本发明所述三元锂离子二次电池技术领域,具体公开了三元锂离子电池电解液,其包含功能添加剂、溶剂以及无机导电锂盐;所述的功能添加剂。本发明还公开了所述的含功能添加的电解液的应用。本发明中,在所述的电解液中添加所述的功能添加剂,作为一种成膜添加剂,可在锂离子电池的正极表面形成一层均匀致密包覆膜,抑制电解液溶剂的氧化分解以及电解液和锂盐分解产物HF对电极材料的腐蚀,稳定正极材料结构,抑制过渡金属离子的溶出,提高高电压以及高温下锂离子电池的循环稳定性和倍率性能。
本发明公开了一种锂离子电池用复合正极材料的制备方法。所述复合材料以NH4MnXFe1?XPO4·H2O/RGO为前驱体,前驱体与锂源和碳源混合,在惰性气氛下,于500℃~700℃烧结得到。所述复合材料粒度分布均匀且呈纳米化,极大提高了电子导电率和锂离子扩散速率,材料具有高倍率性能。本发明工艺简单,成本低廉,可用于大规模工业化生产。
本发明涉及一种高性能水性磷酸铁锂动力电池的制备工艺,它包括正极、负极、隔膜和专用动力型磷酸铁锂电解液。将磷酸铁锂作为动力电池正极活性材料,正极片由改性的磷酸铁锂、导电剂、相应的粘结剂以及铝箔组成,负极片由专用动力型石墨、导电剂、粘结剂以及铜箔组成。本发明特征在于:所述正极片由正极集流体和正极浆料组成,正极涂布浆料的质量配比为:91%的活性物质磷酸铁锂、3%的导电剂(1.17%的Super-P、0.91%的KS-6、0.92%的石墨)以及6%的粘结剂(5.19%的F-105、0.81%的F-105-A)。本发明采用的导电剂和粘结剂配比合理,使得锂离子动力电池电压平台稳定,电池容量大,高倍率充放电性能优,性能循环好,同时这种电池在大电流放电的同时,安全性能好。
一种高纯纳米氟化锂的制备方法,本发明以工业氢氧化锂和氟化铵为原料,先将氢氧锂水溶解、萃淋树脂色层法纯化、浓缩、喷雾干燥得到高纯单水氢氧化锂;常温下混合氢氧化锂与氟化铵,反应形成纳米氟化锂;经热处理去除杂质,得到高纯度氟化锂产品。本发明常温化学反应生成氟化锂及易于分离去除的共生产物;产品制备流程短、工序少,便于产业化;产品为纳米级,反应活性高,形貌好,能满足作为高技术新材料生产原材料的要求。
本发明属于锂离子电池材料技术领域,公开了一种SiOx/锂硅酸盐复合材料及其制备方法和应用。SiOx/锂硅酸盐复合材料包括内核和包裹在内核表面的外壳;所述内核为氧含量从核心至表面逐步增加的SiOx,其中x=0.3~1;所述外壳为氧含量和锂含量从外壳表面至外壳内部逐渐降低的锂硅酸盐。通过在惰性气氛下煅烧SiOx材料,对其进行预处理。预处理后的SiOx材料和锂源在惰性气氛下高温固相烧结,得到SiOx/锂硅酸盐复合材料。本发明提供的制备SiOx/锂硅酸盐复合材料的工艺对原材料的要求较低,工艺中各项反应条件简单易控制,工艺流程短、成本低、产率高;包含前述SiOx/锂硅酸盐复合材料作为负极的锂离子电池具有高的首次库伦效率、比容量以及优良的循环性能。
本发明公开了一种钛酸锂粉末的制备方法,包括以下步骤:(1)在25~98℃下,将锂化合物水溶液与TiCl4水溶液按Li/Ti摩尔比为4~10.5的比例混合,恒温搅拌反应0.5~96h;(2)将步骤(1)所得反应产物料浆进行液固分离脱去母液,将固相产物在100~120℃下干燥4~48h,获得无定形钛酸锂化合物前驱体;(3)将步骤(2)所得前驱体在500~850℃下热处理2~15h,研磨粉碎,即得钛酸锂粉末。本发明是一种工艺简单、环境污染少、生产成本低的钛酸锂粉末的制备方法。
本发明公开了一种锂离子电池低温充放电解液,包括锂盐、有机溶剂和添加剂,所述锂盐为质量比为80‑90∶1‑15∶1‑15的六氟磷酸锂、二氟双草酸磷酸锂、二氟磷酸锂的混合物,所述添加剂为质量比为82‑85∶6‑10∶6‑10硫酸乙烯酯、二氧化硫和含巯基有机物。本发明选用新型添加剂组合,并且提高添加剂的含量,同时配合低阻抗的锂盐,提高低温下成膜的迁移速率,选择低温组合的溶剂比例,低温下,提高锂离子电池的电解液的粘度,使导电性提高,活性物质的活性提高,缩小电解液的浓度差,极化减弱,保持有效充放电。低温时锂离子电池的放电容量和工作电压保持正常,达到锂离子电解液低温充放电的性能要求。
本发明属于电池正极材料及其制备领域,具体公开了一种纯β型、纯度在99.5%以上、中位粒径在5~25μm的高纯二氧化锰,其中杂质金属铜、铅、锌的含量均小于10ppm,钠、钾等的含量均小于50ppm,硫酸根的小于300ppm,其制备方法是先制得硝酸锰溶液,然后将其煅烧,再进行微细化粉碎,得到成品。本发明还公开了一种锰酸锂正极材料,其中钠、钾、钙、镁的含量均小于50ppm;铁、铜等的含量均小于10ppm,硫酸根小于500ppm,其制备是以高纯二氧化锰为锰源,然后将TiO2、NiO、Al2O3中的至少一种与锰源混匀,再与锂源混合使锂与非锂金属的原子摩尔比为(0.9~1.2)∶2,最后经焙烧、冷却、粉碎制得成品。本发明的方法成本低,易操作,制得的锰酸锂正极材料纯度高且能有效提高电池循环性能和比容量。
本发明公开了一种利用废旧锂电池与浸出渣再生电极的方法,其特征在于,包括以下步骤:1)将废旧LiNixCoyMnzO2、LiCoO2和LiMn2O4电池放电、拆分、有机溶剂溶解后得废旧正极混合粉末和负极粉末;2)将正极和负极粉末球磨机械混合后碳热还原处理;3)水浸出碳热还原后粉末,分离浸出液与浸出渣,浸出液蒸发浓缩结晶得碳酸锂;4)浸出渣采用还原氨浸出,分离氨浸出液与浸出渣,得到富含高纯度有价金属镍和钴的溶液和氧化锰浸出渣;5)将该浸出渣和步骤2)中再生碳酸锂在马弗炉中烧结制备LiMn2O4正极。本发明基于混合多种废旧锂电池正负极材料,并充分利用回收过程中的废渣再生材料,具有回收流程绿色污染性低,回收废旧电池来源广,再生锰酸锂电化学性能良好的优势。
本发明属于锂硫电池技术领域,具体涉及一种锂硫电池多孔正极的制备方法,通过一次正压载硫使部分硫预先负载至多孔碳材料中,另一部分硫作为造孔剂与正极浆料混合涂布在集流体上制成极片并辊压后,再在正压条件下进行第二次载硫,从而获得既具有一定压实密度,又具有丰富孔洞的锂硫电池正极片。该制备方法弥补了现有锂硫电池极片不辊压则硫碳材料孔洞太多,电子导电性差;辊压则硫碳材料孔洞被完全压实,电解液无法浸润导致极片离子导电性差的矛盾,实现了同时具备高硫载量、高电子导电性及高离子导电性的锂硫电池多孔极片的制备。
本发明涉及一种二硫化钼包覆镍钴锰酸锂复合材料及其制备方法和应用,所述复合材料由核心材料和包覆层构成,所述核心材料为镍钴锰酸锂,其化学式为LiNixCoyMn1‑x‑yO2,其中0<=x,y<=1;所述包覆层为MoS2。其制备方法为:将四硫代钼酸铵加入溶剂中,于40~80℃搅拌,得到分散液;向分散液中加入镍钴锰酸锂获得混合液,持续搅拌直至溶剂变干后置于真空烘箱中干燥,将混合物在保护气氛下烧结,即得到二硫化钼包覆镍钴锰酸锂复合材料。本发明制备工艺简单,操作简便,元素利用率高。应用于锂离子电池中,具有首次库伦效率高、循环性能稳定以及倍率性能优良的特点。
本发明公开了一种高电压锂离子电池用电解液,包括有机溶剂、锂盐和锂盐助溶剂,有机溶剂包含氟代烯基3-硝基-4-氟代烷基苯砜类化合物和氟代二腈二烷基醚类化合物;该高电压锂离子电池用电解液能提高锂电池能量密度,且在高电压下稳定性能好,可以显著提高锂电池的使用寿命及安全性能。
本发明属于锂离子电池材料技术领域,公开了一种多重改性的富锂无钴单晶材料及其制备方法。通过共沉淀结合后续锂化烧结首先制备出钠铝双金属位点掺杂的富锂无钴单晶材料,再进一步通过固相法得到快离子导体包覆的双金属掺杂的富锂无钴单晶材料。所述掺杂包覆复合改性的富锂无钴单晶材料的化学通式为LimAlpMq(PO4)3@LixNanNiyMnzAl1‑y‑zO2,其中M是Sb、Ge、Ti元素中的一种或几种,1≤m≤2,p+q=2,0<n≤0.2,1<x≤1.5,0.8≤y+z≤1。本发明通过两步法成功实现钠铝双金属离子掺杂快离子导体包覆的富锂无钴单晶材料,制备的材料颗粒大小基本一致、元素分布均匀。本发明合成的复合材料有效改善了富锂无钴单晶材料的导电率和放电比容量。
本发明提供了一种锂离子电池正极浆料,包括活性物质、粘结剂和添加剂,所述活性物质、粘结剂和添加剂的质量比为(80~99):(0.5~3.0):(0.5~19.0);所述添加剂为V2O5、MoO3和石墨烯的混合物;所述活性物质为钴酸锂、锰酸锂、镍钴锰酸锂、镍钴铝酸锂中的一种或多种;所述粘结剂为丙烯酸?丙烯腈共聚物和聚偏氟乙烯中的一种或两种。还提供了制备锂离子电池正极浆料的方法,方法简单,使用本发明的锂离子电池正极浆料制作的锂离子电池,具有较好的高倍率放电性能和较长的循环寿命。
本发明公开了一种锂离子电池多核型核壳结构磷酸盐系复合正极材料的制备方法,属于锂离子电池技术领域。其特征在于:采用“化学还原-固相烧结”技术制备锂离子电池复合正极材料xLiVPO4F·yLi3V2(PO4)3·(1-x-y)LiVOPO4。包括以下步骤:(1)配料;(2)加入碳源作为还原剂,机械活化;然后在真空烘箱干燥处理,得到复合前躯体;(3)将步骤(2)所得复合前躯体在烧结炉中于非氧化气氛下600-800℃煅烧1-24H,自然降温至300-700℃,烧结1~10H,得到多核型核壳结构xLiVPO4F·yLi3V2(PO4)3·(1-x-y)LiVOPO4复合正极材料。本发明制备的复合正极材料,通过自身氧化还原反应形成了核的成份由内向外依次是LiVPO4F、Li3V2(PO4)3、LiVOPO4,最外层由碳包覆的微观结构。所得材料,结构成份特殊,电化学性能优良,充放电平台较多,荷电状态易控,适用于动力电池。
本发明公开了一种高倍率、高压实、高电压的钴酸锂正极材料的制备方法,该正极材料粒径D50为6.0~11.0μm,压实密度为3.7~3.95g/cm3,制备方法包括:(1)将钴源、锂源、掺杂元素M、M’的化合物,配料混合得一次混合料;(2)将一次混合料烧结得到钴酸锂的一次烧结料,并进行粉碎和分级得一烧分级料;(3)将一烧分级料与包覆物配料及高速混合得二次混合料;(4)将二次混合料进行烧结,并进行粉碎、分级、除磁和过筛,得到高倍率、高压实、高电压的钴酸锂正极材料。该工艺简单易控、生产成本低、绿色环保、生产效率高、且能制备出产品成分均匀、粒径分布窄、结晶度高、物化性能及电化学性能均优良的正极材料。
本发明公开了一种高容量型钴酸锂正极材料的制备方法:将Li源、Co源A和MgO按照摩尔比为(1.05~1.20):(1.00‑x):x的量在高速球磨机中充分混合均匀,然后经高温固相法烧结,过筛,得到一烧产物,其中x=0.002~0.005;将一烧产物经气流粉碎成中值粒度为7.0~18.0μm颗粒后,与Co源B在高速球磨机中充分混合均匀,然后再经高温固相法烧结反应完全,过筛,即得到高容量型钴酸锂正极材料。本发明的制备方法,加入钴的化合物与一烧产物过量的锂进行二次反应,使二次烧结产物含极少量的残留钴和锂,最大程度地减少钴和锂除钴酸锂以外的形式存在,提高钴酸锂的生成率,提高脱锂量,进一步提升容量。
本发明公开了一种锂负极,包括锂负极基体,锂负极基体的表面原位聚合有聚1,3‑二氧五环层,聚1,3‑二氧五环层中均匀分布有石墨相氮化碳纳米片。其制备方法为:将石墨相氮化碳纳米片粉末加入1,3‑二氧五环中进行分散,制备成石墨相氮化碳纳米片分散液;向石墨相氮化碳纳米片分散液中加入引发剂,滴涂在锂负极基体表面,使1,3‑二氧五环在锂负极表面原位聚合,得到具有复合界面层的锂负极。本发明以原位聚合形式将1,3‑二氧五环原位聚合在锂负极基体表面,原位聚合的聚1,3‑二氧五环在基体表面形成界面缓冲层,能够有效抑制枝晶生长。
本发明属于锂离子电池材料领域,公开了一种锂离子电池一水合氧化铝涂覆隔膜及其制备方法,在锂离子电池隔膜的表面涂覆一水合氧化铝浆料。将纳米级的一水合氧化铝、表面活性剂、增稠剂、粘结剂、分散剂、消泡剂及溶剂混合在一起搅拌,之后使用涂覆设备将浆料均匀涂覆在锂离子电池隔膜的正反两面形成涂覆层,涂覆层烘干之后,即得锂离子电池一水合氧化铝涂覆隔膜,卷绕密封存放。本发明除了拥有涂覆隔膜的高安全性外,还提高了锂离子电池隔膜的耐热性、穿刺强度、保液性等,能显著改善锂离子电池的电化学性能。生产可操作性强。
本发明提供了一种多节锂电池保护芯片电路,属于半导体集成电路技术领域。所述第一锂电池BAT1、第二锂电池BAT2、第三锂电池BAT3串联后接于地和电压源之间,所述电路包括:第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、基准电压模块、第一加法模块、第二加法模块、第一比较器COMP1、第二比较器COMP2、第三比较器COMP3和逻辑处理模块;本发明电路中采用一颗单芯片就解决了多节锂电池的保护问题,而且与传统的多节锂电池保护技术相比,本发明可以实现多节锂电池之间的联动保护,实现更多的系统功能。
本发明提供了一种高能量密度铝壳锂离子电池的制造方法,包括以下步骤:S1:制备正极片和负极片,并进行铝壳电池组装,铝壳与电池正极片、负极片之间保持绝缘,然后向铝壳电池中注入预锂化电解液;S2:将铝壳连接外电源正极,负极片连接外电源负极,以小电流充电进行预锂化;S3:去除预锂化电解液,注入功能电解液,然后进行活化、封口,得到高能量密度铝壳锂离子电池。本发明实现了对锂离子电池负极的可精准控制的原位预嵌锂,以补偿首次充电过程中负极成膜等过程锂消耗,提高正极材料在实际锂离子电池中的克容量发挥,并且由于该预嵌锂过程不需增加额外的辅助电极或电极材料,操作简单、方便,有利于提升锂离子电池的容量与能量密度。
本发明属于二次金属锂电池负极材料领域,具体公开了一种人造SEI材料,其通过含卤聚合物和含锂氧化剂在150℃‑300℃下进行氧化锂化得到。本发明还涉及人造SEI膜、复合有所述SEI膜的金属锂负极以及金属锂电池。本发明研究发现,将含卤聚合物和含锂氧化剂在所述的温度下预先进行氧化锂化反应(本发明也简称反应),如此有助于改善组装的锂金属电池的性能,特别是有助于改善制得的锂金属电池在比较苛刻的条件下的容量、倍率以及循环稳定性。
本发明提供了一种锂离子电池健康状态的检测方法,包括:检测不同健康状态下锂离子电池的室温磁性能,建立健康状态与磁化率的对应关系库;检测不同温度下磁化率的变化,得到相应的锂离子电池健康状态的温度补偿系数;采用磁性传感器和温度传感器采集锂离子电池工作状态下的磁性能数据和工作环境温度数据;将所述磁性能数据与所述健康状态与磁化率的对应关系库中的数据进行智能匹配,得到相应的锂离子电池健康状态;通过温度传感器采集到的温度数据得到锂离子电池健康状态的温度补偿系数,计算得到锂离子电池最终的健康状态。本发明可以通过在线测量锂离子电池在不同温度下的磁性能,从而简单有效的判断锂离子电池的健康状态,实现在线计算。
本发明公开了一种废旧锂离子电池正极材料高效回收与再生的方法,包括以下步骤:对回收的废旧锂离子电池完全放电、拆解、剥离、煅烧和研磨获得LiNi0.6Co0.2Mn0.2O2活性材料;将该活性材料用浸出剂浸出,得到富含锂的浸出液和含有镍钴锰的沉淀;将所得沉淀分散于水中,加入碱液,调节pH值得到氢氧化镍钴锰沉淀;将氢氧化镍钴锰沉淀过滤得到三元前驱体,按三元前驱体物质的量计与过量锂源配比锂化,经研末混合、煅烧,得到正极活性材料;将过滤后所得滤液加入无机酸,生成新的有机酸,实现有机酸的循环使用;使用本发明的方法,可实现三元正极材料循环利用,而且工艺简单,能有效降低加工成本,并且可实现有机酸的循环使用。
本发明公开了一种钛酸锂/硫化铜纳米复合物的制备方法,方法为:将Li4Ti5O12与CuS充分混合,得到混合物a;将混合物a加入至N‑甲基吡咯烷酮溶液中,搅拌速度为50‑300r/min,搅拌3‑8h,得到混合物b;将混合物b进行抽滤,得到粉末c;将粉末c在30‑60℃温度下,干燥1‑3h,得到Li4Ti5O12/CuS纳米复合物。制得的纳米复合物作为锂电池负极材料,钛酸锂/硫化铜纳米复合物具有大量晶界和结构缺陷,一方面可以提升钛酸锂材料的本征电导率,而且可以依靠晶界来提高比容量;另一方面纳米复合物内部的晶界还可以为电子和Li+传输提供通道,提升锂离子扩散系数。
本发明公开了一种锂辉石矿选矿分选工艺,属于多金属选矿技术领域,包括:(1)采用SAB破碎流程,将原矿进行磨矿;(2)利用CCF浮选柱,对磨矿产品进行预先浮选,得到预先浮选粗矿;(3)将预先浮选粗矿进行浮选作业,采用一粗三精三扫流程,粗选作业采用氧化石蜡皂、磺化皂和环烷酸皂为混合捕收剂;(4)将浮选尾矿进行固液分离;(5)对浮选后的锂辉石进行除杂,采用格渣筛+磁选+酸性除杂的工艺,得到锂精矿。本发明通过SAB碎磨流程+CCF浮选柱预先浮选+锂辉石浮选+精矿除杂工艺,在原矿入选品位为1.0%~1.5%时,可以实现锂辉石精矿回收率为80%~85%,品位为5.5%~6.0%,精矿中三氧化二铁含量低于0.3%,该工艺可以为类似矿山的生产提供指导作用。
本发明公开了一种钨氧化物β‑WO2.9包覆锂离子电池富锂锰基层状正极材料及其制备方法,其中钨氧化物包括除β‑WO2.9外,还有少量WO3、WO2.72以及WO2氧化物。以富锂锰基正极材料Li[LixNiyCo1‑x‑y‑zMnz]O2为原料;混合并包覆β‑WO2.9。本发明利用钨氧化物β‑WO2.9独特的结构特性,对锂离子电池正极材料的首次库伦效率有很大的提升,同时改善了其电化学稳定性结构稳定性,显著提高了锂离子电池正极材料的循环稳定性,制作工艺简单、成本低。
本发明公开了一种用压力反应釜制备高纯硫化锂的方法:以高纯金属锂及高纯硫单质为原料,以醚类、环醚类、烷烃、环烷烃、芳香烃、杂原子取代芳烃及二硫化碳中的一种或几种混合作为溶剂,在高压反应釜内进行反应制备得到硫化锂。上述所有操作均在惰性气氛的手套箱中进行。本发明直接利用锂单质与硫单质在压力反应釜内的高温高压条件下一步化合得到可用于合成固态硫化物电解质原料的硫化锂。本发明制备工艺可靠,设备流程简单,无有害气体产生,且有效利用了高温高压密闭反应的优势,避免有害溶剂泄漏污染,大大缩短了制备流程。
本实用新型公开了一种水下设备用锂电池供电单元。包括单个或多个串联或并联的锂电池、封装锂电池的容器、在容器内固定锂电池的固定件或填充物,一个或多个安装于容器上用于充电和向外输出电能的水下电缆插座,连接各锂电池和水下电缆插座的导线,其特征在于封装锂电池的容器是非耐压密封容器,在容器内充满绝缘性液体介质,在容器内部或外部设有内、外压力平衡装置,容器壁上有一个或多个用于向容器内灌装或排出绝缘液体及通气用的孔道。本实用新型重量轻体积小、使用安全可靠、成本仅为耐压容器封装的电池供电单元的40%左右。
中冶有色为您提供最新的湖南长沙有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!