本发明属于锂离子电池材料领域,公开了一种锂二次电池电解液,包括溶剂、锂盐和添加剂,其特征在于:所述添加剂具有如下通式一:
本发明属于极片处理装置技术领域,尤其涉及一种锂离子电池极片补锂装置,包括极片放卷装置、极片收卷装置、金属锂冷压装置和金属锂供应装置,金属锂供锂装置设置于极片放卷装置和极片收卷装置之间,金属锂冷压装置设置于金属锂供应装置和极片收卷装置之间,金属锂供应装置设置为挤压式金属锂供应装置。本发明能够高效、定量、均匀的对极片进行处理,而且结构简单,成本低廉,对环境要求相对较低,实现工业化批量生产供应。
本申请属于电池材料技术领域,尤其涉及一种钛酸锂/锂离子导体/碳复合材料及其制备方法,以及一种二次电池。其中,钛酸锂/锂离子导体/碳复合材料由内向外依次包括钛酸锂内核,锂离子导体中间层和碳材料外壳层。本申请钛酸锂/锂离子导体/碳复合材料,通过钛酸锂内核、锂离子导体中间层和碳材料外壳层的协同作用,使得复合材料兼具不易胀气和优异电子/离子传输性能,以及高低温特性良好、结构稳定性好、快充性能优异、安全性高等特性。
本发明涉及一种预锂化负极及其制备方法与锂离子电池,所述制备方法包括如下步骤:(1)混合未预锂化负极片和锂化试剂溶液,得到初预锂化负极片;(2)混合复合聚合物、溶剂与步骤(1)所得初预锂化负极片,得到预锂化负极;所述复合聚合物包括疏水性聚合物和亲锂聚合物。本发明通过设置一层复合聚合物的保护涂层在经过化学预锂化的负极片表面,有效的解决了预锂化极片在空气中不稳定的问题,同时解决了预嵌锂或补锂的锂量失活,使得负极片难以达到提高电池库伦效率和容量的问题。
本实用新型公开了一种锂离子锂电池固定装置,属于锂电池领域,包括装置主体,装置主体的外表面中间设置有散热网,装置主体的顶部安装有导热板,装置主体的外表面上方设置有滑槽,导热板的两侧分别安装有吸热棉,吸热棉的下方设置有缓冲板,缓冲板的顶部安装有推板,将锂电池分别固定在不同的隔层里,使用者还可以根据锂离子锂电池的大小情况调节隔层空间的大小,使用者可以通过滑块将锂离子锂电池固定,装置内部的推板与弹簧可以预防一定程度上装置的震荡,保证装置的稳定性,防止了线路出现短路与断路的情况。
本发明提供了一种锂电池的钴酸锂材料的修复回收方法,其特征在于,所述方法包括:将锂电池的正极铝箔片加热煅烧后,获取所述正极铝箔片上脱落的钴酸锂粉末;将所述钴酸锂粉末加入至氢氧化锂溶液中得到混合液,将所述混合液放置在第一温度范围的超声环境下进行反应;将反应后的所述混合液进行降温过滤,得到钴酸锂膏体;将所述钴酸锂膏体进行干燥处理,得到钴酸锂颗粒。本发明有效的缩短了钴酸锂的修复时间,并且增加失效钴酸锂结构中锂离子的含量,从而提高修复后钴酸锂的电化学性能,使修复后的钴酸锂可直接作为生产锂电池的正极原料。
本发明公开了一种从锂黏土中提取锂的方法,将锂黏土粉末进行焙烧,焙烧熟料经研磨后与浸出剂和水混合,在150‑300℃的温度和1.4‑2.5MPa的压力下进行浸出,固液分离得到含锂溶液和浸出渣,浸出剂为氢氧化钠、氢氧化钾、钠的强酸盐或钾的强酸盐中的至少一种,将含锂溶液加入适量浸出剂返回步骤S2中用于循环浸出,依此过程循环浸出若干次,得到富锂溶液。本发明基于高温高压下锂黏土矿中Li+同浸出剂中Na+/K+之间的离子交换作用实现锂黏土中的锂选择性浸出,同时通过高温焙烧,使黏土矿中某些惰性矿型进行晶型转化,提高了工艺的兼容性,浸出锂液的循环使用,有利于提高锂浓度的同时减少浸出剂的用量。
本发明涉及锂电池领域,公开了一种锂离子电池用正极材料及正极片及锂离子电池。正极材料,由第一磷酸铁锂材料、第二磷酸铁锂材料混合而成,其中第一磷酸铁锂材料的导电性能高于所述第二磷酸铁锂材料。
本发明属于锂离子电池技术领域,公开了一种用于锂离子电池负极的木质素基水性黏结剂和基于其的锂离子电池负极电极片与锂离子电池。该木质素基水性黏结剂包括以下重量份数的组分:水溶性木质素100份;丁苯橡胶20~1000份。本发明还提供了一种基于上述黏结剂的锂离子电池负极电极片及其锂离子电池。本发明木质素基水性黏结剂应用于锂离子电池负极,增加了电极材料的分散性和粘结力,有效克服活性材料的团聚,提高电极浆料在Cu箔上的涂覆均匀性,电极材料韧性好,能降低其界面阻抗,降低了负极电极片电阻,较大改善材料的高倍率性能;另一方面,本发明提供的木质素广泛来源于天然植物,绿色环保,应用于水系黏结剂能显著降低电池的成本。
一种掺杂的富锂的尖晶石型锂锰氧的制备方法,该方法包括将含锂的化合物、含锰的化合物和含掺杂金属的化合物混合均匀,然后在焙烧炉中焙烧,其中,所述焙烧包括一段焙烧和二段焙烧,所述一段焙烧包括将含锰的化合物、含掺杂金属的化合物与一部分含锂的化合物混合均匀后焙烧,得到一段焙烧产物,所述二段焙烧包括将一段焙烧产物与剩余的含锂的化合物混合后焙烧。将该材料在3.0-4.2伏之间充放电,首次放电比容量在140毫安时/克以上,200次循环后容量剩余率在85%以上。用本发明提供的方法制备的锂锰氧比容量高、循环性能好,可广泛应用于扣式、方形、圆柱形锂离子电池。
本发明属于锂离子电池技术领域,尤其涉及一种正极补锂浆料及其制备方法、正极片以及锂离子电池,包括以下制备步骤:步骤S1、量取一定量溶剂,将部分溶剂和抗凝胶粘结剂混合,搅拌分散得到胶液;步骤S2、将胶液、复合导电剂混合,搅拌分散得到导电胶;步骤S3、称取一定量正极活性材料,将部分正极活性材料加入导电胶搅拌,加入剩余正极活性材料、正极补锂添加剂和剩余溶剂,真空搅拌得到正极补锂浆料。本发明的一种正极补锂浆料的制备方法,具有优良的电子迁移率和抗凝胶性,制备工艺简单高效,生产效率高。
本申请提供一种电解液添加剂、锂离子电池电解液及其制备方法、锂离子电池和用电设备。电解液添加剂,包括化合物A、化合物B和化合物C。锂离子电池电解液,包括电解液添加剂。锂离子电池电解液的制备方法:将原料混合。锂离子电池包括锂离子电池电解液。本申请提供的电解液添加剂,化合物A为含磷类衍生物,通过使用含不饱和键的基团,可以在负极成膜,对负极形成保护,同时P‑O键能够结合H和金属离子,对正极形成保护;化合物B为硼氧环状结构,参与成膜时会增加无机膜成分,能降低电池内阻,对高电压也有较好的保护作用,通过化合物A、B和C的协同作用,可以抑制电解液在高电压下的分解,降低电池内阻,显著改善电池的综合性能。
本发明公开了一种锂盐电解液添加剂和含有该添加剂的电解液及锂离子电池,电解液添加剂包括有如下结构式Ⅰ,其中,R可以为氢基(H)以及甲酸锂基团(COOLi)中的一种,另结构式要至少含有四个甲酸锂基团(COOLi)。该添加剂在电池正负极皆会发生反应,在电极表面形成稳定的界面膜,有效抑制电解液循环产气,提高电解液在高电压下的循环性能和低温放电性能,尤其可保证高温高电压下钴酸锂和NCM三元体系的锂离子电池性能的优良发挥。
本发明涉及锂二次电池技术领域,尤其涉及一种锂二次电池用电解液和包括该电解液的锂二次电池。本发明提供的电解液,通过加入包括六甲基二硅氮烷和1,2,2,3‑丙烷四甲腈的第一添加剂,以及第二添加剂和第三添加剂能够提高锂二次电池在高电压下的高温循环性能、储存稳定性能和低温放电性能;本发明提供的锂二次电池包括上述电解液,因而该锂二次电池在高电压下具有好的高温循环性能、储存稳定性能和低温放电性能。
一种锂离子电池硅碳负极材料的制备方法,包括如下步骤:制备碳材料混合液;在所述碳材料混合液中加入分散剂和交联剂;在含有所述分散剂和交联剂的碳材料混合液中加入硅材料;由含有所述分散剂和交联剂、碳材料及硅材料的混合液制备碳硅宏观体材料;对所述碳硅宏观体材料进行热处理获得炭涂层硅/石墨烯纳米复合材料,所述锂离子电池硅碳负极材料包含炭涂层硅/石墨烯纳米复合材料。本发明还提供一种锂离子电池。
本发明提供一种富锂锰基正极材料体系电池用电解液及锂离子电池,所述电解液包括溶剂、电解质锂盐和添加剂,所述添加剂包括氟代碳酸乙烯酯、噻吩‑2‑甲氧基硼酸频哪醇酯和二(2,2,2‑三氟乙基)碳酸酯。本发明的电解液应用于富锂锰基锂离子电池,可以改善电解液与正负极的界面相容性,提高锂离子电池的高温高压循环性能。并且制备方法简单,易于工业化,具有广泛的应用前景。
本发明提供了一种用于锂离子电池极片的功能涂层浆料,包括涂层材料和助剂;所述涂层材料包括锂盐和氧化物;所述锂盐占所述涂层材料的质量比为1%~20%;所述氧化物包括氧化铝、氧化锆、氧化硅、氧化锌、氧化铈、氧化镁、氧化钛和氧化镨中的一种或多种。本发明从极片改性的角度入手,对正极和/或负极极片表面涂覆一层功能涂层浆料,能够在电池极片表面形成一层功能涂层,从而同时改善了高能量密度锂离子电池的安全性和循环寿命,特别是明显提高了高镍三元材料等高能量密度锂离子电池的安全性和循环寿命。本发明为锂离子电池极片表面改性提供了一种有效的方法,而且易于操作、工序少,适于工业化生产应用。
本发明公开了一种高镍三元锂离子动力电池电解液及高镍三元锂离子动力电池。所述电解液包含非水有机溶剂、锂盐、导电添加剂、成膜添加剂和浸润添加剂,其中导电添加剂为二氟磷酸锂,成膜添加剂为硫酸乙烯酯,浸润添加剂为氟代磷腈和氟代碳酸乙烯酯中至少一种;通过以上三种添加剂的协同作用、相互促进,能在电极表面形成优良的SEI膜,并有效促进锂离子电池内部各动力学过程。本发明的动力电池电解液具有良好的锂离子传输特性和耐氧化特性,保证了动力电池的高功率特性和良好的循环性能,同时还具有较高的安全性。
本发明提供了一种锂离子电池用复合负极片及其制备方法和锂离子电池。该锂离子电池用复合负极片的制备方法包括如下步骤:通过静电纺丝的方式将聚酰胺酸溶液喷涂在负极片表面,然后进行机械辊压,最后热亚胺化处理将喷涂在负极片表面的聚酰胺酸转化为聚酰亚胺,在负极片表面形成聚酰亚胺纳米纤维膜,得到锂离子电池用复合负极片。本发明提供的制备方法简化了现有技术中需要先单独制备正、负极片和隔膜且随后需要将隔膜与正负极片进行卷绕的过程,同时克服了现有技术中隔膜与正负极极片卷绕设置易引起的电池内部短路和电芯变形的问题。本发明锂离子电池用复合负极片制得的锂离子电池具有优良的安全性能以及长的使用寿命,可用作高容量和动力电池。
本发明提供一种锂离子电池的负极材料,所述负极材料包含硅酸盐材料和碳材料,其中,所述硅酸盐材料的含量为85wt%-97wt%,所述碳材料的含量为3wt%-15wt%;所述硅酸盐材料的结构式为Li2MSiO4,M选自Mn、Fe或Mn1-xFex,0<x<1。同时本发明还提供了上述负极材料的制备方法及采用这种负极材料的锂离子电池。本发明的制备方法的工艺简单,制备得到的负极材料的性能优异,结构稳定,应用于锂离子电池的负极,具有良好的首次充电效率和较高的比容量,并且能够承受大倍率的充放电。?
电池正极包括集电体及涂覆和/或填充于集电体上的正极材料,所述正极材料包括正极活性物质、导电剂和粘合剂,其中,在正极活性物质的表面还有一层钴酸锂,以正极活性物质的重量为基准,钴酸锂的含量为0.1-15重量%。采用该正极的锂离子电池具有较高的比容量和良好的循环性能。
本发明二氧化锡-钒酸锌锂 (SnO2-LiZn VO4)复合棒状晶粒湿敏陶瓷材 料,该湿敏材料按净值摩尔(份)比先将四氯化锡1份与氯化锌 0.12~0.35份配成水溶液混合;再加入铵,将溶液的pH值调 至5,用蒸馏水和去离子水或去离子水反复洗涤去除其中的氯 离子;然后在沉淀物中添加钒酸锂和硝酸钾并混匀后进行干 燥、研磨、550℃~700℃下热处理、再研磨、烘干;最后将粉 体模压成片状,在750℃~850℃温度下烧结2小时,随炉冷却 即得。本发明所述的二氧化锡-钒酸锌锂 (SnO2-LiZn VO4)复合棒状晶粒湿敏陶瓷材 料具有棒状晶粒结构,易于形成管状通道和大量贯通气孔,有 利水分子的吸附和脱附。使用本发明制作的厚膜湿敏电阻器的 电阻小,灵敏度高,感湿线性度好,响应速度快,稳定性好。
本发明公开一种钛酸锂/碳复合材料及其制备方法和锂离子电池,钛酸锂/碳复合材料的制备方法,包括步骤:将双氧水与碳化钛粉末加入到容器中,搅拌均匀;烘干;将得到的粉末与氢氧化锂按4.5~5.5:4的比例混合后,在氩气气氛中600~800℃煅烧,得到钛酸锂/碳复合材料。本发明通过优化电极材料性能来实现锂离子电池倍率性能改善和循环稳定性提高的。本发明中还提供一种锂离子电池,用所述钛酸锂/碳复合材料和磷酸铁锂配对,通过优化正负极配比,组装的磷酸铁锂-钛酸锂电池具有优秀的倍率性能好很好的循环稳定性。
为了改善电池组发热膨胀问题,本实用新型公开了一种软包锂电池组的导热结构,用于对软包锂电池组散热,包括刚性导热壳,刚性导热壳用于贴合导热软包锂电池组的外壁,且刚性导热壳的内壁与软包锂电池组外壁形状大小相适,且刚性导热壳上设有紧固件,该紧固件用于令刚性导热壳以可拆卸的方式与软包锂电池组紧密连接。以及一种软包锂电池组组件,包括软包锂电池组以及刚性导热壳,刚性导热壳通过紧固件以可拆卸的方式与软包锂电池组紧密连接。本实用新型的有益效果在于:避免电池组温度过高致使锂电池膨胀;刚性导热壳的内壁抵住锂电池组的外壁,而刚性导热壳本身具有较好的刚性,阻碍锂电池发热严重时发生膨胀。
一种从废旧锂离子二次电池回收金属锂的方法,是将回收的废旧锂离子二次电池完全放电,使该废旧电池各负极片上的可逆锂离子全部转移至正极,在正极片上形成锂盐;将所述放电处理后的电池,用机械拆解的物理方式将正极片完整地取出,烘干;用金属锂或可覆锂的材料做负极片配合由前步骤处理后的各正极片,放入有电解液的专用化成槽中经电联接后,正负极片组分别接到直流电源的正、负极汇流排,进行外化成处理,使可逆的锂离子从所述各正极片转移至所述各负极片上沉积;将所述经外化成处理后的各正、负极片取出,则负极片上析出的金属锂可直接回收利用。本发明的有益效果是:能有效地将可逆锂资源统一收集起来,回收的锂金属资源达95%以上,纯度在99.9%以上,而且此方法原理简单,设备简易,具有良好的产业化前景。
本发明公开了一种锂离子导体复合的锂合金负极材料及其制备方法和应用,所述制备方法包括如下步骤:将聚阴离子型化合物纳米颗粒与锂金属混匀,在惰性气氛下将混合物加热至熔融状态,反应1~48h即得到锂离子导体复合的锂合金负极材料;锂金属与聚阴离子型化合物纳米颗粒的质量比为1:(0.1~1)。相比传统的纯锂负极,本发明所述锂合金负极材料具有高倍率性能以及良好的循环性能,可以应用于锂金属电池、固态电池等储能体系。
本发明公开了一种磷酸铁锂复合材料,所述复合材料为磷酸铁锂与3D石墨烯的复合材料,所述复合材料中3D石墨烯含量为6‑10wt%,碳含量为7‑7.5wt%。所述3D石墨烯为二维片状石墨烯相互交错排列组合形成的三维多孔结构,孔径为5‑40μm。本发明中还提供了上述磷酸铁锂复合材料的制备方法以及应用该磷酸铁锂复合材料作为正极材料的锂离子电池。本发明利用3D多孔石墨烯较2D石墨烯具有更大的比表面积、机械强度以及更快的质子和电子传递速率等特点,采用3D石墨烯作为一种碳包覆材料,有效地提升了磷酸铁锂材料的电子电导率,当作为正极材料在锂离子电池中应用时,提升了锂离子的扩散速率,即提升了锂离子电池的循环性能。
本发明提供一种高循环、高电压改性富锂锰酸锂正极材料的制备方法,包括如下步骤:(1)将锰盐的水溶液和碳酸盐的水溶液混合干燥后得到球形碳酸锰;(2)将得到球形二氧化锰;(3)将球形二氧化锰于氢氧化锂混合进行焙烧,得到Li2MnO4;(4)将Li2MnO4加入到氯化锰溶液中,并搅拌均匀,烘干得到前驱体产物,(5)烧结得到改性富锂锰酸锂正极材料,本发明提供一种高循环、高电压改性富锂锰酸锂正极材料的制备方法具有高效、快速、节能的特点,且通过该合成方法合成的改性富锂锰酸锂正极材料具有容量高、高温稳定、循环性能好、压实密度高、充电速度快等优点,且该方法工艺简单、环境友好、适合大批量工业产生。
本发明属于锂离子电池技术领域,具体公开了一种锂离子电池负极混料、负极和锂离子电池。所述锂离子电池负极混料,包括负极活性材料、导电剂、增稠剂和粘结剂,所述增稠剂为接枝改性魔芋葡甘露聚糖。本发明实施例提供的锂离子电池负极混料,增稠剂采用接枝改性魔芋葡甘露聚糖,由于该增稠剂具有优越的柔顺性能和能够提高锂离子电池中锂离子的传导能力,因此可用较少的接枝改性魔芋葡甘露聚糖和粘结剂替换NaCMC/SBR组合粘结剂,不仅能提高负极活性物质在负极中的含量,而且由于接枝改性魔芋葡甘露聚糖自身具有锂离子传输能力,所以低温性能和倍率性能显然更好,最终使得锂离子电池电化学性能得到进一步提高。
本发明涉及一种锂离子电池正极材料磷酸钒锂的溶胶凝胶制备方法,该方法包括:将V2O5粉末溶于过氧化氢水溶液中形成絮状凝胶,把锂盐、磷酸盐的水溶液加入,最后形成均一稳定的胶体,真空干燥后,胶体置于瓷舟中,还原性气氛下200~500℃预处理2~12h,然后研磨,在500~900℃下相同气氛下再次处理2~12h,得到磷酸钒锂正极材料。该方法还包括对磷酸钒锂材料进行碳包覆,碳包覆磷酸钒锂的合成是将水溶性碳包覆材料和锂盐、磷酸盐的水溶液一同加入。该方法得到的材料实际容量高,循环性能优异。本发明适用于生产高性能锂离子电池正极材料磷酸钒锂。
中冶有色为您提供最新的广东有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!