极材料。
本发明提供一种氟磷酸钒锂‑磷酸氧钒锂复合正极材料、其制备方法及用途,氟磷酸钒锂‑磷酸氧钒锂复合正极材料的通式为:xLiVOPO4·LiVPO4F,其中0.05≤x≤0.40。氟磷酸钒锂‑磷酸氧钒锂复合正极材料的制备方法包括以下步骤:按照通式称取锂源、钒源、磷源和氟源,并混合;向混合物中加入添加剂、碳源和分散剂进行研磨,真空干燥后得到非结晶态焙烧前驱体粉末;将非结晶态焙烧前驱体粉末压片后置于非还原性气氛下烧结,降温后获得氟磷酸钒锂‑磷酸氧钒锂复合正极材料。本发明所述材料能在空气氛围下进行高温煅烧制备,在减小原料氟盐的使用量的同时,仍保持氟磷酸钒锂较高的电压及容量。
本发明提供一种高能量、高安全性的磷酸铁锂基准固态无负极锂电池及其应用,属于新能源技术领域。准固态无负极锂二次电池由磷酸铁锂正极,准固态聚合物电解质和负极侧集流体组成。通过浆料涂覆的方法制备正极电极材料,并将准固态聚合物电解质置于正极与负极侧集流体之间组装成扣式或软包电池。本发明制备的准固态无负极锂二次电池能量密度超过300Wh kg‑1,且规避了易燃液态电解液和过量金属锂的使用,在电滥用、热滥用和机械滥用等条件下均具有良好的安全性。另外,制备过程操作简便,利于规模化应用。
本发明涉及一种锂离子超级电容器负极预嵌锂的方法,包括正极、隔膜、负极,以及位于正极与负极之间的电解液;所述的正极材料包括活性材料和预嵌锂添加剂;其中,预嵌锂添加剂与负极材料的质量比为1:100~10:1;将正极、隔膜、负极组装成锂离子超级电容器,加入电解液后对电池充电预嵌锂。较没有预嵌锂的锂离子电容器的循环稳定性更好,安全、可靠、成本低。
本发明提供了一种低温锂电池电解液及锂电池。所述低温电解液中包含添加剂,所述添加剂中包含选自氯磺丙脲、醋酸己脲、妥拉磺脲中的一种或几种的磺酰脲类化合物;所述添加剂中还包含选自甲基二磺酸亚甲酯、二氟磷酸锂、二氟草酸硼酸锂中的一种或几种的辅助组分。在‑20℃的低温环境下,使用该低温电解液的锂电池的恒流冲入比大于91%,即使在‑40℃的低温环境下,恒流冲入比仍然大于76%,电解液低温倍充性能优异。同时,在‑20℃的低温环境下循环充放300次,使用该低温电解液的锂电池容量保持率大于86%,电解液低温循环性能优异。
一种基于硫化锂正极的高安全性、高能量准固态锂二次电池及其制备方法,属新能源技术领域。准固态锂二次电池由硫化锂/碳复合正极,储锂材料/碳复合负极和聚合物凝胶电解质组成。制备方法:通过溶液滴定蒸发或者涂覆刮膜的方法制备正、负极电极材料,然后添加聚合物凝胶电解质组装准固态锂二次电池。本发明制备的准固态锂二次电池基于氧化还原反应储能,能量密度可达802Wh kg‑1。同时,电池能够在刺穿,过热等多种条件下不发生热失控,在刺穿后依然点亮LED灯串,展示出了优异的安全性能。
本发明涉及一种锂离子电池负极及由其制得的锂离子电池。所述锂离子电池负极包括自下而上的负极基材层、负极活性物质层、可替代传统锂离子电池PP、PE隔离膜的氧化铝微孔涂层。所得锂离子电池负极表面的氧化铝微孔涂层不仅具有较高的机械强度,同时具有良好的保液能力以及不存在高温闭孔的现象,进而保障电池在温度适用范围上具有更好的高温适用性,适用于大倍率锂离子动力电池。
本发明提供一种电池级碳酸锂的制备方法,以锂云母矿为原料,通过焙烧、浸出、浸出液蒸发浓缩,添加碳酸钠进行一次沉锂后冷却析钠;然后进行二次沉锂值得得到电池级碳酸锂。锂的总回收率高,产品满足电池级碳酸锂要求。本发明不仅有效的提高了总的沉锂率,而且减少了析钠过程锂的损失,得到的产品符合电池级碳酸锂的要求,操作简单、安全性高。
本发明涉及一种锂离子电池用钛酸锂负极材料及其制备方法,该负极材料以锂源、钛源和碳源为原料,其中,Li∶Ti的摩尔比为(4.0~4.3)∶5,碳源的掺入量为锂源和钛源总质量的1~30%。其制备方法为:1)按上述摩尔比和质量比分别称取锂源、钛源和碳源;2)将锂源和碳源溶解于溶剂,再将钛源溶解于相同溶剂中,将钛源溶液加入到锂源和碳源溶液中,搅拌和超声混合;3)加氨水,控制混合液pH值,搅拌加热,使溶剂和氨水挥发,成粘稠胶状物,再真空加热烘干,得到前躯体干凝胶;4)在惰性气体保护下,对前躯体干凝胶升温、焙烧,冷至室温后再粉碎、研磨;5)模压成模块;6)在惰性气体保护下,对模块再次升温、焙烧,降至室温再粉碎、研磨、过筛、烘干,即得锂离子电池用钛酸锂负极材料。
本发明涉及一种掺杂硫的磷酸钒锂正极材料在锂离子电池中的应用,所述正极材料的组成为Li3V2-xSx(PO4)3, 其中0.01≤x≤0.15。由于硫原子半径大于钒,掺杂硫后一方面能扩充锂离子运输通道,促进离子扩散,另一方面能维持材料在充放电过程中的结构稳定性。掺杂硫的磷酸钒锂的正极材料与没有掺杂的纯的磷酸钒锂正极材料相比电子导电率和离子电导率得到很大提高;做为锂离子正极材料的初次放电比容量,循环性能和倍率性能也得到很大的提高。
本发明涉及一种Li3Cr(MoO4)3在锂离子电池正极中的应用。所述Li3Cr(MoO4)3化合物作为活性材料应用于锂离子电池正极中,具有较好的锂离子电池充放电性能,循环稳定性良好,工作电压合适,可用作锂离子电池正极材料。
本发明涉及一种SnPO4在锂离子电池负极中的应用。所述SnPO4化合物作为活性材料应用于锂离子电池负极中。具有较低的平均工作电压和高的比容量,具有较好的锂离子电池充放电性能,循环性能优异,可用作锂离子电池负极材料。
本发明涉及锂硫液流电池和锂硫液流电池用正极电解液及其制备,所述锂硫液流电池由一节单电池或由二节以上单电池串联而成的电池模块、正极电解液、负极电解液、正极电解液储罐、循环泵和循环管路组成;单电池包括负极集流体、锂负极、隔膜、正极、正极集流体、密封件;正极电解液装填于正极电解液储罐中。所述正极电解液为含有纳米硫粉的Li2S8、、以及三氟甲基磺酸锂或三氟甲基磺酸亚胺锂的混合溶液,其中溶剂为体积比1:5-5:1的四甘醇二甲醚或乙二醇二甲醚和1.3-二氧戊环组成的混合溶剂;与传统的锂硫电池相比,锂硫液流电池循环寿命和充放电功率均得到提高,采用的独立的正极电解液储罐的结构,在容量方面完全不受电极面积的控制。
本发明涉及一种内部含有三维导电结构的锂电池磷酸铁锂正极材料及其制备方法,本发明给出的锂电池磷酸铁锂正极材料以磷酸铁锂正极微米粒子为内核,用纳米碳材料包覆磷酸铁锂纳米粒子形成含核导电体,该含核导电体壳层及内核形成第一导电层,用纳米金属或金属氧化物对含核导电体再次包覆,再次包覆的壳体形成第二导电层,经两次包覆即构成磷酸铁锂正极微米粒子,该磷酸铁锂正极微米粒子的第二导电层与第一导电层共同形成三维导电网络。本发明采用两次包覆工艺形成内部含有三维网状导电结构的磷酸铁锂微粒正极材料,电容量大于150mAh/g,循环200次后,容量衰减小于5%。
本发明涉及一种锂离子超级电容器负极预嵌锂方法,采用含有质量含量1‑8%富锂化合物的正极,与可嵌锂的负极和隔膜组装锂离子超级电容器后置于一容器内,向容器内注入电解液,对锂离子超级电容器进行充电,使得正极中的富锂化合物分解,分解后的锂用于负极形成SEI膜,即让SEI膜的形成消耗外界(正极中富锂化合物)锂源的锂离子,这样就可以保证正极脱嵌的锂离子不会浪费于化成过程,最终就可以提高全电池容量。
中冶有色为您提供最新的辽宁大连有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!