本实用新型公开了一种钛酸锂生产用钛白粉和碳酸锂混合机构的搅拌杆结构,涉及钛酸锂生产技术领域。该钛酸锂生产用钛白粉和碳酸锂混合机构的搅拌杆结构,包括杆体,所述杆体包括上杆和下杆,所述上杆的顶端设置有联轴器,所述上杆的底端通过检测机构与下杆连接,所述上杆和下杆上均设置有一个搅拌机构。该钛酸锂生产用钛白粉和碳酸锂混合机构的搅拌杆结构,通过结构的改良,使用磁场根据搅拌杆所受阻力情况控制搅拌机构相对倾斜的方式,从而调整搅拌杆的混合效率,可以很好的根据搅拌杆的受力情况进行状态的调节,从而可以在保证部件不受损坏的前提下提高混合效率,给机械化生产提供便利条件。
本发明公开一种锂离子电池负极复合材料钒酸锂/碳纳米管/碳的制备方法,包括以下步骤:对碳纳米管进行羧基化处理,得到表面含有羧基的碳纳米管;将含有羧基的碳纳米管与钒源、锂源溶于去离子水中经过水热处理,得到含有碳纳米管的钒酸锂纳米晶;将含有碳纳米管的钒酸锂纳米晶与碳源混合均匀,经过干燥、研磨,在保护气体氛围下高温烧结得到钒酸锂/碳纳米管/碳复合材料。本发明制备的钒酸锂/碳纳米管/碳复合材料因碳纳米管作为导电桥梁作用,具有良好的循环性能和倍率性能。
本发明公开了一种锂电池生产用来料检测设备,其特征在于:包括用于扫描锂电池条码的扫描装置和用于放置扫描后锂电池的编码托盘;包括用于扫描编码托盘的条码的扫码器;包括测试编码托盘内锂电池电压容量及内阻的化成装置;包括和所述扫描装置、扫码器及化成装置分别连接的控制装置;所述控制装置为PLC控制器;本发明不仅来料检测效率高,且能够保证锂电池质量可靠性。
本发明公开了一种废旧磷酸铁锂电池正极粉料回收电池级碳酸锂的方法,本发明以废旧磷酸铁锂电池正极粉料为研究对象,采用碱压煮浸出的方式,不仅大幅提高锂的浸出率,同时,可以大幅减少杂质金属的影响,为后续除杂提供便利;采用CO2氛围下,用碳酸铵加压沉淀制备碳酸锂,可避免钠离子对纯度的影响,提高锂的回收效果,最后用RO纯水热洗涤,可得到电池级碳酸锂。本发明是一条流程短、锂回收率高、碳酸锂纯度优、产品附加值大的,针对废旧磷酸铁锂正极粉料回收的新工艺路线,具有极强的社会价值和可观的经济效益。
本发明公开了一种硼酸铁锂改性锰酸锂材料及其制备方法,属于锂离子电池正极材料领域;所述的改性方法主要为传统固相法,包括以下步骤:将锂源、锰源、亚铁盐和硼氧化物进行均匀混合,经过高温煅烧即得硼酸铁锂与锰酸锂的复合材料。该方法制得的复合材料颗粒大小一致,制备方法简单易控,易于工业化大规模生产。
本发明公开了一种三维C/Fe3O4锂离子电池负极材料及其制备方法,所述三维C/Fe3O4锂离子电池负极材料是以纤维素为模板,铁盐为前驱体,先通过浸渍处理将铁离子负载在模板上,再在惰性气氛下煅烧处理制得的。本发明制备的三维C/Fe3O4锂离子电池负极材料能够克服Fe3O4负极材料导电性能差以及在循环中体积变化较大的缺点,可以大幅度提升Fe3O4负极的电化学性能。
本发明公开了一种富锂锰基复合单晶三元/氧化亚硅复合石墨锂离子电池,涉及复合石墨锂电池技术领域,本发明用于解决现有技术中需要对石墨材料进行改性以提高锂离子电池的倍率性、循环寿命和能量密度综合性能的技术问题;本发明的正极采用高容量富锰锂与镍钴锰三元的复合材料,负极采用氧化锡量子点改性的石墨材料,使得正负极具有高的比容量密度和导电性,正负极中添加补锂添加剂提高了锂电池的首次库伦效率,导电剂的添加提高了导电性,使得电池倍率性能更佳,本发明的锂离子电池具有良好的安全性、倍率性、循环寿命和能量密度。
本发明公开了一种氮掺杂钒酸锂/磷酸铁锂复合材料的制备方法,涉及锂离子电池正极材料技术领域,包括以下步骤:将草酸、偏钒酸铵、锂源溶于去离子水,搅拌,转移至反应釜中进行水热反应,待反应结束后,取出反应产物,经洗涤、干燥、煅烧,得前驱物a;将草酸、磷源、铁源、锂源溶于去离子水,搅拌,转移至反应釜中进行水热反应,取出反应产物,经洗涤、干燥,得前驱物b;将前驱物a和前驱物b加入到吡咯水溶液中,研磨成浆料,经冷冻干燥后在惰性保护气氛中煅烧,即得。本发明采用共混将钒酸锂和磷酸铁锂复合在一起,且通过氮掺杂提高复合材料的稳定性,所得材料用于锂离子电池正极,其克容量高、循环性能好。
本发明公开一种锂电池制造方法及锂电池,方法包括:激光切片、成型极耳、卷绕、卷芯合并、焊接连接片、焊接盖板、电池成型。所述锂电池由上述方法制得。本发明的优点在于:本发明中的锂电池制造方法在实际应用时,取消了A/B卷芯配对的工艺,避免了卷芯配对错误,数量不匹配等问题带来的浪费,大大提高了产品品质;打破了传统方式对卷绕机故障率的依赖性,避免了生产A卷芯的卷绕机故障时,限制B卷绕机生产的能力;本发明的锂电池制造方法可以取消现有的卷芯配对设备,提高电池组装线的整体效率;极大的降低生产成本,提高厂房空间利用率。
本发明公开了一种兼顾高低温性能的倍率型锂离子电池电解液,包括有机溶剂、锂盐和功能添加剂;所述有机溶剂包括环状碳酸酯和氟代线性羧酸酯;所述锂盐包括第一锂盐和第二锂盐,所述第一锂盐为六氟磷酸锂,所述第二锂盐为二氟磷酸锂、二氟草酸磷酸锂、全氟烷基磺酰亚胺锂中的至少一种;所述功能添加剂包括高温添加剂和低温添加剂。本发明还公开了含该电解液的锂离子电池。本发明采用合适的有机溶剂、锂盐和添加剂配合,使得电解液具有‑30~60℃较宽温度窗口,可以实现高低温性能的兼顾。
本发明公开了锂电池生产用来料检测装置,所述检测装置包括输送锂电池的输送装置、设于所述输送装置上方的用于扫描锂电池条码的扫描装置和用于放置扫描后锂电池的编码托盘;包括用于扫描编码托盘的条码的扫码器;包括测试编码托盘内锂电池电压容量及内阻的化成装置;还包括和所述输送装置、扫描装置、扫码器及化成装置分别连接的控制装置;本发明不仅来料检测效率高,且能够保证锂电池质量可靠性。
一种大粒径尖晶石型镍锰酸锂的制备方法,将Li、Ni以及掺杂元素M的化合物以一定化学比例混合后高速球磨,获得Li、Ni、M的均匀混合物A;将锂盐、镍盐、锰盐按照1:0.5:1.5的化学比例溶于乙醇溶剂中,氨水调至溶胶状,得到镍锰酸锂溶胶B;将Li、Ni、M的均匀混合物A、镍锰酸锂溶胶B及锰氧化物C混合搅拌混匀,干燥得到混合物D;将混合物D高温烧结得到镍锰酸锂材料。本发明制备的镍锰酸锂正极材料晶粒完整,比表面积小,堆积密度高,高低温循环寿命优异。
本发明提供一种碳热还原方式回收废旧锂离子电池黑粉中有价金属并制备碳酸锂产品的方法,涉及废旧锂离子电池回收技术领域。本发明操作步骤简单,通过在二氧化碳气氛环境下进行废旧电池的碳热还原,首创性的克服了现有技术中的不足:提升碳的强化去除和可溶性碳酸锂的生成,有利于废锂电池有价金属的高效回收;在实现金属回收制备碳酸锂产品的同时循环利用二氧化碳,减少排放量,无大量的三废产生,能耗成本低,产品价值高,具有可观的经济效益,对废旧电池回收行业提供重要的指导依据。
本发明公开了一种从锂电池正极材料浸出锂的方法,包括以下步骤:步骤1、以锂电池正极材料为原料,路易斯酸为浸取剂,结合氧化剂形成浸出体系;步骤2、将步骤1的浸出体系加热进行浸出反应得到反应液;步骤3、对反应液进行过滤得到的滤液为含锂溶液。本发明不需要高温焙烧,只需简单的加热搅拌,节约了反应过程中能耗的使用,减低了生产成本,最终产品杂质少,锂的浸出率高,实现了锂浸出的选择性,后期除杂和再生操作简单。
本发明涉公开一种锂离子电池负极材料碳包覆钒酸锂的制备方法,先将EDTA和氨水加到去离子水中搅拌形成澄清透明的EDTA二氨水溶液;加入钒源和锂源,搅拌形成黄绿色透明溶液,蒸发、烘干得到蓝色钒酸锂前驱体;研磨粉碎后在还原性气氛或者惰性气氛下预烧后再粉碎烧结得到碳包覆钒酸锂。本发明制备的碳包覆钒酸锂具有颗粒均匀、批次稳定、电化学性能稳定等特点,同时此材料具有较好的放电平台,在动力电池行业具有较好的应用前景。
本发明公开了一种锂离子电池三元正极材料多孔球状镍钴锰酸锂的制备方法,涉及锂离子电池电极材料技术领域,该正极材料为镍钴锰酸锂(NCM)三组分正极材料,其化学式为LiNixCoyMnzO2,其中,x, y, z=0~1,且x+y+z=1,具体制备步骤包括三元正极材料前驱体的制备和高温烧结制备多孔球状三元正极材料。本发明通过采用NH4HCO3作为络合剂,简化了工艺流程,降低了生产成本;并利用通入CO2气体使得常温下在水中溶解度很小的Li2CO3转化为溶解度大的LiHCO3,使混合更加均匀;制得的多孔骨架状的三元正极材料能够缩短充放电过程中锂离子的扩散路径,提高锂离子电池的倍率性能。
本发明公开了一种利用含锂废旧电池或材料制备高品位锂精矿的方法,属于资源回收利用技术领域。该方法包括步骤:将经过盐溶液中浸泡放电得到的预处理料与含Si造渣剂混合后高温熔炼,调节熔炼温度得到合金和富锂渣,其中含Si造渣剂中Si含量≥25%;所述富锂渣中Al2O3与SiO2质量分数比值为0.25~3.0,Li2O含量为5.5%~15%,Mn含量≤10%。
本发明揭示了一种梯次利用制作锂电池的方法,包括以下步骤:步骤1、拆解废旧锂电池,得到多串电芯;步骤2、对每个电芯进行测量,选择其中可用容量≥70%的电芯;步骤3、对选择电芯进行HPPC测试,选择其中DCR≤4.5mΩ、ACR≤2.5mΩ的电芯;步骤4、将得到电芯进行配组制成电池容量≥42Ah的电池组;步骤5、对电池组进行检测;步骤6,选择检测合格的电池组为梯次利用制作锂电池。通过此方法筛选出可利用的退役电池电芯,制作成12V锂电池,降低整备质量,节约整车布置空间。同时还可以节约整车成本,降低环境污染,对退役电芯二次利用。
本发明公开了一种锂电池用导电性改进磷酸铁锂正极材料,其特征在于,由下列重量份的原料制成:磷酸铁锂500、二氧化钌4-5、硫酸钛5-6、改性银粉4-5、水适量;本发明添加改性银粉,提高了材料导电性,并有效抑制晶体的长大,得到均匀分散的磷酸铁锂材料;本发明具有良好的导电性,放电容量大,保证了动力电池产业化的一致性和续航能力,价格低廉,无毒性,不造成环境污染,安全性能好,原材料来源广泛,使用寿命长。
本发明公开了一种锂电池用改性锰酸锂正极材料,其特征在于,由下列重量份的原料制成:锰酸锂500、纳米二氧化钛1-2、凹凸棒土2-3、秸秆灰烬3-4、改性银粉4-5、水适量;本发明添加改性银粉,使锰酸锂材料质量稳定,性能均一,具有良好的高温循环型;本发明放电容量大,保证了动力电池产业化的一致性和续航能力,而且工艺简单,价格低廉,无毒性,不造成环境污染。
本发明公开了一种锂电池预锂化的复合电解液及其应用,包括电解液,所述电解液中加入添加剂,添加剂在1V‑3V的电压条件下能够分解为锂离子、电子和气体。电芯经化成后,添加剂分解产生的锂离子,可以补充电池体系中因生成SEI膜所消耗的锂离子,同时分解所产生的气体可以在化成后正常的排气工序抽走,不会对电芯造成影响,从而实现电池预锂化的目的。本发明避免了直接使用锂金属,减少了锂金属所带来的安全隐患。另外,本发明中增加的锂离子是由溶解在体系中的添加剂分解产生的,能够在电解液中充分分散,并且预锂化的量能够通过添加剂的使用量准确控制,从而可以达到精确、均匀的预锂化目的,能够明显提高电池的循环性能和首次库伦效率。
本发明提供一种循环稳定的锂离子电池负极材料氟掺杂钒酸锂的制备方法,其先将钒源与锂源加到去离子水中分散制得悬浊液A;将络合剂加到去离子水中得到络合剂溶液B;将络合剂溶液B滴加到悬浊液A中搅拌形成澄清透明溶液C;加入氟源搅拌、蒸发、烘干得到蓝色钒酸锂前驱体;将蓝色钒酸锂前驱体研磨粉碎后在还原性气氛或者惰性气氛下预烧得到灰色钒酸锂前驱体;再将灰色钒酸锂前驱体研磨粉碎后在还原性气氛或惰性气氛下烧结得到氟掺杂钒酸锂。在络合法合成钒酸锂过程中进行氟掺杂,并进行烧结,提高了材料的电化学性能和电导率。
本发明公开了一种导电锰‑钛锂离子筛/石墨烯复合水凝胶的制备及其在盐湖卤水提取锂中的应用,采用溶胶凝胶法制备锰‑钛锂离子筛,通过原位热引发聚合法制备锰‑钛锂离子筛/石墨烯复合水凝胶(MnTi/GNs‑LIPs)。本发明采用吸附‑电去离子交换法,利用MnTi/GNs‑LIPs吸附剂于盐湖卤水中,先选择性吸附锂,再将其置于单一弱酸性溶液中,通过电去离子交换快速脱附锂,重复操作后可达到分类回收盐湖卤水中锂的目的。
本发明公开了一种锂离子电池正极材料的预锂化添加剂及其制备方法和应用,涉及锂离子电池正极材料制备技术领域,所述预锂化添加剂为表面包覆LiCoO2的F掺杂Li5FeO4;其制备是将铁源、锂源、氟源、络合剂与去离子水混合,搅拌反应,得到溶胶,继续搅拌反应,经干燥、研磨,得到前驱体粉末,预烧、冷却,得到F掺杂的Li5FeO4,再将其与纳米级Co3O4及锂源混合,煅烧,得到表面包覆LiCoO2的F掺杂Li5FeO4的预锂化添加剂。本发明预锂化添加剂Li5FeO4中掺杂有F元素,同时表面包覆LiCoO2,可以稳定材料Li5FeO4的结构,减缓其与空气发生反应;同时LiCoO2为层状结构,可以使Li5FeO4中的Li+自由地脱出,当首次充电结束预锂化添加剂失活之后,LiCoO2依然具有活性,不会阻碍活性材料中Li+的传输。
本发明涉及一种锂离子电池磷酸亚铁锰锂正极材料及其制备方法,属于锂离子电池正极材料技术领域。本发明正极材料是包括核层和壳层,其中核层为磷酸锰锂,壳层为磷酸铁锂。以锰源化合物和磷源化合物为原料,合成磷酸锰核层,再引入铁源化合物,利用溶度积原理,通过铁离子和锰离子交换得到核壳结构的磷酸亚铁锰前驱体,再进行掺锂和高温煅烧,制备出核壳结构磷酸亚铁锰锂。本发明制备的磷酸亚铁锰锂正极材料,一方面可以提高电压平台和能量密度,另一方面,由于锰处于核层,避免直接接触电解液导致其溶解,解决结构不稳定和容量衰减严重等问题。
本发明公开了一种利用废旧锰酸锂电池制备镍锰酸锂的方法,属于废旧锰酸锂电池的回收利用领域。本发明实施例通过从废旧锰酸锂电池中获取包括LiMn2O4的正极活性物质,对其进行浸出处理,获取含Li+和Mn2+的溶液,然后向含Li+和Mn2+的溶液中加入镍盐、锂盐及沉淀剂,反应得到沉淀物,经煅烧后得到尖晶石型LiNi0.5Mn1.5O4,同时实现了对锰、锂的回收及利用。利用本发明实施例提供的LiNi0.5Mn1.5O4材料制备锂离子电池和超级电容器,锂离子电池0.1C的放电比容量为128-135mAh/g,循环100次后容量保持率高于90%;超级电容器的比容量为170-185F/g,循环500次基本无衰减。本发明实施例提供的方法操作简单,易控制,利于规模化应用。
本发明公开了一种锂化壁处理抽气系统的可再生式锂蒸汽过滤系统,安装在EAST锂化壁处理抽气分子泵与EAST装置真空室之间,在EAST锂化壁处理期间,含有锂蒸汽等颗粒的气体经过该过滤系统时会依次与四套伞状障板系统碰撞而吸附在其上面,从而减小这些有害气体分子达到分子泵的几率,因而可以起到对分子泵的保护;该套过滤系统在使用一段时间后可以利用本身自带的再生系统进行冲洗、烘烤、抽气操作而再生,以便把障板系统及管道器壁上附着的锂涂层等有害物质去除,方便后续继续使用。该系统的成功研制可以最大程度上减小EAST锂化过程中锂蒸汽等有害气体分子对分子泵的影响。
本发明涉及一种铁锡氧化物纳米材料及其制备方法、锂离子电池正极及锂离子电池,材料由多孔立方块状的三氧化二铁和二氧化锡混杂物构成,铁锡氧化物中铁和锡的物质的量比为1 : 1,立方块的边长为100-200nm,纳米材料的比表面积为50-55m2·g-1;制备方法包括混合工序、煅烧工序。本发明制备铁锡氧化物纳米材料粒度分布均匀,性能稳定,在空气中不易变性,制备的铁锡氧化物纳米材料用于制作锂离子电池,具有较大的比容量、较好的循环性能。
本发明公开了一种锂离子负极材料钛酸锂的模板合成方法,该制备方法首先通过一定比例的P123、X钛化合物、TEOS、HCl、H2O制备纳米级TiO2,再利用纳米级TiO2和锂化合物经过混合球磨、烧结、冷却和研磨得到钛酸锂产物。本发明通过模板法制备纳米级二氧化钛,并通过控制烧结条件实现纳米钛酸锂材料的制备,提高了倍率性能和循环性能;该方法制备的钛酸锂负极材料纯度高、颗粒小且均匀、充放电比容量高、充放电效率、循环性能好、安全性好等特性。
本发明公开了一种从高铝废旧磷酸铁锂电池正极材料高效浸取锂的方法,包括以下步骤:(1)、取用高铝废旧磷酸铁锂电池正极材料,有机酸为浸取剂、双氧水为还原剂;(2)、将步骤(1)的体系在常温条件下搅拌反应得到反应液;(3)、将步骤(2)得到的反应液过滤得到含锂、磷、铁、铝元素的滤液。本发明使用的有机酸pH范围为1.5‑4,在室温下对锂离子有选择性浸出,其他杂质离子浸出率低;在锂离子浸出率大致相同的情况下,本发明与现有技术相比有机酸消耗量较少;且本发明在常温下浸出率在90%以上,不需要加热,反应所需能耗大幅度降低,工业化生产成本低。本发明的工艺简单,成本低,更易于进行工业化生产。
中冶有色为您提供最新的安徽有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!