本发明涉及一种锂钼钒氧化物锂离子电池用正极材料的制备方法,包含如下步骤:1)称量锂源、钼源和钒源溶解在去离子水中,并与柠檬酸水溶液混合;2)步骤1)中溶液经充分混合后,用氨水调节混合溶液pH后在水浴下充分搅拌获得溶胶并烘干、发泡,接着在空气下进行燃烧处理,冷却后研磨成粉体;3)将步骤2)研磨后所得粉体在空气下煅烧24h得到前躯体;接着将得到的前躯体在还原气氛下先600?700℃煅烧12?24h,取出研磨后再在700?800℃煅烧36?48h,即得。本发明的效果在于:此设计方法简单,易于实现,可获得电化学性能优良的材料。在提高Li2MoO3基锂离子电池正极材料的循环稳定性和倍率性能方面效果明显。
本发明属于锂离子电池领域,本发明公开了一种可作为锂离子电池正极材料的磷酸钒锂复合材料及其制备方法,经过碳纳米管诱导,磷酸钒锂液相混合液在其上面进行异相核化,原位生长,同时将无定形碳包裹在整个磷酸钒锂/碳纳米管复合材料。包括以下步骤:1)配制磷酸钒锂的液相混合液;2)将经过酸化的碳纳米管均匀分散到步骤1)的混合液中,进行原位生长,干燥研磨后得到颗粒状粉末;3)将粉末在氩气气氛中进行热处理。本发明方法的主要特点是:通过原位生长技术,选择最佳的碳纳米管添加量,获得磷酸钒锂复合材料。将其应用于锂离子电池正极材料,导电性能好,充放电容量高,循环稳定性好。本发明制备方法工艺简单,周期短,适合工业化生产。
本发明公开了一种磷酸铁锂锂离子电池正极电极的制备方法,该方法利用聚苯并噁嗪高分子材料作为碳、氮源,以碳酸锂、草酸亚铁和磷酸氢二铵为原料,采用球磨和高温固相反应的方法合成磷酸铁锂锂离子电池正极材料。聚苯并噁嗪不仅仅提供了氮掺杂的碳包覆层,改善了材料的导电性,而且经过聚苯并噁嗪包覆之后在热解过程中产生的碳覆盖于磷酸铁锂的表面,有效地阻止了晶体的生长,形成纳米尺寸的材料,从而减小锂离子的扩散路径,提升高倍率下的充放电性能。
本发明公开了一种全固态锂微电池 LiNi1- xCoxO2正极薄膜的制备方法。它是以乙酰丙酮 锂,乙酰丙酮镍,或乙酰丙酮镍和醋酸钴为原料,按所制备的 LiNi1- xCoxO2中Ni和Co的摩尔比,及Li/(Ni+Co)的摩 尔比为1.00~1.05∶1.00准确称量各原料,溶于醋酸和醇类的 摩尔比为1∶1的混合溶剂中制成溶胶。采用匀胶的方法,在 具有Pt、Au表面的基体上制得凝胶薄膜,经过350~400℃预 热分解,再在氧气氛中650~750℃退火,制得 LiNi1- xCoxO2正极薄膜,其中x的值为0≤x<1.0,本 发明提供的薄膜制备方法,工艺、设备简单,易于制作较大面 积的正极薄膜。
本发明提供一种锂盐化合物的制备方法,步骤如下:将烷基亚膦酸二烷基酯加入质子溶剂中,混合均匀,然后边搅拌边加入丙烯酸烷基酯进行反应,得到化合物A;向所述化合物A中加入酸溶液A,加热回流反应,反应完成后加入丙酮,析晶,得到化合物B;向所述化合物B中加入醇溶液和酸溶液B进行酯化反应,得到化合物C;向所述化合物C中加入醇溶液,搅拌均匀,然后加入锂源,搅拌反应,反应结束后浓缩、析晶,即得到锂盐化合物。本发明还提供了包含上述锂盐化合物的锂离子电池电解液。利用本发明提供的方法制得的锂盐化合物兼具阻燃和良好的导电性能,由该锂盐化合物组成的锂离子电池电解液性能稳定、安全可靠。
本发明公开了一种锂离子电容器负极的预嵌锂方法,先制备具有可嵌锂活性物质层和集流体层的负极极片,然后在水分含量小于2‰的气氛环境中,将粒径分布D99不大于200μm的金属锂粉与0.1—1M的锂盐非质子有机溶液均匀混合,配制成混合浆液,然后烘干S10中所述负极极片,并在水分含量小于2‰的气氛环境中,将S20中所述混合浆液至少一次均匀喷涂于负极极片,每次喷涂后静置10min—24h,最后真空烘干或在氮气或氩气保护下烘干S30中喷涂、静置后的负极极片;还公开了其喷涂装置,本发明通过控制混合浆液的喷涂速率及控制混合悬浊液中锂粉含量及电解液浓度的方式控制嵌锂速率,从而提升嵌锂工艺的安全性。
本发明属于锂离子电池正极材料综合利用技术领域,具体涉及一种锂电池正极回收材料的干法纯化分离与再生方法及得到的锂电池正极回收材料。本发明提供了低温干法热处理、水热除杂/补锂与高温固相重生结合的技术方案。获得的锂电池正极修复材料形貌和晶型得到恢复,材料性能优异,纯度高,可直接用于锂电池生产,得到的锂电池性能良好。
本发明公开了一种锂电池电芯及锂电池电芯包绝缘膜方法,所述锂电池电芯包括盖板、极柱、连接片和至少一个卷芯,所述极柱设置于所述盖板上表面,所述连接片位于所述盖板和卷芯之间;所述连接片一端连接所述卷芯的极耳,另一端连接所述极柱;所述锂电池电芯还包括绝缘膜,所述绝缘膜包裹在所述卷芯的外面;所述绝缘膜包括固定部和包裹部,所述固定部位于所述绝缘膜的中间,所述包裹部为绝缘膜除固定部之外的其它部分;所述固定部固定于所述盖板的底端,所述包裹部从所述盖板的底端向下将所述卷芯包裹,所述盖板固定在所述卷芯上方。本发明的锂电池电芯及锂电池电芯包绝缘膜方法,既有高的生产效率,也能避免极耳外窜和烫伤卷芯内部隔膜的问题。
本发明提供一种含有掺杂多孔石墨烯和有机锂盐的复合锂离子电池正极补锂材料,其特征在于,所述掺杂多孔石墨烯用作催化剂,所述掺杂多孔石墨烯中的掺杂原子为N原子、B原子、S原子、N原子、F原子、Fe原子、Cu原子、Co原子、Ni原子及Zn原子中的一种或多种。本发明提供的复合补锂材料,由于采用掺杂多孔石墨烯作为催化剂,应用在锂离子电池体系中,能够降低补锂添加剂有机锂盐的分解电位、补锂容量更高、电池循环性能更好。
本发明提供了一种以介孔碳CMK-3为碳源的碳包覆磷酸铁锂材料的制备方法,碳包覆磷酸铁锂是由硝酸铁、磷酸二氢铵、柠檬酸按一定比例混合形成混合物,在搅拌作用下,向混合物中缓慢滴加醋酸锂溶液,形成混合物料,在一定温度下将介孔碳CMK-3浸渍到溶液中,搅拌、超声得到泥浆状的溶液,所得泥浆状物料恒温干燥、研磨、煅烧处理后得到碳包覆磷酸铁锂粉体材料。本发明制备的碳包覆磷酸铁锂的粒径为200-400nm,颗粒细小、均匀、纯度高,增强了电子导电率和离子扩散率。本发明简单易行,快速,制备过程无污染;在一般化学实验室即可完成,并可进行大规模工业化生产。用本发明制备的碳包覆磷酸铁锂,可用作锂离子电池正极材料。
本发明属于锂离子固体电解质领域,并具体公开了一种新型锂离子传导氧化物固体电解质及其制备方法,其具体是:按设计的化学计量比称取原料并进行湿法球磨混合;将混合后的原料进行分步煅烧制备获得固体电解质粉体;将固体电解质粉体在合适压力条件下保压30~60min,然后将坯体埋于相同成分的粉体中,以1℃/min~2℃/min升温至1100℃~1200℃,并保温12h~24h,制备获得所需的固体电解质。本发明具有工艺流程简单及成本低的优势,制备的固体电解质具有较高的锂离子电导率,且化学稳定性优异,可作为锂离子电池用固体电解质。
本发明涉及电池回收技术领域,尤其涉及一种锂电池回收装置及锂电池回收方法。本发明提供的锂电池回收装置包括负极烘烤箱、正极烘烤箱、负极分离组件以及正极分离组件,负极烘烤箱和正极烘烤箱独立设置,负极烘烤箱内部设置有负极恒温腔体,正极烘烤箱内部设置有正极恒温腔体,负极分离组件能够带动极卷上的负极极片在负极恒温腔体中移动,以使负极烘烤箱收集负极极片上的电解液以及黑粉,正极分离组件能够带动极卷上的正极极片和隔膜在正极恒温腔体中移动,以使正极烘烤箱收集正极极片上的电解液以及黑粉。锂电池回收方法应用上述锂电池回收装置对锂电池进行回收处理,无需将极卷进行破碎,减少环境污染,并且提升了锂电池中贵金属的回收率。
本发明公开了一种层状结构的锂离子电池负极材料Ca9Co12O28及其制备方法,涉及锂电池领域,该方法包括以下步骤:按摩尔份,将1份钙源、1~2份钴源与0.005~0.01份表面活性剂混合并溶解至水中,在35~45℃下反应1.5~3h;加入4~5份弱酸,升温至47~55℃反应1.5~3h后,加入18~20份多元醇,升温至70~85℃,反应1.5~3h,减压蒸馏除去水分;在140~160℃下反应3~5h后,将树脂在800~900℃下煅烧3~5h。本发明的Ca9Co12O28为层状结构,粒径为0.5~1.2μm,在电流密度为1800~2000mAh?g?1的条件下,充放电200次后放电比容量保持在236mAh?g?1。本发明的Ca9Co12O28尺寸均匀,能够提高电极材料的倍率性能,实现快速充放电。
本发明涉及一种锂离子动力电池正极材料尖晶石锰酸锂的制备方法,包括有如下步骤:1)原料选择:选取锰氧化物、锂源材料和掺杂金属元素氧化物进行混合;2)将步骤1)所得的混合物混合均匀后送入连续烧结炉中进行高温梯度烧结处理,梯度烧结详细步骤如下:第一步烧结,在1000~1200℃下烧结3~5小时;第二步烧结,在800~900℃下烧结4~6小时;第三步烧结,是在500~700℃下烧结5~8小时,同时通入压缩空气。烧结结束后自然冷却,经过粉碎和分级处理即可。本发明具有以下优点:工艺简单,通过超高温烧结处理控制锰酸锂的结晶度和表面状态以降低锰溶解,此后通过低温烧结处理控制或者消除氧缺陷。
本发明公开了一种锂硫电池、锂硫电池正级和负极材料及其制备方法。所述一种锂硫电池正极和负极材料的制备方法,包括如下步骤:(1)在氮气气氛下,将氧化石墨烯加热得到还原石墨烯;(2)在氮气气氛下,将步骤(1)所述的还原石墨烯分别与硫粉和锂粉混合,然后分别在氮气气氛下加热反应,反应结束后,分别得到所述锂硫电池正极材料和锂硫电池负极材料。将制备得到的锂硫电池正级和负极材料用于制备锂硫电池,锂硫电池的容量达到400Wh/Kg,经过160次循环,充电效率仍达到98%。
本发明公开了一种金属锂表面原位锂铝合金层的筑构方法与应用,属于锂二次电池电极材料领域,包括:将混盐在惰性气氛下加热熔融,并使温度保持在锂的熔点以下,得到熔盐电解质;将锂片置于熔盐电解质中反应,并通过控制反应时间制备不同反应深度的锂铝合金层;其中,上述混盐为熔点低于金属锂熔点的NaAlCl4或LiAlCl4。本发明所提供的制备方法所需的温度较低,操作简单,所制备的锂铝合金层成分可控,应用在锂电池中时,能降低锂负极与电解液接触界面材料的活度,减少充放电过程中的副反应;同时,所构筑的合金层呈现一定的孔隙和梯度,有利于电解液的浸润,增加了锂沉积的形核位点,利于抑制锂枝晶生长,从而提高了锂金属电池的循环稳定性和库仑效率。
本发明提供高性能耐热梯度纳米线正级及亲锂性负极复合固态锂电池,涉及电池技术领域。步骤一、电池正极材料制备、将过氧化氢溶液添加到的五氧化二钒中,并将混合物剧烈搅拌得到钒溶胶,将离子水和聚乙二醇分别添加到得到的钒溶胶中。具有正极内部结构的大面积接触界面和稳定的结构强度的核‑壳结构可以显着增加循环期间的离子/电子传输和缓冲液体积变化,有效的界面工程使SSLB具有较低的界面电阻,高容量和良好的循环稳定性,对于负极界面发生的复杂反应,以及锂枝晶生长与体积膨胀的问题,前者可以通过采用固态电解质的方法来避免,后者我们通过在负极添加一种铜镍双金属层改性三维骨架材料,引导锂离子沉积,促进锂金属负极的稳定循环。
本发明提供一种从镁锂混合溶液中提取锂的方法,涉及碳酸锂提取技术领域。包括以下步骤:(1)将含镁锂混合溶液配制成溶液,加入氧化镁或氢氧化镁,固液分离留澄清溶液;(2)温度为30‑110℃时加入有机胺,固液分离得到氢氧化镁和混合溶液;(3)向混合溶液中加入碳酸根引入剂,固液分离后得到碳酸锂和滤液;(4)滤液中加入氧化钙或氢氧化钙,分离得到有机胺和钙盐混合溶液;(5)加入萃取剂,得到溶有有机胺的萃取剂;(6)加入无机酸,将有机胺盐至少重复步骤(4)、(5)、(6)一次,回收有机胺。本发明在提取碳酸锂的同时制备出纯度很高的氢氧化镁,通入二氧化碳或加入碳酸盐后可形成碳酸锂沉淀;使用无机碱回收有机胺,降低了成本。
本发明属于锂离子电池技术领域,具体涉及一种锂离子电池富锂锰基正极材料稳定界面的构筑方法及应用,利用氟硅烷作为电解液的添加剂,清除电解液中的氢氟酸,改变锂离子溶剂化结构,同时在充放电循环过程中原位形成一层富含LiF的CEI。本发明的富锂锰基正极材料稳定界面的构筑方法通过向电解也中添加氟硅烷作为添加剂,在用于锂离子电池体系时能够清除氢氟酸(HF),改变锂离子溶剂化结构,并且在富锂锰基(LRMO)电极表面形成一层薄、坚固、致密且富含LiF的CEI,增加了电池的循环稳定性,能够有效延长大容量可充电锂离子电池的使用寿命。
本发明属于电化学储能新材料及其制备技术领域。本发明提供一种氟氧磷酸盐锂离子电池材料的制备方法及正极片与锂离子电池。该方法包括如下步骤:1)、LiFe1‑xVxPO4F1‑δOδ(x=0、0.1、0.3、0.5、0.7和1,δ≤0.4)粉末的制备:按LiFe1‑xVxPO4F1‑δOδ计量比称取磷酸铁、磷酸钒和锂源粉末,研磨,在惰性气体中煅烧,得到LiFe1‑xVxPO4F1‑δOδ纯相粉末。LiFe1‑xVxPO4F1‑δOδ正极片的制备:将LiFe1‑xVxPO4F1‑δOδ纯相粉末与纳米导电碳球磨,得到LiFe1‑xVxPO4F1‑δOδ/C碳包覆粉末,将LiFe1‑xVxPO4F1‑δOδ/C粉末与粘接剂按质量比混合,溶于有机溶剂中,搅拌后涂覆在铝箔上,干燥,得到LiFe1‑xVxPO4F1‑δOδ正极片。本发明制备的电池材料在0.1C倍率下循环性能良好。
本发明提供了一种亲锂碳纳米管纸的制备方法,具体地,将碳纳米管粉与亲锂纳米材料粉末混合均匀,采用湿法造纸工艺抄造成膜。为了提升在低厚度下的膜强度,可以加入纳米纤维素,再于惰性气体环境中加热使亲锂纳米材料和碳纳米管紧密结合制成,并将纳米纤维素碳化形成表面亲锂的碳纳米纤维。本发明所制的亲锂碳纳米管纸,亲锂纳米材料和碳纳米管之间有更好的化学接触,碳纳米管内亲锂纳米材料分散广,沉积稳定;本发明所制的锂金属负极具有抑制锂枝晶生长、改性固态电解质界面膜成分的作用,同时还具有为锂金属沉积提供空间、降低锂沉积的成核势垒,显著提高了锂金属负极的循环稳定性、循环寿命。
本发明属于铸造铝锂合金相关技术领域,公开了一种适用于砂型铸造铝锂合金的硅酸锂作为粘结剂的铸造涂料,使用该涂料的砂型铸造铝锂合金的制备方法可包括以下步骤:S1制备砂型;S2在砂型的内表面涂覆基于无机粘结剂的涂料,该涂料中使用的无机粘结剂具体为硅酸锂溶液;S3将铝锂合金液浇注到步骤S2得到的砂型内,冷却后得到铝锂合金铸件。本发明通过使用硅酸锂作为无机粘结剂,得到基于无机粘结剂的铸造涂料,在应用时,可在砂型内表面涂刷该无机粘结剂涂料,能够避免砂型铸造铝锂合金过程中铝锂合金和铸型的界面反应,从而减少铝锂合金铸件的气孔缺陷,提高铝锂合金铸件的质量。
本发明公开一种基于纯电动车用锂电池析锂测试方法,该方法包括以下步骤:S1、采集测试环境温度,对电池进行恒流充电至截止电压后,再使用截止电压进行恒压充电;S2、设置采样周期,采集恒压充电过程中的充电电流数据和锂电池温度数据,然后确定采样周期中采集时间点的析锂测试参数;其中,所述析锂测试参数包括:基于规格化调整的充电电流、充电电流变化率、基于权重调整的充电电流变化率、锂电池温度变化率;S3、按照采样周期,根据析锂测试参数对锂电池是否析锂作出判断。本发明通过确定采样周期中采集时间点的析锂测试参数,并根据所述析锂测试参数对锂电池是否析锂作出判断,有效解决了现有锂电池是否析锂判定不够全面准确的问题。
本发明提供一种锂硫电池正极材料及其制备方法和锂硫电池。本发明提供的锂硫电池正极材料包括碳空心球、附着于所述碳空心球内外表面的纳米二氧化钛以及填充于所述碳空心球中的硫单质,所述硫单质的质量含量为60~80%。实验结果表明,本发明提供的锂硫电池正极材料制备的锂硫电池在1C下,200次循环后放电容量仍保持691mAh·g‑1,300次循环后放电容量仍保持671mAh·g‑1,库伦效率保持在97%左右;4C高倍率循环下,放电容量仍能保持527mAh·g‑1,再次回到1C时,放电容量仍可保持1042mAh·g‑1。
本发明是一种利用发泡镍材料作为集流体的锂电池及其制备方法。这种锂电池通过超身波、涂覆、轧压或负压吸附方法将活性物质、铜粉、聚四氟乙烯乳液、蒸馏水和乙醇填充入发泡镍电极中获得。本发明锂电池的制备方法主要包括配料、填充、干燥和加压成型等步骤。本发明可显著降低锂电池的电化学极化和改善电极的电子传导途径,改良了电池的大负载工作能力、低温性能及滞后特性等电性能,同时也通过改进电池内部传热模式、提高了电池安全性能。
本发明提供了一种亲锂碳纳米管纸的制备方法,在碳纳米管表面采用原子层沉积方法形成亲锂材料包覆层,之后采用湿法造纸工艺抄造,本发明还提供一种复合金属锂负极的制备方法,将固态锂加热到熔融状态,之后高温熔融状态的锂注入亲锂碳纳米管纸。本发明采用原子层沉积技术在碳纳米管表面形成均与致密的亲锂包覆层,降低锂沉积的成核势垒,使得锂金属在碳纸内形成均匀沉积,制备的复合锂金属负极具有抑制锂枝晶生长、改性固态电解质界面膜成分的作用,同时还具有为锂金属沉积提供空间,显著提高了锂金属负极的循环稳定性、循环寿命。
本发明涉及一种锂电池容量的检测方法。锂电池容量的快速检测方法,其特征在于:根据锂电池容量的充、放电的曲线,对锂电池容量的进行快速检测。本发明具有测试时间短的特点。
本发明涉及一种废旧锂离子电池正极材料钴酸锂的熔盐活化再生方法,该方法将废旧锂离子电池正极材料预处理后制成粉末,然后将其加入到400‑800℃的含锂混合熔融盐中进行活化再生。在此期间利用高温熔融盐重构失效钴酸锂的晶体结构,恢复并提高其储锂性能,同时将导电剂、粘结剂等杂质与钴酸锂分离开来,由此制得的再生钴酸锂具有良好的充放电容量、循环性能以及倍率性能,达到了商业锂电池正极材料钴酸锂的使用标准。本发明方法具有回收率高、产物纯度好,回收成本低等优点,有望解决大量锂离子电池回收再利用难题。
本发明公开了一种金属锂复合结构锂离子电池负极,采用金属锂作为锂离子电池负极核心材料,在金属锂与锂离子电池隔膜相对的外表面包覆有阻隔锂枝晶朝阻隔层方向长大、防止刺穿锂离子电池隔膜作用的纤维薄膜材料阻隔层,该阻隔层中的微孔能使电解液透过。本发明与锂离子电池正极材料配合使用,能够有效防止隔膜被锂枝晶刺穿,更加充分地发挥金属锂电化学优势性能。在提高整个电池容量的同时,也改善了电池的大电流性能。所采用的纤维薄膜材料阻隔层质量轻、厚度薄、成本低,能够大幅度减轻负极的质量、缩小体积、降低成本。值得推广应用。
本发明涉及一种锂离子电池正极材料添加剂及其正极材料和锂离子二次电池,属于电化学技术领域。本发明的锂离子电池正极材料添加剂为含有羧基的导电聚合物单体单元,所述添加剂锂化后与粘结剂、导电剂以及活性材料一起制备浆料,再制备电极片,装配成电池。该类添加剂可在电池内部通过充放电过程进行原位电化学聚合,形成结构更稳定的正极体系。采用本发明的添加剂,可在电池内部原位引入含高浓度羧基的导电聚合物,由该添加剂所组装成的磷酸铁锂扣式电池阻抗小,表现出了更高的比容量,更好的倍率性能以及循环稳定性,具有良好的应用前景。
中冶有色为您提供最新的湖北武汉有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!