本发明公开了一种高阻燃玻璃纤维增强聚氯乙烯复合材料,以重量份为单位,包括以下原料,聚氯乙烯50‑70份,乙烯醋酸乙烯共聚物5‑10份,玻璃纤维5‑10份,抗氧剂1‑5份,阻燃剂5‑10份,交联剂1‑5份,硅烷偶联剂2‑4份,相容剂6‑8份,玻璃纤维是表面粗化的玻璃纤维。本发明还公开了其制备方法,具体为将表面粗化的玻璃纤维浸入阻燃剂中,与上述原料在密炼机中熔融共混制成所述高阻燃玻璃纤维增强聚氯乙烯复合材料。本发明能够提高玻璃纤维增强聚氯乙烯复合材料阻燃性能,利用表面粗化的玻璃纤维浸入阻燃剂中,在表面粗化的玻璃纤维凹凸中存有阻燃剂,加入聚氯乙烯复合材料中;当在燃烧条件下,玻璃纤维表面凹坑内阻燃剂阻止玻璃纤维气化燃烧,起到强阻燃性能。
本发明公开了一种立方氧化铜/石墨烯气凝胶复合材料的原位制备方法,包括以下步骤:S1:将铜网依次放入1~3M盐酸、无水乙醇和去离子水中进行超声清洗,然后进行干燥处理;S2:将氧化石墨烯分散在去离子水中,超声1~3小时,得到浓度为1~5mg?mL?1的氧化石墨烯分散液;S3:将步骤S2得到的氧化石墨烯分散液倒入高压釜内胆,再向高压釜内胆中放入步骤S1得到的铜网,进行水热反应,水热反应温度为120~200℃,反应时间为6~15h;S4:将步骤S3得到的产物取出,进行淬冷并冷冻干燥,得到氧化铜/石墨烯气凝胶复合材料;冷冻干燥时间为12~48h,冷冻干燥温度为?30~?50℃,真空度为10~30Pa。
本发明公开了一种石墨烯/聚苯胺纳米复合材料、制备方法及应用,属于纳米复合材料制备技术领域。本发明首先将含有双键的硅烷偶联剂接枝在氧化石墨的表面,进而还原得到在有机溶剂中分散性良好且表面含有双键官能团的石墨烯片,再引入苯胺单体,实现原位聚合,将聚苯胺纳米棒通过共价作用与石墨烯表面结合在一起构建石墨烯基复合材料,不仅可以发挥无机材料和有机材料复配的优势,还能改善石墨烯在极性溶剂中的分散性,具有良好的电化学活性和生物相容性。且制备工艺简单,生产成本低,适于工业化生产应用。该纳米复合材料可以作为催化剂载体材料,诱导金属纳米簇原位生长,不仅能控制纳米簇的负载量,还能实现纳米簇的均匀生长。
本发明公开了一种低热膨胀系数Zr2WP2O12/聚酰亚胺复合材料及其制备方法。该复合材料由基体材料聚酰亚胺与具有负热膨胀性能的Zr2WP2O12复合而成。本发明所提供的复合材料Zr2WP2O12/聚酰亚胺采用原位聚合法制备,设备简单、成本较低,易于工业化,且具有较强的可操控性及通用性。本发明产品复合材料具有低热膨胀系数、良好的热稳定性和介电性能,能够较好的满足于集成电路和芯片封装技术方面对硅基材料热匹配的要求,可以应用于微电子行业,如电子封装领域多层布线技术中的绝缘层;也可用于太阳能电池中的绝缘层等。因而,具有较为广阔的应用前景。
一种碳碳复合材料快速制备方法及装置,涉及一种炉子,在炉壳(11)的内部设有隔热屏(12),炉壳(11)的下方设有开门小车(14),开门小车(14)与炉壳(11)形成密闭结构,开门小车(14)的车体置于炉壳(11)内,在车体上部设有旋转装置,车体的外部设有电机(13),电机(13)与旋转装置相连接,在旋转装置的顶部设有衬筒(2),衬筒(2)内加热装置,加热装置由感应圈(3)、保温层(4)和加热器构成,加热器设置在衬筒(2)内的中部,加热器外部设有感应圈(3),感应圈(3)外部设有保温层(4);本发明实用性强,安装和维护均比较方便,操作起来比较方便,有利于碳/碳复合材料的的大规模应用。
本发明一种轴承保持架用热塑性聚酰亚胺基复合材料的制备方法。该制备方法以热塑性聚酰亚胺为基材,并在热塑性聚酰亚胺中添加有增强改性材料,增强改性材料包括芳纶浆粕纤维、氟化石墨和聚四氟乙烯,其中芳纶浆粕纤维要进行回流清洗,清洗的芳纶浆粕纤维以及热塑性聚酰亚胺和氟化石墨要进行真空干燥,经过合成加工得到热塑性聚酰亚胺基复合材料,将热塑性聚酰亚胺基复合材料通过保持架模具在热压机上热压得到轴承保持架管状坯料。热塑性聚酰亚胺基复合材料具有较小的密度,摩擦系数小,磨损量少且热变形温度高于270℃,热压出的轴承保持架管状坯料具有轻质特点,减轻轴承整体的重量,提高轴承的转速和运作稳定性,同时也能显著提高主机的效能。
本实用新型公开了一种复合材料软铝绞线耐张金具,包括外衬管、螺旋式钢锚,所述的螺旋式钢锚与端部设置螺纹部、外形为圆柱体、内部为锥形腔的外锥环连接;所述的外锥环内设置中心径向通孔的内锥环,所述内锥环的中心径向孔直径小于复合材料软铝绞线复合芯的外径,内锥环两轴端分别沿径向向内设置一条与相对轴端有一定距离的间隙;外衬管的前部设置内衬管,内衬管伸出外衬衫管主体外,内衬管的内径略大于复合材料软铝绞线的外径。内衬管在压接过程中起缓冲作用,不会导致芯棒压碎、开裂、起皮、弯曲等,确保芯棒握力适中,不影响芯棒的性能,最终确保复合材料软铝绞线与耐张金具间具有良好的握力和导电能力。
本发明公开了一种山茶花状ZnO/SnO‑SnO2复合材料及其制备方法和应用,所述山茶花状ZnO/SnO‑SnO2复合材料由二维ZnO薄片自组装而成,SnO‑SnO2混合物均匀地锚定在ZnO薄片上。首先以水热法合成SnO‑SnO2混合纳米颗粒。随后,利用溶剂热法以AOT为软模板,将已制备的SnO‑SnO2混合纳米颗粒加入到反应体系中,最后将复合材料在400℃下煅烧2h,得到山茶花状ZnO/SnO‑SnO2复合材料。本发明在氧化锌的基础上复合SnO‑SnO2纳米颗粒,提高了对胺类气体的灵敏度以及选择性,工作温度为100℃时,对三乙胺有较好的选择性并且对100ppm的三乙胺的灵敏度达到780。
本发明属于医学用光动力治疗材料技术领域,具体涉及一种氧化石墨烯改性的光敏剂纳米复合材料及其应用专利申请事宜。所述纳米复合材料GO@TiO2@PS,制备时包括:一步湿法制备负载Photosan的氧化钛纳米粒子、制备氧化石墨烯改性的光敏剂纳米复合材料氧化石墨烯@TiO2@PS等步骤。所制备的GO@TiO2@PS纳米复合材料具有更好的水溶性、生物相溶性和低的细胞毒性,可用于肿瘤光热和光动力协同治疗,在特定肿瘤或癌细胞中,具有更好的杀伤效果,表现出较好的应用前景。
本发明属于二次电池负极材料领域,具体涉及一种固体电解质包覆石墨复合材料的制备方法。该方法制备的固体电解质包覆石墨复合材料为核壳结构,内核为石墨,外壳为第一外壳和第二外壳组成的双层结构,第一外壳、第二外壳由内向外依次设置;第一外壳由固体电解质、有机锂化合物和无定形碳组成,固体电解质、有机锂化合物和无定形碳的质量比为(50~80):(5~15):(1~5);第二外壳为无定形碳;内核、第一外壳、第二外壳的厚度比为:100:(1~10):(0.5~2)。该固体电解质包覆石墨复合材料与软碳包覆石墨复合材料相比,具有安全性能高、首次效率高、倍率性能佳、循环性能优异等特性。
本发明提供一种能够提高导热性的金刚石石墨烯复合材料的制备方法。所述能够提高导热性的金刚石石墨烯复合材料的制备方法包括以下步骤:(1).准备原料:阴离子活性剂、阳离子活性剂、石墨纸(C)、无水乙醇(CH3CH2OH)、微米金刚石颗粒(ND)、钛片(Ti)、去离子水、两片不锈钢片、环氧树脂和固化剂;(2).将上述(1)中准备的石墨纸和钛片放置到含有电解液的烧杯中,其中石墨纸为阳极。本发明提供的能够提高导热性的金刚石石墨烯复合材料的制备方法可以来对石墨烯进行改性和添加纳米金刚石颗粒进行合成,从而可以来提高石墨烯/金刚石复合材料的导热性的优点。
本发明属于高性能纳米复合材料领域,公开了一种基于糠醛渣的木质素‑纳米纤维素凝胶复合材料的制备方法,包括以下步骤:(1)将经水洗除杂后的糠醛渣加入水中,配制成糠醛渣悬浮液;(2)将糠醛渣悬浮液进行机械研磨,得到含木质素的纤维素粗产物悬浮液;(3)将含木质素的纤维素粗产物悬浮液与纳米纤维素悬浮液混合后,进行高压均质处理,得到含木质素的纳米纤维素悬浮液;(4)在含木质素的纳米纤维素悬浮液中加入聚乙烯醇,加热至聚乙烯醇完全溶解,得到混合液,然后,将混合液倒入模具内,室温静置12~24h,得到木质素‑纳米纤维素凝胶复合材料。本发明制备的凝胶复合材料在生物医用、紫外屏蔽、智能器件等领域具有潜在的应用。
本发明属于功能复合材料技术领域,具体为一种MXene衍生钙钛矿水泥基压电复合材料,通过二维纳米材料MXene制备MXene衍生钙钛矿,再与水泥混合得到MXene衍生钙钛矿水泥基压电复合材料,该压电复合材料易极化,具有良好的压电响应,且与建筑材料具有良好的相容性,能够用于交通工程、土木工程中的混凝土结构的传感器的制备,且所制备的传感器灵敏度和传感精度高。
本发明提供了一种石墨烯聚氨酯泡沫复合材料,按质量份数计,包括以下组分:聚醚多元醇80份‑120份;催化剂0.1份‑0.4份;发泡剂3份‑5份;泡沫稳定剂1份‑3份;开孔剂3份‑5份;异氰酸酯40‑60份;以及石墨烯0.5~1.5份。本发明还提供了一种聚氨酯泡沫复合材料的制备方法。在本发明中,通过在聚氨酯泡沫复合材料中添加比表面积大、吸附容量高的吸附剂石墨烯,从而可以使得外界环境中的大分子有机污染物易与石墨烯表面的基团发生相互作用形成稳定的复合物,从而达到去除有机污染物的效果。此外,石墨烯聚氨酯泡沫复合材料面扑(即石墨烯面扑)在现在清洁水平上能够进一步实现抑菌、吸附清洁、防老化等作用。
本发明涉及一种以TiO2纳米管复合材料为定向负载支架和示踪标记物的电化学免疫传感器的构建方法,其分别通过水热法、化学氧化聚合法以及柠檬酸三钠还原法最终合成出GNPs-PANI-TNT复合材料,将其分散于壳聚糖溶液中并滴加在电极表面。以BS3为双氨基交联剂将蛋白G′共价结合在壳聚糖表面,用于定向负载捕获抗体(Ab1)。BS3还被用于结合辣根过氧化物酶(HRP)和信号抗体(Ab2)以制备示踪标记物。采用本发明方法制备所得的电化学免疫传感器能够快速的测定α-甲胎蛋白AFP,且灵敏度较高、线性范围较大、检测限较低。
本发明介绍了一种复层为铜及铜合金、铝及铝合金、钛及钛合金等贵金属复合材料爆炸焊接专用炸药及其制造方法。该炸药含有以下质量份的组分:硝酸铵64~75%,复合油相2~3.5%,木粉2.5~3.5%,食盐15~30%,空心玻璃微球1.5~3.0%。先将硝酸铵进行膨化处理,再将膨化硝酸铵在轮碾机内与复合油相、木粉、食盐、空心玻璃微球混合,最后在40℃以下出料即得到产品。本发明炸药组分中不含TNT,爆炸性能稳定,原材料成本低,制造方法简单,适合于工业化生产,爆炸焊接的贵金属复合材料界面结合率和结合强度高。
本发明涉及电子材料技术领域,具体公开了一种氧化铝粒子弥散强化铜复合材料及其制备方法。所述氧化铝粒子弥散强化铜复合材料的化学成分组成为:重量百分含量为0.05~1.5%的α-Al2O3,重量百分含量为0.38~0.94%的γ-Al2O3,余量的铜。本发明提供的氧化铝粒子弥散强化铜复合材料的制备方法具有内氧化时间短、成本低、效率高的优点,制得的氧化铝粒子弥散强化铜复合材料具有高强度、高导电性、高抗软化温度、高的高温强度,可满足微电子行业和电子信息行业对高导高强耐高温铜合金的要求,在机械工业、国防工业和电子信息产业具有广泛应用。
本发明公开了一种水热法合成1T相二硫化钼/碳纤维布纳米复合材料的方法,分别利用碳纤维布、钼源、硫源和还原剂作为反应物,通过水热反应合成1T相二硫化钼/碳纤维布纳米复合材料。该方法原料价格低廉,操作方法简单,经水热反应可一步制备出1T相二硫化钼/碳纤维布纳米复合材料。制备方法简单,反应条件温和,产物稳定不易发生相变等特点都使本发明具有极为广阔的应用前景。
本发明公开了一种球形二氧化钛包裹硫化锂/硫复合材料的制备方法,属于硫化锂功能材料的合成技术领域。本发明的技术方案要点为:将1‑12g干燥后的硫粉在水浴条件下溶于100mL醇类有机溶剂中得到溶液A;待水浴温度升高至55‑60℃时向液A中加入0.655g氢氧化锂,升高水浴温度至80℃并保持10min得到溶液B;向溶液B中加入钛酸四丁酯并进行反应得到溶液C,将溶液C置于旋转蒸发器中旋蒸出溶剂即得球形二氧化钛包裹硫化锂/硫复合材料。本发明制得的球形二氧化钛包裹硫化锂/硫复合材料易于储存,而且二氧化钛包裹能够有效阻止放电产物多硫化物的溶解并缓解体积膨胀,进而提高材料的电化学性能。
一种铝基复合材料的化学镀镍方法,它涉及一种铝基复合材料的化学镀镍方法。本发明的目的是要解决现有的碳化硅颗粒增强铝基复合材料和高硅铝材料的表面化学镀镍技术存在实施成本高,应用范围较窄的问题。化学镀镍方法;将化学镀液的pH值调至9~11,在化学镀液温度为70~90℃持续镀覆,即完成化学镀镍;所述的化学镀液的溶剂为去离子水,溶质为NiSO4·6H2O、NaH2PO2·H2O、C6H5Na3O7·2H2O和NH4Cl,优点:1、镀镍层外观良好,内部组织致密,结合力强;2、工艺简单,可重复性强,镀覆时间短,不需要外加直流电源;3、镀镍成本低;4、不对焊缝、玻璃构件等造成腐蚀。本发明主要用于化学镀镍。
本发明公开一种用于防弹装甲板夹层复合材料的制备方法。将苎麻纤维在模具型腔中铺展均匀;制备硅溶胶;将模具型腔置于‑20~0℃环境中,然后将硅溶胶加到模具型腔中,浸渍处理苎麻纤维;取出浸渍处理后的苎麻纤维,凝胶‑老化处理;在超低温冰箱中冷冻,然后置于冷冻干燥机的干燥室中抽真空干燥处理,得到苎麻纤维增强气凝胶毡A;将环氧树脂、固化剂、环氧树脂活性稀释剂、空心玻璃微珠配制,得到环氧树脂/空心玻璃微珠浆液B;在苎麻纤维增强气凝胶毡A的上下两面先分别均匀涂覆环氧树脂/空心玻璃微珠浆液B,接着再在两面分别覆盖玻璃纤维布增强环氧树脂片,得到夹层复合材料C,真空固化。本发明制备的复合材料具有较好的韧性及较大的抗压强度。
本发明公开了一种碳包覆氟掺杂改性的磷酸铁锂(LiFePO4‑xFx/C)正极复合材料的制备方法,以氟化锂、醋酸亚铁、磷酸氢铵、氟化锂为原料,加入无水乙醇和无水葡萄糖,进行超声处理后干燥;干燥产物一次烧结后研磨,然后进行二次烧结,得到LiFePO4‑xFx/C正极复合材料,该复合材料在0.1C下循环30次后,比容量保持率大于90%。
本发明公开了一种铜铝复合材料及其制备方法,属于金属加工技术领域。本发明铜铝复合材料,采用电弧喷涂,喷涂电压为30~35V,喷涂距离为100~150mm,送丝速度为3~4m/min,电流为120~150A,压缩气体压力为0.65~0.75MPa,压缩气体流量为1.6~2.0m3/min,在惰性气体保护气氛中向铝合金基体表面喷涂铜形成铜涂层,铝合金基体表面喷涂的铜涂层不被氧化,且均匀致密,呈紫红色光亮,并且与基体结合强度高,导电性好,可用于高压电器产品的制备。本发明铜铝复合材料的制备方法,采用电弧喷涂的方式喷涂铜涂层,相比传统的电镀和化学镀的方法,对环境无污染,操作简便,快速省时,节约成本。
本发明公开了一种高性能聚碳酸酯复合材料及其制备方法及应用,所述复合材料按照质量百分比计,由以下原料组成:聚碳酸酯77.8~84.7%、壳聚糖/粘胶纤维7~11%、丁基橡胶6~8%、2, 6?二叔丁基?4?甲基苯酚0.5~0.8%、阻燃剂0.2~0.3%、抗静电剂1.6~2.1%;阻燃剂由聚硅硼氧烷、磷酸三苯酯混合而成;抗静电剂由聚氧乙烯硬脂酸酯、脂肪醇聚醚酰胺混合而成。本发明复合材料具有好的力学性能、抗菌性能、阻燃性能和抗静电性能,适合用作汽车内饰用材料。
本发明提供了一种阻燃耐高温尼龙复合材料,它由包括以下重量份的组分制成:尼龙盐95~105份、羧基化碳纳米管2~10份、有机纳米蒙脱土2~6份、膨胀石墨3~8份、聚硅硼氧硅烷2~6份、纳米二氧化钛1~4份、滑石粉1~3份、硅灰石2~5份、封端剂0.2~1份、催化剂0.1~0.6份、去离子水40~70份。本发明还提供一种上述阻燃耐高温尼龙复合材料的制备方法。本发明提供的上述阻燃耐高温尼龙复合材料具有比较好的阻燃、耐高温以及力学性能。
本发明属于纳米复合材料技术领域,具体涉及一种含有纳米钻石烯的水泥基复合材料及其制备方法,该含有纳米钻石烯的水泥基复合材料,由以下重量份数的原料组成:水泥1‑2份,钢纤维0.003‑0.05份,纳米钻石烯0.02‑0.08份,水0.2‑0.6份,掺合料0.25‑0.45份,高性能减水剂0.001‑0.003份,石英砂0.4‑0.5份,碳纤维0.006‑0.07份,本发明凝结快,抗压强度和抗弯强度好。
本发明属于陶瓷材料制备技术领域,具体涉及一种动态压力闪烧制备晶须增韧陶瓷基复合材料的方法。该方法是将晶须和陶瓷粉体制成陶瓷混合粉体,再压制成陶瓷坯体,陶瓷坯体闪烧进行的同时对陶瓷坯体的上下两端施加振荡压力,实现动态力辅助的闪烧锻压烧结,最后冷却后得到晶须增韧陶瓷基复合材料。本发明的烧结过程中,采用了热场、动态力场和电场的耦合,在耦合作用下,实现了烧结温度降低,加快了陶瓷致密化速率,最终制备出晶粒尺寸小、内部缺陷少、晶须结构稳定且致密度高的晶须增韧陶瓷基复合材料。
本发明提供了一种纳米复合材料PMMA@Fe‑N‑C制备方法,该方法为:制备Fe‑N‑C载体,然后分散于PMMA分散液中经超声、搅拌后,得到纳米复合材料PMMA@Fe‑N‑C,还提供了应用,用于去除制备金刚石的原料中的氧气,将PMMA均匀分散于Fe‑N‑C载体的表面和内部的空隙中,得到纳米复合材料PMMA@Fe‑N‑C,通过Fe‑N‑C载体的吸附负载,增加了PMMA与氧气的接触机会,提高去除氧气的效果。
本发明公开了一种羟基功能化改性提升Fe0/Fe3O4复合材料对废水中Cr(VI)去除性能的方法,羟基功能化改性的具体过程为:将微米级零价铁和微米级四氧化三铁按照质量比1:0.05的比例混合均匀,再加入氧化锆磨球通过变频微电脑行星式球磨机进行机械球磨得到Fe0/Fe3O4复合材料,将Fe0/Fe3O4复合材料与无水乙醇在室温下通过机械搅拌进行反应,反应完全后用氮气吹干得到羟基功能化改性Fe0/Fe3O4复合材料,并于氮气氛围下保存。本发明中经过羟基功能化改性后制得的Fe0/Fe3O4复合材料对水中Cr(VI)的去除有着显著的效果,且去除率有明显提高,改性后增大其在水中的溶解度,减弱了球磨材料的疏水性,使其在反应中更好的发挥其氧化还原性。
本发明公开了一种碳包覆硅纳米片制备方法及碳包覆硅纳米片,通过将0.1‑1g碳源加入5‑20mL水中搅拌并超声分散10‑30min;加入0.1‑1g D50粒径10‑500nm的硅粉超声分散10‑30min;100‑200℃水热反应10‑24h后离心、真空干燥得碳包覆硅纳米片。该碳包覆硅纳米片由硅纳米片及包覆在周围的碳层组成。本发明公开了用上述碳包覆硅纳米片制备的硅基复合材料及制备方法,通过将碳包覆硅纳米片、碳材料、碳源按质量比5‑12%:78‑85%:10%混合球磨,以3‑10℃/min升温至500‑1000℃煅烧5‑12h得硅基复合材料。该硅基复合材料包括碳包覆硅纳米片、碳材料和包覆碳层。本发明的碳包覆硅纳米片和硅基复合材料的碳包覆层缓冲了硅的体积膨胀,增强了导电性,硅基复合材料的双包覆碳层进一步抑制硅的膨胀,提高了首次充放电效率和循环容量保持率。
中冶有色为您提供最新的河南有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!