本发明公开一种锂离子电池正极材料的制备方法,提供以含锂化合物和氢氧化镍钴锰为原料,经一次烧结后制得的一次烧结产物,然后以所述一次烧结产物和纳米级的掺杂物为原料,经二次烧结后制得锂离子电池正极材料;所述掺杂物为含铋化合物或者含铋的混合物。本发明以含锂化合物和氢氧化镍钴锰的一次烧结产物为基体,加入含铋化合物或者含铋的混合物,经二次烧结后使含铋化合物或者含铋的混合物熔融并均匀地覆盖在基体的颗粒表面,提高了锂离子电池正极材料,降低了基体的比表面积,使正极材料与电解液发生副反应的活性降低。
本发明公开了一种富锂锰基的高能量密度锂离子电池及其制备方法。该电池采用掺入磷酸钒锂的富锂锰基材料为正极,以纳米硅碳材料与石墨的混合材料为负极,通过对导电剂、隔膜与电解液等的优化配置,有效降低了循环过程中富锂锰基材料结构变化和硅体积膨胀对电池性能的影响。该电池的制作过程包括活物预混、制浆、制片、卷绕/叠片、封装、注液、二封、化成及检验等步骤。该电池具高能量密度、高安全系数、较长循环寿命等优点,可作为动力化学电源使用。
本申请涉及储能器件领域,尤其涉及一种阴极极片及采用该极片的锂离子电芯。阴极极片包括阴极集流体、活性物质层、阴极极耳、头部保护胶、尾部保护胶、收尾胶以及防刺穿垫层,阴极集流体包括头部外露区、头部贴胶区、涂覆区、尾部贴胶区以及尾部外露区,活性物质层覆盖涂覆区,头部保护胶覆盖头部贴胶区,尾部保护胶覆盖尾部贴胶区,收尾胶粘接于尾部外露区的末端,防刺穿垫层与尾部外露区连接,当绕卷形成裸电芯时,防刺穿垫层至少能够处于阳极集流体的一个转角外侧。锂离子电芯包括铝塑膜、由阳极极片、隔离膜以及阴极极片绕卷形成的裸电芯,铝塑膜包裹裸电芯。本申请所提供的锂离子电芯大幅降低了铝塑膜被阳极集流体刺穿的几率。
本发明公开了一种锂电池组充放电保护板,其包括:采样模块,与主控电路电性连接,用于采样各个单体锂电池的电池信息数据;SMBUS通信端口,与主控电路电性连接,用于主控电路与上位机之间的数据通信,以将电池信息数据上报给上位机;蓝牙模块,与主控电路电性连接,用于主控电路与便携式智能设备之间的数据通信,以将电池信息数据无线发送给便携式智能设备。实施本发明的技术方案,使得锂电池组充放电保护板不仅能够将采样到的电池信息数据发送给上位机,还能够将采样到的电池信息数据发送给便携式智能设备,从而能方便了用户对锂电池组的运行实现多途径的管理,并实现了电池信息数据的资源共享,利于锂电池组的大数据收集和接入物联网。
本发明涉及一种方形锂离子电池清洗篮装置,包括主篮体及提手;所述主篮体包括底壁和环绕所述底壁且首尾相连的多个侧壁,所述侧壁垂直于所述底壁,所述底壁为正多边形结构,所述侧壁间形成夹角,所述主篮体还设有与所述底壁相对的开口端,所述侧壁及所述底壁均设有多个通孔,所述多个通孔均匀分布于所述侧壁及所述底壁上,所述底壁中部设有中心孔,所述底壁上还设有多个副孔,所述多个副孔围绕所述中心孔;所述提手的两端分别设置于两个相对的所述侧壁上。上述方形锂离子电池清洗篮装置能够去除方形锂离子电池清洗后表面残留水份。同时还提供了一种使用上述方形锂离子电池清洗篮装置的方形锂离子电池清洗系统。
本发明扣式锂电池的正极钢壳及扣式锂电池属于电池领域,扣式锂电池的正极钢壳是一个敞口的壳体,在正极钢壳内表面上设置具有高氧化电位的金属防腐层,高氧化电位的金属防腐层是铝箔或铝合金,其厚度为5-35μm。金属防腐层使扣式锂电池的正极钢壳在整个工作电压范围内不发生电化学腐蚀,电池的内阻和自放电显著减小,电化学性能优良。本发明可以避免电池钢壳由于高氧化电位而发生电化学腐蚀,减小电池的自放电和降低电池的内阻,是一种性能优良的扣式锂电池。
本发明公开了一种改性锂电池负极材料的制备方法以及锂电池负极片。本发明通过将粉碎的石墨坩埚或石油焦粉和沥青混合得到混合浆料,再通过闭式循环喷雾干燥得到前驱体,将所得的前驱体在600~1100℃保温1~5h,自然冷却后得到所述改性锂电池石油焦粉负极材料。该改性锂电池石油焦粉负极材料的电化学性能优秀,首次充放电效率高达91%以上,循环30次,依然保持有340mAh/g以上的可逆比容量,比容量高、循环性能好,成功解决了石墨坩埚、石油焦粉等废料在实际制备锂离子电池负极的应用时存在的首次效率低、不可逆容量损失大和循环稳定性能差的问题。
本发明公开了一种高压煅烧制备锂镍锰氧锂离子电池正极材料的方法,包括以下步骤: 将锰源化合物、镍源化合物与掺杂元素M的化合物加入水中并混合,在搅拌状态下加入沉 淀剂,将不溶物经过滤、洗涤、干燥后得到前驱体;将锂源化合物与得到的前驱体混合均 匀后移入高温炉内;向高温炉内通入气体,气压在1-10MPa,高温炉内温度控制在 600-1000℃,混合物料在高温炉内煅烧10-40小时后冷却;物料经粉碎、筛分得到化学式为 Li(Nix-yMyLi1/3-2x/3Mn2/3-x/3)O2的锂离子电池正极材料。该方法能够降低制备过程中的煅烧温 度,缩短反应时间,降低成本,制备的锂离子电池正极材料电化学性能优良。
本发明提供了一种锂离子电池正极活性材料,锂离子电池正极活性材料的化学表达式为(A)1?x·(LiC6)x,0< x< 1,A为LiM1PO4、LiM2O2和LiM32O4中的至少一种,M1、M2或M3选自为铁、钴、锰、镍、铝和钒中的至少一种。本发明提供的锂离子电池正极活性材料容量较高。本发明还提供了一种锂离子电池正极活性材料的制备方法,包括以下步骤:分别提供A前驱体和LiC6前驱体;在保护性气体或空气中,将A前驱体在200?500℃恒温预烧1?5h后,自然降温至室温,得到预烧后的A前驱体;将预烧后的A前驱体和LiC6前驱体按照摩尔比为1?x : x混合均匀后,得到锂离子电池正极活性材料前驱体,然后在保护性气体中,将锂离子电池正极活性材料前驱体在300?700℃下恒温烧结5min?2h,得到锂离子电池正极活性材料。本发明制备方法独特、有效。
本发明公开了一种从水热法制备磷酸铁锂产生的母液中回收锂盐的方法,所述方法包括以下步骤:1)对水热法制备磷酸铁锂产生的母液进行Li+沉淀;2)然后向所得含锂盐的悬浮液中加入无机盐类助磨剂于≥2000r/min的转速条件下进行剪切乳化分散;3)湿法分级;4)采用冷冻干燥和/或超临界干燥的方式进行干燥,回收得到锂盐。本发明的方法不仅可以防止反应生成时颗粒的团聚还可以防止后续湿法分级和干燥时的再团聚,得到均一性好分散性好的超细碳酸锂粉末或磷酸铁锂粉末,所得超细碳酸锂粉末可直接用于固相法制备锂离子电池材料或者制备全固态电解质;所得超细磷酸铁粉末可直接用于水热法合成磷酸铁锂正极材料。
本发明公开了一种锂离子动力电池和锂离子动力电池的制备方法,负极极片是由以下质量百分比的原料组成:83-94%的钛酸锂、2-10%的粘合剂、3-10%的导电剂,正极材料由以下质量百分比的原料组成:85-96%的锰酸锂、1-10%的粘合剂、3-11%的导电剂。本发明的锂离子动力电池成本较低,容量较大,循环寿命长,安全性能好,可应用于很多领域,如混合电动汽车,高性能要求的军用物品等;本发明的制作方法简单;由于在制作电极的过程中没有使用NMP,而用水做溶剂,因此,不会产生污染,也不会出现爆炸或者燃烧等危险事故,污染零排放,同时降低了电池的制作工艺复杂程度。
本实用新型公开了一种新型锂电池保护电路及锂电池,涉及锂电池技术领域,解决了锂电池保护线路难以避免锂电池反接,容易影响锂电池的使用寿命的技术问题。该保护电路通过第一保护模块对所述锂电池进行保护;所述第一保护模块包括二极管D22和光耦CT1019;所述二极管D22的阳极与所述锂电池的负极连接,所述二极管D22的阴极与所述光耦CT1019的输入端连接,所述光耦CT1019的输出端连接MOS管Q19的源极;所述锂电池反接时,所述二极管D22、光耦CT1019导通,所述MOS管Q19截止,所述锂电池不能进行充电。本实用新型中,当锂电池反接时,二极管D22、光耦CT1019导通,MOS管Q19截止,锂电池不能进行充电,从而避免了锂电池反接造成的电池损坏,确保了锂电池的使用寿命。
锂二次电池负极片及锂二次电池,负极片包括集流体基体,所述集流体基体为锂带,在所述锂带上叠置有沿竖向延伸的非锂金属凸耳,所述非锂金属凸耳的一端突出于所述锂带,所述非锂金属凸耳突出于所述锂带的部分用于焊接极耳。本实用新型的负极片在锂带上叠置非锂金属凸耳,极耳激光焊接于非锂金属凸耳上,连接牢固,而且采用锂带作为集流体基体,减少了负极片非活性物质的含量,提高了锂电池的能量密度。
本发明涉及锂电池生产技术领域,且公开了一种高效锂电池生产工艺,包括以下步骤:S1:制作锂电池薄片;S2:压制薄片:采用层压机将薄片再次碾压,碾压后产生锂膜,将锂膜采用打轴机将其缠卷;S3:将卷好的锂膜放置到真空烤箱内;S4:检测锂膜是否符合规定;S5:将锂电池接头上喷涂金属;S6:组装:将单个电池单元叠加;通过滚压机的方式将锂锭进行碾压,并通过层压机的配合将薄片再次碾压,进而快速将锂锭压制成相应的厚度,并且在压制的过程中,在薄片的表面覆盖聚丙烯薄膜,避免了薄片出现粘覆的情况,在镀膜生产出后,通过电压计的方式对锂膜进行检测,锂膜产生的电压是否是标准的3.56伏特,并通过卡尺的方式质检锂膜厚度是否标准。
本申请提供一种锂离子电池电解液、锂离子电池以及用电设备,属于电池制造领域。锂离子电池电解液包括有机溶剂、锂盐和添加剂,添加剂包括具有如式I所示的结构通式的联嘧啶衍生物:其中,R1~R6均独立选自氢原子、氟原子、氰基、硅烷以及C1~C6的烃基或含氟烃基中的一种,通过该锂离子电池电解液,能够在保证电池的循环性能以及安全性能的情况下,兼顾解决电池的高低温电学性能欠佳的问题。
本发明公开了一种复合固态电解质,所述复合固态电解质包括聚合物固态电解质以及无机固态电解质与无机填料中的一种或两种,所述聚合物固态电解质由式(1)结构的聚合物的均聚物、无规共聚物或嵌段共聚物中的一种或多种与锂盐混合而成;该复合固态电解质具有高离子电导率、高锂离子迁移数、高热稳定性,且机械性优异以及电化学稳定。制备出来的全固态锂电池电芯适用于‑50℃~200℃的温度范围,同时能保证优异的电化学性能和安全性能。同时,能够提升全固态锂电池电芯和全固态锂电池的使用寿命和能量密度。
本发明涉及一种锂辉石硫酸法提锂尾渣浮选脱硫捕收剂制备及其应用,属于锂渣处理技术领域。本发明锂辉石硫酸法提锂尾渣浮选脱硫捕收剂按重量计包括:C8‑20的脂肪酸及其盐中的至少一种50~100份;航空煤油1~30份;十二烷基的磺酸或硫酸及其盐中的至少一种1~30份;聚醚或聚醇中的至少一种1~30份;环氧丙烷嵌段共聚物1~10份;山梨醇单油酸酯1~10份;单甘油脂肪酸酯1~10份;季铵盐1~30份;十六烷基卤化吡啶1~10份;碱5~50份;硅溶胶10~50份;水10~100份;所述聚醚或聚醇为聚乙烯醚、聚氧丙烯醚、聚乙烯醇中的至少一种。本发明的捕收剂浮选脱硫效果好,具有较强的市场竞争力。
本发明实施例提供了一种锂电池组及锂电池组的加热方法,该锂电池组包括:加热膜和多个电芯,所述加热膜折叠形成折叠结构,所述折叠结构包括多个折叠位置,同一折叠位置的相邻折叠面形成折叠空间,所述多个电芯设置于多个折叠空间中。本发明实施例提供的锂电池组通过加热膜包裹电芯的结构堆叠方式,解决了现有技术中无法准确对电芯实现温度控制的问题,达到了确保电芯快速升温,同时降低放电过程中电芯的温升的目的,提高了锂电池组的使用寿命。
本申请提供一种锂电池的化成方法、锂电池及其制备方法。上述的锂电池的化成方法包括如下步骤:获取注液封装后的电芯,电芯的负极材料包括硅基负极材料;对电芯进行第一压力充电预化处理,以使电芯的电量为30%SOC~70%SOC;对第一压力充电预化处理后的电芯进行静置放电操作,得到预化成电芯;对预化成电芯进行补液处理,以使电解液补充入预化成电芯中;对补液处理后的预化成电芯进行第二压力充电预化处理,以使预化成电芯的电量为85%SOC~100%SOC。上述的锂电池的化成方法能有效提高基于硅基负极材料的锂电池的SEI膜的稳定性和电解液的保有量。
本公开涉及一种锂金属负极,该锂金属负极包括负极活性材料和包裹在所述负极活性材料表面的负极保护层,所述负极保护层包括氟元素掺杂的无机碳材料。该锂金属负极的负极保护层具有三维结构的优势和较高的亲锂性,可以有效的引导锂离子的传递。
本发明公开了一种从锂离子电池中回收碳酸锂的方法,包括如下步骤:步骤一、对回收的废旧锂离子电池进行分档,分为档次(1)和档次(2);步骤二、对档次(1)中的电池进行预充电;步骤三、对步骤二中预充电后的电池进行解体,并提取负极材料;步骤四、溶解步骤三中负极材料中的金属锂,并过滤去除沉淀物质;步骤五、沉积步骤四中的溶液最终得到精制碳酸锂。本发明中提高了回收效率高,且相比于现有的回收方法降低了成本。
本发明涉及锂离子电池领域,尤其涉及一种锂电池电芯体及所得的锂一次电池。该锂电池电芯体包括含正极片的隔膜袋和负极片,所述正极片和所述负极片均为至少一组对边平行的多边形,所述含正极片的隔膜袋为将隔膜袋对折后对正极片进行热包封后形成可折叠的含正极片的隔膜袋。本发明的锂电池电芯体在对含正极片的隔膜袋进行组装的过程中能够根据电池容量以及电芯厚度的设计来灵活的预留隔膜的长度,解决了电池电芯在组装过程中容易出现短路,极片非稳定性接触以及电池性能较差的问题。
本发明实施例提供了一种钝化锂粉的制备方法和金属锂负极,所述制备方法包括:对锂箔和乌洛托品进行球磨处理,得到球磨后的锂粉;对所述锂粉与全氟癸硫醇进行球磨处理,得到钝化锂粉。通过本发明实施例,实现了通过低温球磨来制备纳米级钝化锂粉,该钝化锂粉具有极低的过电位和超高的比表面积容量,可以有效地抑制或阻止锂枝晶的生长,从而使以钝化锂粉作为锂金属负极构建的全固态电池具有高度稳定的循环性能和倍率性能。
本发明公开了一种柔性复合锂金属电极及其制备方法和锂金属电池。柔性复合锂金属电极,包括柔性基体,所述柔性基体包括非亲锂的第一导电纤维层,且所述第一导电纤维层具有相对的两个表面,在所述第一导电纤维层的一个表面上还层叠结合有锂基膜层;或,所述柔性基体包括非亲锂的第一导电纤维层、非亲锂的第二导电纤维层和锂基膜层,且所述第一导电纤维层和第二导电纤维层均具有相对的两个表面,沿第一导电纤维层至第二导电纤维层的方向,所述第一导电纤维层、锂基膜层和第二导电纤维层依次层叠结合形成三明治结构。锂金属电池的负极为所述柔性复合锂金属电极。
一种锂硫电池正极材料,所述锂硫电池正极材料包含石墨烯、金属硫化物和硫颗粒,所述金属硫化物包括至少两种过渡金属硫化物,所述金属硫化物和硫颗粒共同负载在所述石墨烯的表面。本发明还提供一种制备所述锂硫电池正极材料的方法,以及包括所述锂硫电池正极材料的正极片和锂硫电池。本发明提供的锂硫电池正极材料具有至少两种金属硫化物紧密的镶嵌在石墨烯的表面的结构,形成具有导电的网络结构,为电子和离子的快速传输提供了通道,且利用金属硫化物的极性特性和边缘富含活性位点的特性,促进锂硫电池正极反应过程中,多硫化物向过硫化锂和硫化锂的转化,提高锂硫电池中活性物质的利用率,最终促进锂硫电池的实用化。
一种锂离子电池正极及其锂离子电池,锂离子电池正极是在锂离子电池的正极片或制作正极的浆料中含有锂盐,锂盐含量为正极活性物质重量的0.01~15%。锂盐为磷酸锂、磷酸氢二锂、硫酸锂、亚硫酸锂、钼酸锂、草酸锂、钛酸锂、四硼酸锂、偏硅酸锂、偏锰酸锂、酒石酸锂、柠檬酸三锂中的一种或一种以上的混合物。将锂盐引入锂离子电池正极是将锂盐溶液喷涂在正极片表面或将极片浸渍在锂盐溶液中,然后对极片进行真空干燥;或将上述锂盐混合在正极浆料中,然后再均匀涂布在正极集流体上。锂离子电池包括正极、隔膜、负极及非水电解液,其中正极采用上述锂离子电池正极。本发明可有效提高锂离子电池的高温循环性能和储存性能。
本发明实施例提供了一种高电压钴酸锂正极材料,包括锂位取代掺杂的钴酸锂,所述锂位取代掺杂的钴酸锂的通式为Li1‑xMaxCoO2;其中,0<x≤0.05,所述Ma为掺杂元素,Ma选自离子半径范围在68pm‑90pm,且离子价态≥1的元素中的一种或多种。该高电压钴酸锂正极材料通过对钴酸锂的锂位进行取代掺杂,从而缓解了钴酸锂在高电压下由于锂脱出引发的静电相互作用和钴溶出,提高了材料的结构和循环稳定性,使得高电压下材料具有高容量和良好的循环稳定性。本发明实施例还提供了一种高电压钴酸锂正极材料的制备方法和锂离子电池。
本发明属于新能源电池制备技术领域,解决了现有装钵机及其控制方法的成本高、自动化率和准确率很低的技术问题,提供了一种制备锂电池材料用装钵机,该制备锂电池材料用装钵机包括:机架;料仓,其设置在机架之上且包括设有入料口的盖板和在底端设有排料口的仓主体;用于将仓主体中的物料向匣钵中供应的物料供应装置,其包括:搅送电机,其设置在盖板上且包括驱动轴;转动轴,其在仓主体中延伸且与驱动轴驱动连接;搅拌机构,其与转动轴周向固定连接且在转动轴的驱动下沿仓主体的内侧壁做滑动运动;送料机构,其与转动轴轴向固定连接且将物料输送至排料口。本发明制备锂电池材料用装钵机具有成本降低、自动化率和准确率大幅提高的优点。
本发明提供了一种钛酸锂电池的化成方法及钛酸锂电池,该化成方法包括:对注液预封后的钛酸锂电芯依次进行第一静置、充放电处理、第二静置、除气及封口;其中,在40~90℃的温度条件下、0.3~0.8MPa的压力条件下,采用0.2~1C的充电电流和0.2~1C的放电电流对第一静置后的钛酸锂电芯进行充放电处理。应用本发明提供的钛酸锂电池的化成方法和钛酸锂电池,其化成过程时间更短、操作工序更便捷,化成过程更充分且由其处理得到的电池产气量小并具有更出色的高温循环性能。
本发明涉及一种高电压锂离子电池的电解液,包括非水有机溶剂、锂盐和电解液添加剂,所述电解液添加剂包括以下基于电解液总重量的组分:1%‑10%的氟代碳酸乙烯酯、1%‑5%的二腈化合物和0.1%‑2%的2‑甲基马来酸酐;进一步可以添加0.2%‑2%的双草酸硼酸锂,进一步还可以添加1,3‑丙烷磺酸内酯等添加剂。本发明还涉及一种使用上述电解液的高电压锂离子电池,充电截止电压大于4.2V而小于等于4.5V。本发明提供的高电压锂离子电池的电解液一方面能对正极起保护作用;另一方面在负极能形成良好的SEI;能够使高电压锂离子电池具有良好的循环性能和储存性能。
中冶有色为您提供最新的广东有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!