本发明公开了一种高镍型镍钴锰酸锂单晶前驱体,所述前驱体为镍、钴、锰的氢氧化物,所述前驱体的一次颗粒平铺排列且呈片状,二次颗粒为内部疏松的类球状。本发明还相应提供一种上述高镍型镍钴锰酸锂单晶前驱体的制备方法,包括以下步骤:(1)配制可溶性盐溶液;(2)将可溶性盐溶液与络合剂、沉淀剂在保护气体下,并流加入装有底液的反应器中,进行连续共沉淀反应;(3)将步骤(2)中的共沉淀产物进行固液分离,收集固相进行陈化、洗涤、脱水、干燥、筛分处理,即得到上述前驱体。本发明还提供一种高镍型镍钴锰酸锂单晶正极材料。本发明的正极材料在保持高比容量的同时,还具有优异的循环性能。
本发明提供了一种超大容量锂离子电池用隔板,包括第一绝缘层、导电层、第二绝缘层和导线,所述第一绝缘层正对电池的正极板,所述第二绝缘层正对电池的负极板,所述第一绝缘层和第二绝缘层分别紧贴在所述导电层两侧的表面,所述导电层与所述导线接。本发明还提供了一种超大容量锂离子电池及监控负极板锂枝晶的方法,所述锂离子电池由若干正极板、隔板、负极板、隔板依次排列组成。解决了现有的隔板机械强度底,组装不方便,且不具备锂枝晶监控功能的问题。
一种锂离子电池用阻燃凝胶电解液,主要由电解质锂盐、有机溶剂及功能性添加剂经热聚合后制备得到,阻燃凝胶电解液主要是有机聚合物形成的聚合物网状结构,电解质锂盐、有机溶剂与功能性添加剂均匀分散于溶胀凝胶中;其制备方法是先将电解质锂盐溶解于有机溶剂中,然后分成两份,一份加入阻燃剂等得混合液A;另一份加入单体引发剂得混合液B;然后制备成正极极片和负极极片;将正、负极极片、隔膜以卷绕的方式制备成电芯,置于铝塑膜中,将混合液A与混合液B混合均匀后注入至前述电芯中,同时将电芯真空密封,常温静置,然后进行热聚合反应得到阻燃凝胶电解液充填的锂离子电池。本发明产品的安全性能获得了显著提升。
本发明公开了一种从报废的磷酸铁锂电池正极粉中提取碳酸锂的方法,包括“制备正极粉‑循环浸出‑过滤洗涤等”八个步骤。本发明的目的是提供一种从报废的磷酸铁锂电池正极粉中提取碳酸锂的方法,该工艺方法环境友好、能耗低、生产成本低、排污量少,高效地实现资源综合利用,满足工业化生产。
本发明公开了一种可用于锂氧气(空气)电池的空气电极与隔膜之间的扩展夹层及其湿法纺丝制备过程,它包括以下步骤,将高聚物溶解在有机溶剂中,得到纺丝原液,纺丝原液通过纺丝头以一定密度吐丝并粘结在锂氧气(空气)电池的预装隔膜上,每喷丝一层或几层,在凝固浴中凝固成型,烘干后将以一定比例共混于特定溶剂中的催化剂、导电剂、粘结剂及干燥剂以喷雾的形式喷涂在扩展夹层上,交替往复若干次,冷却成型后以面向空气电极的方式装入电池中。添加该夹层可以使隔膜拥有更好的力学性能,同时可以扩展催化层的催化空间,增加催化位点,增加Li2O2的沉积空间,从而达到提升电池性能的效果。
本发明公开了一种可用于锂氧气(空气)电池的空气电极与隔膜之间的扩展夹层及其熔融纺丝制备过程,它包括以下步骤,将催化剂、导电碳与热熔高聚物在高温下互熔共混,将得到的共混料通过挤压机以一定密度一定方向,以细丝状形态粘结在锂氧气(空气)电池的隔膜上,结成网状层,在结网一层或几层的过程中,将以一定比例共混于特定溶剂中的催化剂、导电碳、粘结剂和干燥剂以喷雾的形式喷涂在网状层上,交替往复若干次所得全部网状层与喷雾的集合即所述扩展夹层,冷却成型后以扩展夹层面向空气电极的方式装入电池中。添加该扩展夹层可以使隔膜拥有更好的力学性能,同时可以扩展催化层的催化空间,增加催化位点,增加Li2O2的沉积空间,从而达到提升电池性能的效果。
本发明公开了一种铜/CNTs-锡/石墨多层结构锂离子电池负极材料及其制备方法,属于锂离子电池负极材料领域。本发明以粗糙铜箔或多孔铜箔为基底,将铜箔经电解除油活化后,先用脉冲喷射的方法制备一层CNTs-锡镀层,然后在CNTs-锡镀层上再涂布一层石墨,最后进行80-150℃的热处理,制备得到铜/CNTs-锡/石墨多层结构负极材料。与现有技术相比,该发明具有较好的循环性能和较高的比容量,锡层中的CNTs能够起到连接石墨和铜箔集流体的作用,与锡材料形成“钢筋混泥土”的结构也缓解了锡的体积膨胀,并且锡和铜能生成Cu6Sn5合金,从而使该负极材料循环性能进一步提升;因此,应用前景十分广阔。
本实用新型涉及一种锂盐溶液中萃取回收锂的反应系统,包括碳化装置;所述碳化装置的出料阀门(6)连通至一萃取装置(8),所述萃取装置(8)通过输送管道与所述的进料阀门(5)相连通,所述布气盘(4)的外部连通有一气体发生装置(9)。使用本实用新型的反应系统,锂的回收率能达到99.8%,副产物能用作电解液、吸附CO2等其他行业,综合回收效率高,适用于进行工业化生产。
本发明公开了一种基于高效固相络合化学反应制备富锂锰基层状锂电池正极材料的方法,包括以下步骤:先准备用作原料的锂源、镍源、钴源和锰源,准备固体配位络合剂;根据所要制备的目标产物富锂锰基层状锂电池正极材料的分子式中各金属元素的计量比,将准备的原料和固体配位络合剂按照一定的摩尔比干混均匀,充分研磨;将得到的混合物料在较低温度下进行干燥,得到固相络合物前躯体;将固相络合物前躯体置于空气或富氧气氛中,进行烧结,得到富锂锰基层状锂电池正极材料。本发明的方法简单易控、生产成本低、绿色环保、生产效率高、产品性能优良。
本发明公开了可用于高电压锂金属电池的电解液,电解质包括六氟磷酸锂和含硼锂盐,有机溶剂氢氟醚(HFE)与环状碳酸酯和线性碳酯的混合溶剂,添加剂为甲基硅基(亚)磷酸酯。同时公开了采用上述电解液的一种锂金属电池,正极采用富锂锰基类或高镍类三元活性物质,金属锂负极。本发明的电解液得益于电解液中含硼锂盐与甲基硅基(亚)磷酸酯化合物以及氢氟醚溶剂的协同作用,具有较高的电化学窗口(>5V),由于其在电池的正极表面形成均匀致密的CEI膜,使电池表现出良好的循环稳定性能与电压稳定性能。
本发明属于锂离子电池技术领域,具体公开了一种锂离子电池隔膜、其处理方法及锂离子电池。该方法通过隔膜上附着的镁盐与碱性溶液反应,在隔膜上生成氢氧化镁。本发明使用阻燃材料氢氧化镁替代氧化铝,具有阻燃效应,当遇热时,氢氧化镁不仅产生隔热效应,还有吸收热量的功能,当电池内部某点发生短路时,氧化锑能迅速吸热,使温度迅速降低,从而使电池不发生起火、爆炸。由本发明方法处理得到的隔膜制造电池,电池的安全性能明显提高。
本发明公开了一种在磷酸氧钒锂正极材料表面包覆磷酸铁锂的方法,即在正极材料LiVOPO4表面包覆一层LiFePO4。制备方法:将按照公知方法制备的LiFePO4和LiVOPO4按照一定的质量分数加入到机械融合装置中,不加任何助磨物质,干磨一定时间即可得到一定量LiFePO4包覆的LiVOPO4正极材料。本发明经过在LiVOPO4表面包覆一层LiFePO4,一方面可以有效降低电荷转移阻抗,另一方面可以减少电解质溶液与电极材料的直接接触,避免电解质溶液与电极材料之间副反应的产生,从而显著提高材料的倍率性能和循环性能。
基于EMD制备锰酸锂电极材料的方法、锰酸锂电极材料及其应用,涉及电极材料合成技术领域,本发明以商品电解二氧化锰(EMD)和单水氢氧化锂为原料,通过简短的工艺步骤制备了结晶度高,形貌一致性与循环稳定性好、能够满足动力电池需要的锰酸锂电极材料颗粒,本发明所采用工艺步骤简单、反应周期短、能耗及生产成本低、更适于工业化实施和应用。
本发明提出了一种镍钴锰酸锂材料前驱体及其制备方法以及由该前驱体制备的正极材料。该前驱体呈球形,一次颗粒呈片状直插,剖面呈放射状;其化学分子式为NixCoyMnzMt(OH)2+a。所述镍钴锰酸锂材料前驱体的XRD峰强比值为1.0±0.1,中位粒度为9.0~11.0μm,振实密度为1.9~2.2g/cm3,比表面积为7~11m2/g。该前驱体的制备过程中,全程无惰性保护气体通入,且共沉淀反应过程中加入氧化性添加剂。该制备方法不仅工艺流程简单、自动化程度高,而且可实现连续化生产,产品品质稳定、优异。
本发明公开了一种锂电池固体电解质及全固态锂电池,该固体电解质由交联型聚合物和锂盐组成:该交联型聚合物由硅烷偶联剂与聚乙二醇通过交联反应制备得到;该固体电解质的耐热性能好、加工性能好、且具有较高电导率;制得的电解质薄膜机械性能好,电导率高,可用于制备在高温下仍能保持较好电化学稳定性的安全型全固态锂电池。
本发明公开了一种锂铝硼复合掺杂的锰酸锂正极材料及其制备方法,该锂铝硼复合掺杂的锰酸锂的化学式为:Li1+xMn2‑xAlxO4·0.3xLiBO2,其中,0<x≤0.2。本发明通过采用喷雾造球后二段焙烧的方法制得形貌规则,粒径均匀的多孔球形锂铝硼复合掺杂的锰酸锂正极材料。通过在锰酸锂晶格中引入锂、铝、硼这三种元素,硼以LiBO2形式与锰酸锂形成Li1+xMn2‑xAlxO4·0.3xLiBO2固溶体,有效地抑制了锰在电解液中的溶解,提高了Mn‑O键的强度从而增强了材料的结构稳定性,显著提高了锰酸锂的高温循环性能。材料的制备工艺操作简单易于控制,成本低廉易于实现规模化生产。
本实用新型涉及锂离子电池领域,公开了一种锂离子电池组。包括:端板,左侧板、右侧板分别位于底板的左右两侧,后端板位于底板的后端,转接板的两端分别连接在端板的左侧板、右侧板的前端,转接板上设置有复数个极耳伸出孔,各极耳伸出孔侧的极耳连接位之间连接有导体,电池组本体包括复数个锂离子电芯,限位在左侧板、右侧板及后端板之间,各锂离子电芯的极耳各极耳分别从转接板的各极耳伸出孔伸出,弯折固定在各极耳连接位上;压条的左右两端部分别与端板的左侧板、右侧板的顶部连接,电池组本体限位于压条下,保护电路板固定与右侧板的外侧,与转接板电连接。应用该方案,有利于提高锂离子电池组的装配的紧固度,提高了装配的便利性。
本发明提供了一种锂离子电池的电解液浸润方法及其制备得到的锂离子电池和电子装置,涉及新能源电池技术领域。所述锂离子电池的电解液浸润方法通过在‑80~‑20kPa的压力下静置的方法对锂离子电池进行浸润,使电解液能更为充分浸入极片每个部位,极大的缩短了现有锂离子电池的电解液浸润时间,仅需6~10h即可完成浸润的过程,同时由于压力的存在,也有效缓解了现有电解液浸润方法电芯浸润效果差的问题。因此,本申请电解液浸润方法相对于现有技术具有浸润效果好,生产效率高的优势。
本发明适用于锂离子电容器技术领域,提供了一种高电压聚合物锂离子电容器的制作方法及锂离子电容器,该方法采用挤压喷涂法制作双极性极片、单边正极极片和单边负极极片,将所得极片浸润电解质溶液,然后吸附含有电解质溶液的混合溶液,经加热聚合、收卷、冲切和叠片工序得到极群,极群经辊压、封装,采用夹板加热化成后抽真空处理,得到高电压聚合物锂离子电容器。本发明提供的制作方法制作的锂离子电容器具有内阻小、充放电功率大、工作温度范围宽和循环寿命长的优点,适用于电力调频领域。
本发明提供了一种从高镁锂比盐湖卤水中分离镁和提取锂的方法。该方法以磷酸三丁酯为萃取剂、200号溶剂油或煤油为稀释剂、高氯酸盐为共萃剂、水为反萃剂组成萃取体系,用盐湖卤水经过萃取、反相萃取和深度除镁后制备碳酸锂。本发明具有如下的有益效果:一是所用共萃剂性质稳定,能在中性卤水中进行锂镁分离,无需控制水相pH值;二是萃取过程无乳化现象及第三相出现,两相容易分离,用水进行反相萃取,设备腐蚀小;三是整个工艺过程简单,锂萃取率高、分离效果好,经济成本低,水中共萃剂回收利用,对环境破坏程度小,适用于盐湖卤水的工业化生产。
本发明提供了一种富锂锰基锂电池用正极材料的制备方法,向碱性沉淀剂和络合剂溶液中先后加入含加镍、钴和锰的盐类溶液以及含金属M的盐溶液制得前驱体,将前驱体粉体材料与锂源化合物混合经高温热处理后制得材料。采用本发明方法制备的富锂锰基正极材料的颗料具有明显的核壳结构,可减少电极极化,有效抑制过渡金属的溶解和氧气的释放,使得材料具有优异电化学性能,倍率性能和循环稳定性好,工作电压高。同时本发明引入金属M元素采用溶液湿法,工艺简单,反应条件容易控制,能耗低,适合产业化生产。
本发明公开了一种喷雾冷冻干燥制备锂电负极材料钛酸锂的方法,是以Ti化合物、Li化合物、金属氧化物M按化学计量比称量配料,分散于蒸馏水中,砂磨后,以液氮和液态丙烷为冷冻剂,通过喷雾冷冻干燥造球,煅烧后得到M掺杂改性的钛酸锂材料。本发明工艺简单,可控性强,所得材料高倍率性能优异,可适用于工业生产钛酸锂负极材料。
一种锂离子电池正极材料硼酸锰锂/石墨烯及其制备方法,所述硼酸锰锂/石墨烯按照以下方法制成:(1)将锂源、锰源、硼源和还原剂溶于去离子水中;(2)与石墨烯混合,水浴中搅拌,形成混合溶液,控制混合液中石墨烯浓度为0.1~1.4?g/L;(3)调节pH值至6~9;(4)干燥造粒,得硼酸锰锂/石墨烯前驱体;(5)将硼酸锰锂/石墨烯前驱体于非氧化性气氛下450~800℃烧结6~22h,冷却至室温,得锂离子电池正极材料硼酸锰锂/石墨烯。本发明锂离子电池正极材料硼酸锰锂/石墨烯,硼酸锰锂微球均匀地原位生长在石墨烯片上,具有良好的电化学性能,有效的解决了材料由于表面中毒效应而导致的循环、倍率性能变差的缺点。
锂离子电池用镍钴锰酸锂正极材料前驱体及其生产方法,该钴锰酸锂正极材料前驱体化学式为(Ni1-x-yCoxMny)Oδ,其中0.5<δ<1.5,0
本发明公开了一种锂硫电池用改性隔膜的制备方法、改性隔膜及具有该改性隔膜的锂硫电池。该锂硫电池用改性隔膜的制备方法包括以下步骤:将导电剂与纳米金属氧化物按质量比1:1~10:1进行混合,获得混合均匀的涂层材料;将所述涂层材料与粘结剂按质量比1:1~5:1混合均匀,然后分散到溶剂中;通过机械搅拌或超声分散获得分散均匀的涂层浆料;将所得涂层浆料涂覆于一隔膜基体表面,真空干燥,即得锂硫电池用改性隔膜。采用该方法所制备的锂硫电池用改性隔膜可有效抑制锂硫电池充放电过程中多硫化物的“穿梭效应”,提高锂硫电池循环寿命,具有该改性隔膜的锂硫电池电池容量高、循环性能好。
一种锂云母矿相重构提锂渣综合利用的方法,是以“矿相重构法处理锂云母提取电池级碳酸锂”技术为背景,综合利用锂云母矿相重构提锂浸出渣。提锂浸出渣经剥离、转化法沉淀氢氧化铝、浓缩结晶氯化钙、酸浸渣精选萤石等工艺步骤,各个步骤相互协同,共同实现提锂渣的经济、高效利用。
本发明揭示了一种锂离子电池隔膜浆料及其制备方法、锂离子电池复合隔膜,其中锂离子电池复合隔膜包括复合吸附材料粉末、分散剂、去离子水、粘结剂以及表面活性剂,复合吸附材料粉末、分散剂、去离子水、粘结剂以及表面活性剂之间的重量比为1:0.001~0.005:2.9~6.8:0.1~0.4:0.004~0.007;其中,复合吸附材料粉末包括非金属矿物、丙烯酰胺单体、引发剂以及去离子水,非金属矿物、丙烯酰胺单体、引发剂以及去离子水之间的质量比为1:0.15~0.45:0.01~0.05:10~50。本申请通过采用聚丙烯酰胺/非金属矿物复合材料作为锂离子电池复合隔膜功能涂层,制备的复合涂覆隔膜能有效捕获电池内部溶出的重金属离子,减少金属离子在负极析出破坏SEI膜或穿刺隔膜,改善电池循环性能和安全性能。
本发明公开了掺杂型镍钴锰酸锂前驱体,分子式为NixCoyMnzAlt(OH)2+3t·nWO4,其中x+y+z=1,0.4<x<1.0,0<y≤0.5,0<z≤0.5,0<t<0.2,0<n<0.2,Al和W在前驱体中呈原子尺度上的均匀混合,前驱体的一次粒子为规则的板条状且呈竖立式疏松排布,二次粒子为径距不大于0.75的类球形。还公开了该掺杂型镍钴锰酸锂前驱体的制备方法。本发明的前驱体材料中掺杂元素实现了原子级别的均匀混合,有利于提高正极材料的电化学性能,且生产过程中本发明的前驱体材料二次粒子不开裂,形态保持完好。本制备方法工艺流程简单,且能稳定批量化制备出品质好的前驱体,具有广泛的应用前景。
本发明公开一种具有核壳结构的硫正极材料及其制备方法、锂硫电池正极极片和锂硫电池,该材料为核壳结构,以碳为外壳,以氮化铁为内核;该材料还包括硫单质,该硫单质分布在外壳内壁和内核表面;该制备方法先以Fe2O3纳米立方体为模板采用原位包覆和高温碳化制备Fe3O4@C;再通过超声酸刻蚀形成核壳结构;然后在氨气气氛下烧结形成以碳为外壳、以氮化铁为内核的核壳结构;最后通过熔融扩散将单质硫渗入Fe2N@C中,得到硫正极材料。本发明提供的硫正极材料中碳壳具有高导电性,氮化铁内核对于聚硫锂具有强化学吸附作用以及电催化活性,采用该材料制备得到的正极极片和锂硫电池具有优异的电池循环性能和快速充/放电性能;该制备方法工艺简单,成本低,易于实现。
本发明涉及一种从锂离子电池废电解液中回收锂的方法,属于资源循环利用技术领域。本发明的目的是要提出一种从锂离子电池废电解液中回收锂的方法,重点是将废电解液与一种含大阳离子半径的卤化物溶液混合反应,将电解液中的PF6‑整体分离,并将分离后所得含锂溶液进行深度净化和沉锂处理后得到碳酸锂,从而达到清洁高效利用锂离子电池废电解液的目的。
中冶有色为您提供最新的湖南有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!