本发明公开了一种苯硼酸功能化Ti3C2Tx磁性复合材料及其制备方法和应用,该复合材料,是将具有多层结构的Ti3C2Tx修饰改性成氨基Ti3C2Tx,即Ti3C2Tx‑NH2,然后通过三聚氰胺和三聚氰氯进一步超支化反应合成Ti3C2Tx‑CTFs‑NH2,再用4‑甲酰基苯硼酸通过缩醛共价交联合成硼酸功能化Ti3C2Tx,即Ti3C2Tx‑BA,最后将Fe3O4纳米粒子分散在Ti3C2Tx‑BA的表面及层间结构中,制得苯硼酸功能化Ti3C2Tx磁性复合材料,即Fe3O4@Ti3C2Tx‑BA。本发明的苯硼酸功能化Ti3C2Tx磁性复合材料具有吸附容量高、选择性好、结构稳定、合成方法简便,制备成本较低、再生能力强、抗干扰能力强、萃取时间短等优点。本发明制备方法具有快速、高效、成本低、环境友好、可重复使用等优点。
本发明提供了一种一维高介电常数、低膨胀系数复合材料及制备方法,采用水热法制备出铌酸钾纳米粉体,以带正电荷的铌酸钾纳米粉体和带负电荷的锂霞石纳米粉体为原材料,通过静电自组装法结合微波烧结合成出铌酸钾@锂霞石复合材料,得到高介电常数、低膨胀系数复合材料,该方法制备的复合材料可用于电容器、大功率静电储能的材料,具有简单易行、成本低、方便快速等优点,可规模化生产。
本发明涉及光电化学分析与环境监测领域,具体来说是分子印迹修饰TiO2纳米管‑CdS量子点复合材料、光电化学传感器及制备方法及应用,TiO2纳米管‑CdS量子点复合材料以阳极氧化法制备得到TiO2纳米管薄膜,并以TiO2纳米管薄膜为基体,通过水浴法沉积上CdS量子点并吸附上持久性有机污染物,再通过高温煅烧技术制备得到了分子印迹修饰TiO2纳米管‑CdS量子点复合材料,本发明制备的传感器以TiO2纳米管‑CdS量子点复合材料作为光电转换层,表面修饰含有持久性有机污染物识别位点的无机骨架分子印迹,进而实现对持久性有机污染物的检测,其具有灵敏度高,响应稳定,选择性好等优点。
本发明公开了一种硅藻土负载镧掺杂纳米氯氧化铋复合材料及其制备方法,包括以下步骤:S1、将硅藻土研磨,干燥,即得到硅藻精土;S2、将S1中的硅藻精土与水混合,在搅拌状态下滴入三氯化铋水溶液,接着滴入硫酸铵溶液和浓盐酸的混合液,于20~95℃下反应0.5~2.5h,得到反应液;S3、向S2中反应液中加入硝酸镧水溶液,经抽滤、洗涤、干燥,并于450~750℃下煅烧2~4h,最终得到复合材料。本发明还提供了上述复合材料在室内空气污染物去除中的应用。本发明通过水解沉淀法将纳米级La‑BiOCl颗粒负载在硅藻土的孔道及表面上,合成La‑BiOCl/硅藻土复合材料,对室内空气中污染物具有优异的净化效果。
本发明公开了一种三维还原氧化石墨烯/MnO2复合材料及其制备方法,以石墨为原料,KMnO4为氧化剂,采用改进的Hummer法制备氧化石墨烯,之后采用水热法、冷冻干燥后制备出还原氧化石墨烯气凝胶,再利用水热法负载二氧化锰制备复合材料。扫描电镜结果显示还原氧化石墨烯气凝胶疏松多孔,并且空洞分布比较均匀。复合材料以片层结构为主,片层厚度均匀,比较规整。制备出的复合材料比电容是纯MnO2的10‑20倍。
无模板制备大比表面积纳米银颗粒膜复合材料的方法,首先在玻璃基体表面制备银-锆合金膜,并使基体保持一定温度以使银原子在合金膜表面生长为银颗粒即制得产品。本发明采用磁控溅射双靶共沉积制备银合金薄膜及基体原位加热技术,实现了无需模板制备出大比表面积纳米银薄膜/银颗粒复合结构材料,该复合结构材料中的银薄膜厚度、银颗粒尺度在微纳尺度范围内均可以调控,无需采用模板,成本低,绿色环保,易于在玻璃基体上无需模板制备出大面积、高性能纳米银颗粒膜复合材料,较之纯银薄膜比表面积可增大20%以上。
一种二氧化锗/石墨烯复合材料,涉及锂离子电池负极材料技术领域,该复合材料是由石墨烯纳米片包裹二氧化锗亚微米颗粒而构成的;其中,二氧化锗亚微米颗粒的直径为400~900 nm。本发明将二氧化锗粉末与氧化石墨烯一同溶解于蒸馏水中,然后在25~45℃下将水分完全蒸发,将蒸发后所得的粉末在空气气氛中200~300℃下煅烧1~3小时,即得所述复合材料。本发明制备的二氧化锗/石墨烯复合材料作为锂离子电池负极材料,具有较高的充放电比容量、较好的循环稳定性以及快速充放电性能,且制备方法简单,无污染,反应温度低,所得产品纯度高,无副产品。
本发明公开了一种聚四氟乙烯复合材料,灭弧喷口及其制备方法,高压断路器。聚四氟乙烯复合材料由以下重量百分比的组分组成:铝酸钴7~15%、氮化硼1~15%,余量为聚四氟乙烯。灭弧喷口可采用上述聚四氟乙烯复合材料。本发明的灭弧喷口,采用无机填料铝酸钴、氮化硼复配填充聚四氟乙烯复合材料,合理调配填充比例,明显改善了喷口材料的热导率,提高了材料的耐电弧烧蚀性能,同时具有优异的机械性能;本发明提供的灭弧喷口可提升断路器的开断性能,从而提高高压断路器的运行稳定性。
本发明属于聚丙烯改性技术领域,具体涉及一种增强增韧抗老化聚丙烯复合材料及其制备方法。所述复合材料由聚丙烯、高密度聚乙烯、三元乙丙橡胶、增强填料和无机抗老化剂制成,其步骤为:增强填料的碳硅偶联剂处理、混合、熔融挤压、冷却、风干、切粒,即得所述的增强增韧抗老化聚丙烯复合材料。本发明配方合理,工艺简单,操作方便,制备出的聚丙烯复合材料较纯聚丙烯拉伸强度保持率提高4%~10%,冲击强度保持率提高10%~30%。
本发明属于无机复合材料制备技术领域,具体涉及一种ZrB2/Cu复合材料的制备方法。该方法包括ZrB2粉末镀镍、混合研磨、热压烧结等步骤。本发明利用活性元素Ni与ZrB2具有良好地润湿性,同时Ni可以与Cu形成良好固溶体的特点,先通过化学镀镍工艺在ZrB2粉末表面镀上一层Ni,从而有效改善ZrB2和Cu的界面结合,之后采用热压烧结工艺,以镀镍后的ZrB2和Cu粉为原料,在较低的温度下制备出高致密度的ZrB2/Cu复合材料。采用本发明所制备的ZrB2/Cu复合材料综合性能优良,用于EDM加工用电极制备时,可以有效降低电极的损耗与更换频率,因而具有较好的社会与经济效益。
本发明涉及一种多晶SiC—金刚石双层复合材料及其制备方法,属于无机非金属材料领域,所述方法以SiC粉末或多晶块体、金刚石粉末为原料,对原料进行净化处理,预压成型,预压成型的原料用金属包裹体包裹,装配高压组装单元,放置于超高压设备中,在600‑2300℃,1‑25 GPa高温高压条件下烧结,制备得到多晶SiC—金刚石双层复合材料;利用本发明制备的多晶SiC—金刚石双层复合材料,具有多晶金刚石与多晶SiC双层结构,金刚石层与SiC层经高温高压烧结复合在一起,两层多晶材料结合紧密,晶粒大小分布均匀,致密度高;该多晶SiC—金刚石双层复合材料既具备金刚石高硬度高断裂韧性的特点,又结合了SiC多晶体成本低、易烧结的优点。
本发明提出了一种高自锐强散热的高熵合金‑金刚石超硬复合材料及其制备方法和应用,用以解决目前高熵合金/金刚石磨具使用过程中自锐性差、易发热等缺陷。制备方法包括以下步骤:将无机颗粒、高熵合金粉和金刚石磨粒加入有机粘结剂中制得半固态生料;将半固态生料挤压入模具或通过辊压分切工艺成型,得到复合材料生坯;将复合材料生坯放入烧结设备中进行烧结,制得内部多孔的高熵合金‑金刚石超硬复合材料。本发明还公开了上述材料在磨料磨具领域的应用。本发明在充分发挥高熵合金低磨损优势基础上提高高熵合金结合剂磨具对自锐性和散热性,满足半导体和新型行业复杂结构部件高刚度、高速度、高保型、长寿命、高自锐等极端磨削要求。
本发明涉及用于架空输电导线的阻燃高韧性碳纤维复合材料,属于碳纤维复合材料技术领域。用于架空输电导线的阻燃高韧性碳纤维复合材料,由如下重量份的成分制成:聚丙烯腈50‑60份、单层石墨烯粉末20‑30份、细菌纤维素8‑15份、甲基丙烯酸甲酯5‑10份、1,6‑二溴己烷5‑10份、热固性树脂30‑40份、纳米氢氧化镁1‑5份、纳米气凝胶3‑6份。本发明碳纤维复合材料具有高韧性以及良好的阻燃性能。
一种船舶复合材料防护用高耐候面漆,该面漆按照重量份数,由以下组分构成:改性环氧有机硅树脂80‑100份、云母粉20‑60份、BYK110 1‑3份、二甲苯15‑25份、有机膨润土1‑2.5份和胺类固化剂15‑20份。本发明采用改性环氧有机硅树脂和片状云母粉作为主原料,利用两者之间的复配协同作用,使片状云母粉在树脂基材中形成复杂多样的多层均匀分布状态,从而有效延长了水分及腐蚀因子在复合材料表面的侵入路径,并使成品高耐候面漆具有优异的力学性能和高耐候特性,在涂装于船舶复合材料结构部位使用时,能够较好地提高复合材料和船舶的耐海洋环境性,进而有效提高船舶运行的稳定性和可靠性。
本发明公开一种陶瓷增强钢复合材料,所述复合材料基体为孪晶诱导塑性钢,所用增强体为陶瓷。通过将高硬度和高性能的陶瓷材料做为增强体与高强度、高韧性和塑性孪晶诱导塑性钢复合,克服铝镁基复合材料强度不足、塑性差以及使用温度有限等缺陷,有效提高材料的耐磨损能力。并且由于增强体的尺寸可以根据需要设计和调整,可以广泛适用于多种耐磨场合。本发明还公开了制作上述陶瓷增强钢复合材料的制备方法,该方法通过将基体孪晶诱导塑性钢浇注到固定有陶瓷增强材料的模型中制成,生产工序简单、对设备要求低、生产成本低,易于推广。
本发明是涉及一种通过挤出连续制备聚丙烯同质复合材料的方法。该方法主要是将微型双螺杆挤出机挤出的聚丙烯熔体通过机头挤出,同时在机头的小聚四氟乙烯管中引入聚丙烯纤维,使其与聚丙烯熔体一同挤出,最后经过拉丝机辊压拉伸而定型,从而制得纤维增强的聚丙烯同质复合材料。本发明所制备的聚丙烯同质复合材料,其基体与增强体界面结合优异,不需要添加界面粘结剂;易于通过熔融加工回收再利用,符合可持续发展的环保需求;该工艺流程简易、操作方便、成本低廉,并且可连续大规模制备热塑性高分子基同质复合材料,拓宽高分子材料的加工和使用范围,具有一定的普适性,可适用于其它热塑性高分子材料。
本发明提供α‑MnS纳米粒子和α‑MnS/rGO复合材料的合成方法及应用,包括:将MnCl2·4H2O和硫代乙酰胺加入到乙二醇中,搅拌,超声,然后将溶液转移到聚四氟乙烯内衬不锈钢高压釜中,在190℃条件下密封加热反应6~14h;反应完成后离心,洗涤,干燥,得α‑MnS纳米粒子。当在上述原料中加入氧化石墨烯,可合成α‑MnS/rGO复合材料。本发明通过水热法可一步合成纯的无掺杂的α‑MnS纳米粒子或者α‑MnS/rGO复合材料,不需要经过退火反应。所得的α‑MnS纳米粒子和α‑MnS/rGO复合材料具有良好的三阶非线性光学特性。
一种钠电用三维多孔Fe3N/碳复合材料的制备方法属于钠离子电池领域,该复合材料为三维多孔结构。Fe3N/碳复合材料采用溶胶凝胶和退火处理的方法,以PS球为造孔剂,PVP为碳源,九水硝酸铁为铁源,尿素为氮源,经低温烧结合成了三维多孔Fe3N/碳复合材料。该材料具有纯度高和三维连通多孔的特性。将其作为钠电的负极材料,进行电化学性能测试,其初始比容量可达635.9mAh/g(0.1A/g),经300次循环后比容量仍有360.5mAh/g(0.4A/g)。本发明制备的三维多孔Fe3N/碳复合电极材料具有比容量高和循环性能好,且制备方法极大的降低了现有的烧结温度,制备工艺简单等优势。
本发明涉及无机高分子复合材料技术领域,且公开了单组份耐磨防腐水性无机地坪复合材料及其制备方法,包括如下份数的成分:水19.6份、润湿剂0.1份、无机分散剂0.4份、消泡剂0.2份、防冻剂0.5份、颜填料20份、石英粉15份、纳米银抗菌粉5份、水性无机树脂30份、硅酸锂溶液5份、硅酸钾溶液5份、再分散乳胶粉3份、调色颜料3‑5份、增稠剂0.5份和消泡剂0.2份。该单组份耐磨防腐水性无机地坪复合材料及其制备方法,通过采用无机树脂具有和水泥、混凝土天然的相容性,能渗透基面,和基面固化一体,使涂膜具有超强的附着力、不脱落、起皮、开裂,通过采用硅酸盐溶液之间的复配,使得最终制得的复合材料具有良好的稳定性。
本发明属于锂离子电池制备领域,具体公开了一种固体电解质包覆石墨复合材料及其制备方法和应用、锂离子电池。本发明在石墨内核与碳层之间设置包含固体电解质的中间层,是因为固体电解质为立方体结构,锂离子的嵌出通道多且结构稳定,将其包覆在石墨表面一方面可以利用固体电解质形成的人工电解质膜提高锂离子的传导速率,另一方面可以利用最外层的无定形碳层提高电子的传输速率,从而提高复合材料的快充性能和安全性能。本发明采用磁控溅射法沉积固体电解质复合材料,能够显著改善材料外壳的结构稳定性和快充性能;加之最外层的无定形碳层能够有效避免电解质与电解液直接接触,降低副反应发生,从而提高了复合材料的存储性能和循环性能。
本发明涉及一种低膨胀硅基复合材料及制备方法、硅基负极材料及锂离子电池。该低膨胀硅基复合材料为核壳结构,核为硅碳复合材料,包括碳微米管以及附着在碳微米管上的硅颗粒,壳为碳包覆层。本发明的低膨胀硅基复合材料,以附着有硅颗粒的碳微米管为核,碳包覆层为壳,组成核壳结构,试验表明,管状的硅基材料可以大大降低充放电过程中材料的体积膨胀,经碳包覆处理后,导电性良好且提高了材料的稳定性,降低了材料与电解液的副反应,有利于形成稳定的SEI膜,减少硅颗粒在充放电过程的暴露和破碎,从而大幅度提升电池的循环寿命。
本发明提供的环氧树脂复合材料的制备方法,包括:将双酚AF完全溶解在环氧氯丙烷中,然后加入催化剂反应以得到树脂醚化物;使树脂醚化物和NaOH溶液反应,得到双酚AF氯醚醇;在双酚AF氯醚醇中滴加NaOH溶液,得到含氟环氧树脂;将含氟环氧树脂和固化剂混合均匀后,加入催化剂,混合、固化,制得环氧树脂复合材料。本发明还提供了由上述方法制备的环氧树脂复合材料及其作为电子材料和透波材料的应用。本发明通过在树脂结构中引入F,形成C‑F替代C‑H,使树脂结构的极性降低,从而制备出具有低介电常数和介电损耗,并且同时具有良好的热稳定性的环氧树脂复合材料,其可广泛地应用于印刷电路板、涂料、微电子等领域。
本发明涉及一种碳化硼/铁隔热耐磨复合材料及其制备方法,属于铁基耐磨材料技术领域。碳化硼/铁隔热耐磨复合材料及其制备方法,属于铁基耐磨材料技术领域。本发明的碳化硼/铁隔热耐磨复合材料,由以下质量百分比的原料制成:碳化硼1~10%、碳0.1~1%、铁89~98.9%。本发明的碳化硼/铁隔热耐磨复合材料,硬度可达HRC63,比铸铁高出HRC15,具有非常出色的硬度;耐磨性可达0.00002g/mm2/h,比铸铁提升了200%以上,具有优异的耐磨性;热扩散系数可达3.61mm2/s,仅为金属铁的28.2%,具有良好的隔热能力;相较于作为内燃机缸体材料铸铁,具有显著优势。
本发明公开了一种梯度石墨烯/聚氨酯导电复合材料的制备方法,包括以下步骤:(1)含有石墨烯的聚氨酯粉料的制备;(2)石墨烯/聚氨酯无纺布膜或纳米黏土管/聚氨酯无纺布膜的制备;(3)梯度石墨烯/聚氨酯导电复合材料的制备。采用本发明的方法避免了石墨烯在共混过程中的团聚现象,本发明中将导电性能优异的石墨烯喷涂在聚氨酯无纺膜表面,通过在膜表面形成一层三维导电网络结构梯度石墨烯/聚氨酯导电复合材料,具有较高的力学性能和较低的逾渗值与现有技术相比,此种方法,一次成型,不仅工艺简单,而且可以获得一种同时具有较高力学性能和较低逾渗值的梯度石墨烯/聚氨酯导电复合材料。
本发明公开了一种复合有机纤维、生态型客土喷播复合材料及其制备方法。该复合有机纤维,由以下重量百分比的组分组成:椰纤维丝75~80%、椰渣2~5%、腐熟麦秸15~20%;该生态型客土喷播复合材料,主要由以下重量份数的组分组成:复合有机纤维100份、表面活性剂0.004~0.006份、植物生长调节剂0~0.002份、复合肥0~5份。本发明的生态型客土喷播复合材料中的复合有机纤维具有良好的交织性和保水性,使生态型客土喷播复合材料与泥炭土、草籽等混合能形成均匀稳定的浆体,附着在施工面上形成鸟巢状客土覆盖层,提高客土层依附坡面的稳定性。
本发明涉及一种导流用非织造复合材料及其制备方法。本申请的导流用非织造复合材料,包括依序层叠复合固结的热风无纺布层、阻尼层和防护层;所述的制备方法中将阻尼层喷射在防护层上,此后将蓬松热风无纺布层铺放在阻尼层之上,经过超声波复合作用固结在一起,形成本申请的吸收芯体用导流非织造复合材料。导流用非织造复合材料的制备方法中,在通过在蓬松的热风非织造布层和防护层之间添加纤维表面带有沟槽结构的聚丙烯熔喷非织造布层,不仅具有快速下渗速度,还具有良好的纵向扩散效果,同时兼有柔软特性,可用于纸尿裤、卫生巾等一次性吸收制品。
本发明涉及一种氮磷掺杂石墨烯复合材料及其制备方法、锂离子电池负极极片,属于锂离子电池材料制备技术领域。本发明的制备方法,包括以下步骤:1)将氧化镁加入氮磷无机化合物溶液中分散均匀,过滤、干燥,得到氧化镁/氮磷复合物;将氧化镁/氮磷复合物与纳米催化剂混匀后转入反应器中作为基体,在800~900℃保温1~3h,保温的同时通入烃类气体,得到含氮磷石墨烯/氧化镁复合材料;2)采用非氧化性酸去除含氮磷石墨烯/氧化镁复合材料中的氧化镁和纳米催化剂,然后过滤、干燥,即得。本发明的制备方法,能够提高氮磷掺杂石墨烯复合材料的导电性、比容量以及振实密度,同时依靠氮和磷之间的协同效应,提高其石墨烯材料的比容量。
本发明提供了一种利用复合材料的光催化空气净化装置,其进风部采用梯状设计,增大进风口面积,提高进风量,配合双层TiO2/ACF光催化复合材料过滤网,从装置结构上提高光催化净化空气的效率。TiO2/ACF光催化复合材料采用溶胶凝胶法浸渍法制备,通过微/纳米气泡水辅助处理后采用超声波处理,该方法可以避免TiO2从ACF表面脱落,并且TiO2负载分布较为均匀,提高TiO2/ACF光催化复合材料的稳定性,从而提高了光触媒对于室内挥发性有机物和病毒细菌的降解效果。底壳内设有可拆卸结构的栅格过滤网,方便使用者拆卸与清洗,避免栅格过滤网堵塞降低进风量及空气净化效果。顶部出风口位置设有加湿器,可以对空气进行加湿处理,进一步提高空气质量。
本发明公开了一种热塑性复合材料金属夹层板制品的智能制造方法,包括制备具有拓扑互锁结构的夹层板的步骤和智能控制步骤;智能控制步骤具体包括:根据夹层板制品的三维数模,划分网格,根据热塑性复合材料和金属板的性能参数,计算热塑性复合材料金属夹层板的力学性能;预设热冲压工艺参数,根据预成型夹层板制品的缺陷进行人工神经网络计算、诊断、优化,得到优化热冲压工艺参数;依照优化热冲压工艺参数,将夹层板冲压成型,得到夹层板制品。得到了具有拓扑互锁阵列结构的夹层板结构、实现了人工神经网络系统控制模压过程和在线智能优化,为热塑性复合材料金属夹层板制品智能化、轻量化、高性能、高效率、低成本的制造奠定了良好技术基础。
中冶有色为您提供最新的河南有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!