本发明涉及一种生物降解高分子纳米复合材料的加工方法,属于绿色环保包装材料领域。本发明通过纳米粒子表面高分子化修饰与多元干法挤出反应技术制备得到生物降解高分子纳米复合材料。本发明方法具有生产工艺简单、操作过程精准可控,制得的生物降解高分子纳米复合材料各组分高度相容,其综合性能优异:生物基含量高(不低于95%),机械性能,尤其是拉伸性能优异(抗拉伸强度不低于24MPa,断裂伸长率不低于600%),90天堆肥降解率不低于96%,可被应用于生产食品、纺织、日化、医药等诸多领域的一次性塑料制品和/或覆膜包装材料,市场前景广阔。
聚己二酸-对苯二甲酸丁二酯复合材料及制备方法,涉及高分子复合材料的制备技术领域,将干燥的聚己二酸-对苯二甲酸丁二酯与聚乳酸置转矩流变仪内,于温度为180℃、转子剪切速率为50s-1~100s-1的条件下熔融共混后,再加入玻璃纤维再熔融共混,然后注塑成形。制成的生物可降解的复合材料中聚乳酸分散相焊接了玻璃纤维的搭接点,使玻璃纤维在聚己二酸-对苯二甲酸丁二酯基体中形成了牢固的网络结构。本发明让玻璃纤维在聚己二酸-对苯二甲酸丁二酯基体中形成完善的网络结构,从而最大程度发挥玻璃纤维的增强效果,极大的改善了聚己二酸-对苯二甲酸丁二酯的强度和模量。
本发明提供一种碳纤维/玻璃纤维复合材料及其制备方法,涉及玻璃纤维改性技术领域。其中,碳纤维/玻璃纤维复合材料的制备方法,包括:步骤一、将碳纤维浸入铈盐溶液中,振荡,去铈盐溶液,用酸溶液洗涤,再用去离子洗涤至中性,干燥;步骤二、将处理后的碳纤维破碎,碳纤维粉和锌粉混合,备用;步骤三、将玻璃纤维浸入氢氧化钠水溶液中,取出洗去玻璃纤维表面的碱,烘干;步骤四、将玻璃纤维与碳纤维‑锌粉分散体混合均匀,送入气流分散机,在气流作用下完全悬浮接触,对气流分散机施加电场,使得碳纤维嵌入玻璃纤维表面裂纹;步骤五、用激光束扫描,使锌粉熔化,碳纤维均匀镶嵌并焊接在玻璃纤维表面,得到碳纤维/玻璃纤维复合材料。
本发明公开了一种高密度跨尺度固溶陶瓷增强铝基复合材料及其制备方法,包括铝基体以及分散在铝基体内的TiC陶瓷增强相和ZrC陶瓷增强相;所述的TiC陶瓷增强相占复合材料总质量的4~8wt.%;所述的ZrC陶瓷增强相占复合材料总质量的6~12wt.%。本发明通过在铝基体中加入ZrC和TiC陶瓷增强相,在激光成形过程中,ZrC和TiC增强相发生固溶,生成高密度跨尺度的(Ti,Zr)C固溶体,发挥不同尺寸固溶体的强化效应,最终起到提升材料力学性能的作用。
本发明公开了一种环保型汽车内饰复合材料,其特征在于,包括如下重量份计的各组分:聚丙烯树脂30‑40份、9,10‑蒽二羧酸/2,4‑二氨基‑6‑乙烯基‑S‑三嗪缩聚物10‑15份、N‑(4‑氰基‑3‑三氟甲基苯基)甲基丙烯酰胺‑碳酸烯丙基苯酯‑甲基丙烯酸三异丙醇钛共聚物20‑30份、莫来石纤维10‑15份、引发剂1‑3份、抗氧剂0.3‑0.8份、相容剂0.5‑1.5份、纳米多孔空心笼状钛氧化物2‑5份。本发明还提供了一种所述环保型汽车内饰复合材料的制备方法。本发明公开的环保型汽车内饰复合材料机械力学性能优异,刺激性气味小,阻燃性能和抗冲击性能好,耐磨性、热稳定性、耐老化性能、耐低温性和耐刮擦性能优异,综合性能佳,使用寿命长。
本发明公开了一种低烟阻燃PA12复合材料及其制备方法,低烟阻燃PA12复合材料按照重量份由以下物料组成:50%‑70%PA12、20%‑35%聚溴化苯乙烯、4%‑10%三氧化二锑、4%‑10%硅星粉、1%‑2%分散剂、1%‑2%其它助剂。本发明提供的低烟阻燃PA12复合材料,可以降低成本,材料韧性方面可以得到较大的提升,阻燃性稳定,适用于薄壁制品方面;同时,加工工艺温度比较宽,易加工成型,不析出,满足汽车电力系统方面的需求。
本发明公开了一种骨修复钛钼基羟基磷灰石复合材料及其制备方法。本发明所述的复合材料是由钛钼合金、过程控制剂与羟基磷灰石混合制得。本发明制备的复合材料的弹性模量低(30~50GPa)、抗压强度高(500~1550MPa)、硬度高(300~520HV),含有大量的生物活性陶瓷相(CaTiO3、Ca3(PO4)2、HA等),有利于诱导骨结合,兼具优良的力学性能和生物活性,可用于骨修复和骨替代。
本发明公开一种光伏组件用复合材料边框及制备方法,光伏组件用复合材料边框包括本体和设置在本体外的防护涂层,本体按质量百分含量计,本体的原料配方包括纤维增强材料、基体高分子材料、促粘剂和辅料;其中,纤维增强材料为芳纶纤维、碳纤维或玻璃纤维的一种或多种的组合;基体高分子材料为PTFE、EP、PC或PA的一种或几种的组合;辅料包括脱模剂。本发明提供的复合材料边框采用高强度抗拉抗弯材料制成,可提升整体机械载荷性能;可提升组件抗PID性能,对双玻双面PID改善更为明显;通过增加防护涂层,提高边框抗紫外和耐老化性能;边框成本较低,可降低组件单瓦成本;边框适应于叠焊、叠瓦、拼片、单双玻组件。
本发明公开了一种聚苯乙烯‑石墨烯复合材料及其制备方法和应用,先以石墨为原料,制成一种特殊的石墨烯材料,即可膨胀氮化石墨烯,接着对该石墨烯材料进行改性处理,使其可与苯乙烯单体共聚,从而获得改性聚苯乙烯,然后将改性聚苯乙烯与聚偏氟乙烯同轴静电纺丝,得到复合纤维,最后在苯乙烯单体聚合反应时加入该复合纤维,可大大改善所得聚苯乙烯‑石墨烯复合材料的机械强度和阻燃性能。本发明所得聚苯乙烯‑石墨烯复合材料可用于聚苯乙烯板加工,应用前景广阔。
本发明公开了一种阻燃ABS复合材料及其制备方法和应用,该阻燃ABS复合材料包括以下重量份数的组分:ABS树脂15‑40份,PC树脂30‑50份,耐热改性剂5‑18份,溴系阻燃剂8‑15份,含锑化合物0‑5份,增韧剂2‑12份,其他助剂0.5‑5份;其中,所述溴系阻燃剂为溴化聚碳酸酯;所述PC树脂和溴化聚碳酸酯的重量份数比值为(2~6.25):1。通过选用特定的阻燃剂配合PC树脂对ABS树脂进行改性,制备得到的ABS复合材料在具有优异阻燃性能的同时具有高耐热性能,并具有较好的冲击性能,能够广泛用于高耐热需求电子电器领域,尤其是用于墙面开关面板或排插材料。
本发明提供一种水分解制氢复合材料及其制备方法,涉及能源化学、能源材料和催化技术领域,该复合材料自上而下包括产氢催化剂层、能量吸收层、基底层、产氧催化剂层,其中,能量吸收层采用逆向生长的单晶氧化亚铜薄膜,可实现光能与热能的联合转换;产氢催化剂层为透明或半透明状的金属产氢活性位。产氧催化剂层采用过渡金属、过渡金属合金、及其氧化物。本发明一方面实现了氧化亚铜单晶薄膜的可控生长,另一方面实现了多种能量形式利用的水分解制氢复合材料,能够应用于半导体、光伏、催化,以及热电转换等领域。
本发明涉及一种羟基乙叉二膦酸/羟基磷灰石有机无机杂化复合材料及其制备方法,属于污水处理技术领域。其步骤为:将磷酸氢二铵与羟基乙叉二膦酸共同溶解配置成溶液,然后逐步滴加到硝酸钙溶液中,调节pH、老化、抽滤、醇洗、干燥得到所述复合材料。该复合材料可将羟基磷灰石的吸附铅离子、铜离子等重金属离子的性能提高数十倍,具有很强的市场潜力和应用价值。
本发明公开了一种电力机车用耐磨炭纤维复合材料受电弓滑板的制备方法,该方法为:一、采用短切炭纤维、炭粉、石墨粉、硼粉、树脂作为主要原材料;二、按一定比例配置炭纤维混合物;三、压制固化成型;四、炭化处理;五、树脂溶液浸渍、固化、炭化处理;六、机械加工后,制得电力机车用耐磨炭纤维复合材料受电弓滑板。本发明采用炭纤维作为骨架、树脂炭基体、炭粉作为增强体、石墨粉作为润滑剂、硼粉的耐磨性等特点制备的电力机车用耐磨炭纤维复合材料受电弓滑板,具有力学性能优异,机械强度高、抗冲击韧性好、耐磨性好、使用寿命长等优点。
本发明公开了一种既可作高温储能电容器,也可作化学传感器以及新型固态离子电解质的高介电准晶体复合材料及其的制备方法。本发明所述的高介电准晶体复合材料由Al65Cu23Fe12,Al70Pd21Mn9,Cd57Yb10,Al63Cu24Fe13中的一种,复合型钙钛矿结构的钛酸铋钠、以及液体石墨烯酚醛树脂组成。本发明复合材料基板具有机械性能好、轻质、易加工、介电常数高等优点,可以在高温储能、化学传感器等领域具有广泛应用。
本发明提出了一种金属有机骨架‑离子液体复合材料的制备方法及其应用,涉及高效二氧化碳吸附剂的制备方法及其应用,具体涉及一种金属有机骨架‑离子液体复合材料、制备方法及其应用,包括以下步骤:将离子液体单体[BMIM]Br溶解在甲醇中,滴加到真空干燥活化过的Cu‑BTC中,得到悬浊液,搅拌,洗涤,离心干燥后得到淡蓝色固体粉末,所述[BMIM]Br与Cu‑BTC的质量比为0.25‑0.27。本发明采用金属有机骨架‑离子液体复合材料的方式吸附二氧化碳,吸附效果与现有技术相比显著提高,提高27%。
本发明提供的一种高导热玻璃纤维增强聚丙烯复合材料,由聚丙烯100份、短玻璃纤维10‑20份、碳化硅4‑8份、纳米银0.5‑1份、壳聚糖15‑25份、液体石蜡20‑30份制成。本发明还提供了上述高导热玻璃纤维增强聚丙烯复合材料的制备方法。本发明提供的聚丙烯复合材料利用玻璃纤维进行增强,大大提高了其力学性能,加入了碳化硅进行改性,进一步提高了聚丙烯材料的导热性能;同时,将玻璃纤维和碳化硅、纳米银利用壳聚糖进行包覆,再分散于液体石蜡中,提高了其与聚丙烯的相容性,避免了玻璃纤维和碳化硅、纳米银加入后材料中出现缺陷,降低纤维增强聚合。
本发明公开了一种轻质高强度防弹衣复合材料及其制备方法,所述复合材料由多层涂覆膜复合而成,所述涂覆膜包括纳米纤维膜和涂覆层,所述涂覆层涂覆于纳米纤维膜的上表面,所述涂覆层由无机颗粒、胶体颗粒和溶剂制得,相邻涂覆膜之间设置有胶黏层。本发明通过高分子纳米纤维膜以及涂覆在其表面的高硬度涂覆层形成的涂覆膜作为基体材料,使用胶黏剂对多层基体材料进行层叠复合形成复合材料,其中涂覆膜中的纳米纤维结构能够提供优秀的结构强度,高硬度涂覆层具备优秀的刚性,同时,采用具有特殊配方的胶黏剂作为两层涂覆膜之间的胶黏层,能够快速分散和降低冲击力,从而大幅减少子弹对人体的伤害。
本发明专利公开了一种新型玻纤炭纤增强高阻燃PC/PBT复合材料,该复合材料质量比包括:PC树脂4‑8%、PBT树脂40‑70%、弹性体2‑6%、玻璃纤10‑30%、炭纤维10‑20%、阻燃剂5‑10%、阻燃助剂2‑8%。用户在使用本发明专利的新型玻纤炭纤增强高阻燃PC/PBT复合材料时,既具有优的刚韧平衡性能,又具备高阻燃性能,阻燃性能够达到UL94V0等级,可广泛应用于新能源汽车电池壳体部件和电子电器部件等,极大地拓宽了玻璃纤碳纤维增强PC/PBT材料的应用领域。
本发明公开了一种石墨烯包覆的两性纤维素复合材料,将80‑95份的两性纤维素和1‑10份的丝素、1‑10份的碳纳米管、1‑5份的致孔剂混合均匀后,经过液氮、冷冻干燥处理后,浸渍在氧化石墨烯溶液中充分吸附后,置于还原剂中进行还原,最终得到石墨烯包覆的两性纤维素复合材料。该复合材料具备绿色环保、可降解、机械性能好、组织结构规整、孔隙率高等诸多优点,在污水处理、光电器件等领域有重要的应用价值。
本发明公开了高倍率固态可充电电池用三元复合材料及其应用,将氧化物胶体水溶液、碳化物胶体水溶液与碳材料混合,得到混合液;然后将混合液真空抽滤后干燥,得到高倍率固态可充电电池用三元复合材料。本发明制备的本发明三元复合材料作为固态电池电极同时实现了高机械柔性和优异的电化学倍率性能,展现出极好的形变能力,可以反复折叠成任意数量的形状,制备的电池性能优于大多数使用液体电解质的柔性电池,甚至可与某些扣式电池相媲美。
本发明公开了一种含有聚氨酯的医用复合材料的制备方法及其应用,该方法采用将蒙脱石粉、氟硅酸锌进行湿法球磨、干燥后得到干燥混合粉末;将聚氨酯、邻苯二甲酸二异丁酯在真空反应釜中进行高温搅拌反应,降温后加入聚亚苯基硫醚进行静置保温反应得到高温反应物,冷却后加入对氨基苯磺酰胺、椰子油酸单乙醇酰胺、硅酸铝陶瓷纤维,在氮气环境下加压反应得到二次反应物;接着将干燥混合粉末、二次反应物与添加剂进行混合搅拌得到热混合料,再加入二甲基亚砜,经超声处理、挤出造粒、注塑成型、分割、包装、灭菌等工艺制成成品医用复合材料。制备而成的医用复合材料,其机械强度高,在医用器材上具有良好的应用前景。
一种铝基铂碳纳米复合材料的制备方法及其应用,属于燃料电池催化剂制备技术领域。包括以下步骤:(1)称取铝盐、锂盐和磷酸盐放于球磨机中混合均匀并粉碎;(2)制备碳纳米管;(3)称取铂和上述碳纳米管置于反应器中,加入三甘醇,然后通入氮气除氧,程序升温后进行反应,反应完成后冷却到室温备用;(4)将步骤(3)中冷却后的产物无水乙醇,离心清洗后烘干,得到铝基铂碳纳米复合材料。本发明所述铝基铂碳纳米复合材料用作燃料电池的电极催化剂,以碳纳米管为载体,具有良好的导电功能,同时具有优异的抗腐蚀性能,制备成本低、电催化活性高、氧化电位低以及比电流密度高等优点。
本发明公开了一种壳聚糖‑生物炭复合材料及应用方法,属于污水处理技术领域。所述材料的制备过程包括以下步骤:1)将壳聚糖溶于醋酸溶液,于加热条件下搅拌,使壳聚糖发生自催化水解反应,得到反应后溶液;2)将反应后溶液加入生物炭,搅拌、调节pH值,静置后过滤,冲洗至pH值为中性;3)烘干、粉碎,得到壳聚糖‑生物炭复合材料。本发明的壳聚糖‑生物炭复合材料对焦化废水的生化出水中溶解性有机物进行吸附处理,具有明显的去除效果,可有效提高出水水质,并实现了对农业废弃物的资源化利用,具有较好的环境效益和经济效益。
本发明提供了一种绝缘导热改性尼龙6复合材料,采用如下方法制备而成:1)以PA6、高球形度氧化铝、纳米碳化硅和纳米氮化硼为原料,在高速混合机中混合3min;2)经双螺杆挤出机挤出造粒;将粒料充分干燥后,即得绝缘导热改性尼龙6复合材料;所述的步骤1)中,得到的混合料中,各原料含量如下:PA6的含量为40‑50重量份,高球形度氧化铝为45‑55重量份,纳米碳化硅的含量为5‑10重量份,纳米氮化硼的含量为5‑10重量份。本发明的绝缘导热改性尼龙6复合材料,具有绝缘导热的性能。
本发明公开了一种丁腈橡胶复合材料的制备方法,包括通过补强填料和橡塑共混两方面对丁腈橡胶进行补强改性,改性剂用量为2.5%、改性时间60min、改性温度为70℃时,碳酸钙晶须的活化指数由36.1%提高到82.2%,晶格组成也未被破坏,说明改性成功并且效果良好,将改性碳酸钙晶须和PVC与丁腈橡胶通过混炼硫化制得复合材料,该丁腈橡胶复合材料的制备方法因其当加入15gPVC时的丁腈橡胶的性能与未添加时相比,拉伸强度和撕裂强度提高了28%和29%,硬度提高了4.2%,磨耗比降低了9.3%,耐磨性增大,由于刚性增大,使断裂伸长率降低;初始分解温度和最大分解速率时的温度分别降低了1℃和5℃,但800℃时的质量保持率有所提高。
本发明公开了一种具有高介电常数的介电复合材料制备方法,该方法是将二氧化锆等原料超声氧化处理后经油浴保温等工艺得到超声氧化改性粉末,再与聚苯醚树脂等原料共同进行热处理,随后将热处理反应混合料制成磺化改性混合物,接着将其与4‑氯苯氧异丁酸等共同加入乙酸乙酯溶液中超声处理,随后加入十二氟庚基丙基三甲氧基硅烷进行油浴保温反应,离心干燥后与环氧硬脂酸辛酯等原料混合,升温后恒温磁力搅拌冷凝回流,旋蒸干燥得到中间体复合物,再制成坯料并加入到N,N‑二甲基甲酰胺溶液中,经加热搅拌等工艺处理得到成品介电复合材料。制备而成的具有高介电常数的介电复合材料,其具有较高的介电常数,在电容器制造中具有良好的应用前景。
本发明涉及航空航天技术领域,且公开了一种基于新型含氟聚合物复合材料制备,包括以下步骤:(1)取出100ML的玻璃皿,调节乙醇和水溶液的PH值在3~5之间放入100ML玻璃皿中,再将硅烷偶联剂5‑10%放入玻璃皿中进行溶解,按3:2:1的比例往其中加入无定形熔融SiO2 9‑15%、超细高岭土混合物6‑10%和超细多孔Si3N4 3‑5%,加温至65℃后保持在65℃下,进行改性3h后。该基于新型含氟聚合物复合材料制备及其在航天航空电缆的运用,通过在步骤2混合搅拌完成后,再加入润滑剂,该搅拌过程中润滑剂保证了搅拌过程的物料混合均匀,同时加快了其混合的速度,可进一步使制备工序的时间能得以缩短,提高了含氟聚合物复合材料的制备速度,增强企业的竞争力。
本发明公开了一种用于数控设备的陶瓷复合材料及其制备方法,按照重量份计包括陶瓷基体70‑90份与金属复合材料20‑40份、有机高分子材料20‑50份、增韧补强陶瓷材料10‑20份组成,其中所述陶瓷基体为包括氮化硅、碳化硅在内的高温结构陶瓷,所述增韧补强陶瓷材料由稀土氧化物La2O3与Y2O3按照1:(1‑2)的重量比组成;所述有机高分子材料为由有机硅树脂、导热绝缘填料、晶须、铂金催化剂、含氢硅油、偶联剂组成的晶须增强有机材料。本发明解决了陶瓷材料脆性易断裂的弱点,强化了其韧性和可靠性,增强了陶瓷复合材料的耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,因此,适合用于电子元器件中,同时兼备高强度和高韧性的优势。
本发明属于聚丙烯技术领域,公开了一种高强高韧的聚丙烯复合材料的制备方法,包括制备聚丙烯树脂、制备邻苯二甲酸二辛酯,将碳酸钙先煅烧,将聚丙烯树脂、热塑性弹性体一起混合搅拌,然后再加入碳酸钙,继续搅拌3‑10得预混物A,在70‑110℃温度下,将偶联剂、玻璃纤维、高密度聚乙烯、邻苯二甲酸二辛酯进行混合搅拌,在120摄氏度烘箱内烘干,得预混物B;将聚丙烯接枝马来酸酐、相容剂、润滑剂和抗氧剂进行混料处理,混合搅拌得到混合物料;将所得的混合物料、聚己内酰胺进行混合搅拌,采用双螺杆挤出机挤出造粒即得。本发明提供的高强高韧的聚丙烯复合材料的制备方法可以制备高强高韧的聚丙烯复合材料。
本发明涉及生物医用形状记忆复合材料技术领域,具体地说是一种Nb包覆NiTi形状记忆复合材料及其制备方法。通过该方法制备的复合材料兼具良好的生物相容性、较高的应力诱发马氏体相变临界应力和大的可恢复应变量,有望解决现有单一的生物医用形状记忆合金,如NiTi基合金和无Ni的β钛合金,无法同时具有良好的生物相容性、较高的应力诱发马氏体相变临界应力和大的可恢复应变量的问题,可望在生物医用领域中获得应用。
中冶有色为您提供最新的江苏有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!