本发明公开了蜂巢结构卟啉COP与g‑C3N4复合材料的合成及在光催化降解染料方面的应用,属于无机化学技术领域。通过研磨法,将5,15‑二(4‑氨基苯)‑10,20‑二苯基卟啉铜与三醛基均苯三酚通过胺醛缩合反应原位生长在g‑C3N4表面,得到复合材料CuDAPP‑TP‑COP/g‑C3N4。该复合材料作为光催化剂能在水溶液中高效降解罗丹明B,降解效率达到100%,具有优异的光催化降解能力,有望在染料废水处理方面获得实际应用。同时该复合材料的合成具有反应条件温和、易操作、成本低、易于规模化生产等优点。
本发明公开了一种多级结构纳米In2O3/石墨烯复合材料及其制备方法和应用,多级结构纳米In2O3/石墨烯复合材料,其结构为砖状结构。本发明还提供了多级结构纳米In2O3/石墨烯复合材料的制备方法,可溶于乙二醇的铟盐和还原氧化石墨烯与沉淀剂氨水在微波加热条件下在乙二醇溶液和氨水蒸气所形成的气-液界面进行化学反应,反应产物被不断翻滚的乙二醇溶液带走,新的产物继续产生。本发明具有如下优点:采用微波气-液界面方法所制备的纳米In2O3/石墨烯原始纳米颗粒小而均一,而再由这些原始纳米颗粒部分自组装成砖状纳米结构,该多级结构纳米In2O3/石墨烯复合材料对氮氧化物气体在100℃有较好的气敏性能,选择性好。
本发明涉及一种Fe3O4/石墨烯复合材料及其制备方法,属于储能器件电极材料技术领域。本发明的Fe3O4/石墨烯复合材料的制备方法包括如下步骤:将氧化石墨烯乳液与Fe(OH)3溶胶混合均匀,固液分离,制得Fe(OH)3/氧化石墨烯复合材料;将制得的Fe(OH)3/氧化石墨烯复合材料在惰性气体保护下,在200?500℃加热1?5h,即得。本发明的制备方法通过胶体粒子间的静电作用力实现Fe(OH)3胶体粒子与GO片层之间的紧密结合,仅通过简单的混合就能实现Fe(OH)3纳米粒子对石墨烯的有效包覆。然后通过对该纳米复合材料进行热处理,Fe(OH)3转化为Fe3O4,同时三明治结构的形貌得到了保留。
本发明公开了一种海胆状纳米TixSn1?xO2/石墨烯三维复合材料的制备方法及其在锂离子电池负极上的应用。本发明是利用配位原理和分子自组装方法,通过一步水热合成技术自组装制备海胆状纳米TixSn1?xO2/石墨烯三维复合材料。本发明的制备方法是:(1)制备氧化石墨烯,(2)制备表面带负电的氧化石墨溶胶;(3)还原制得海胆状纳米TixSn1?xO2/石墨烯三维复合材料。本发明反应过程在水溶液中进行,无需添加其它试剂,工艺简单、成本低廉且节能环保,易于工业上量产。作为锂离子电池阳极材料,这种三维复合结构有利于电解液在复合材料间的扩散及电子和离子在材料中传输,能有效提高复合材料的充放电容量、循环寿命和倍率等性能。
本发明属于抗生素的处理技术领域,具体公开V2O5/CeO2纳米复合材料在降解含头孢氨苄废水中的应用。调节废水中头孢氨苄的初始浓度在20~120?mg/L、废水pH值在2~7,然后每20mL废水加入5~30?mg?V2O5/CeO2纳米复合材料,最后在25~70℃下恒温振荡1~6h,即可。V2O5/CeO2纳米复合材料对头孢氨苄抗生素具有明显的氧化催化作用,在废水浓度为40mg/L,废水pH为3,投加量为20mg,温度为50℃,震荡时间为2h的条件下降解效果最佳,去除效率可达64.54~69.13%。在V2O5/CeO2纳米复合材料的最佳降解条件下,V2O5/CeO2纳米复合材料比单纯的纳米CeO2降解头孢氨苄抗生素的效果更好、效率更快。
本发明属于纳米材料技术领域,特别公开了一种Au‑WO3复合材料及其制备方法和应用。S1、以WCl6为钨源、冰乙酸为溶剂,于180~240 ℃溶剂热反应12~24 h,反应结束后分离、洗涤、干燥,煅烧,即得WO3中空球;S2、将S1得到的WO3中空球浸渍在无水乙醇中0.5~2 h,然后将氯金酸溶液加入其中,浸渍3~5 h,然后分离、洗涤、干燥,煅烧,得到Au‑WO3复合材料。本发明制备的Au‑WO3复合材料可以用于检测甲苯气体。与单一WO3材料相比,制备的Au‑WO3复合材料实现了对甲苯气体高效的检测。
本发明公开了一种湿式固相机械球磨法制备Fe0/ZSM‑5复合材料的方法,属于负载型零价铁的合成技术领域。本发明的技术方案要点为:(1)将零价铁和ZSM‑5分子筛按质量比1 : 1.5‑6混合均匀后在丙二醇溶液中分散得到原料混合液;(2)将氧化锆磨球与原料混合液按照球料比为30‑40 : 1的质量比例置于球磨罐中,在转速为300‑400r/min的机械球磨条件下间歇交替正反转球磨6‑8h得到球磨混合液;(3)将球磨混合液从球磨罐中倒出,离心使固液分离,再用无水乙醇洗涤固体产物2‑3次,然后置于真空干燥箱中进行干燥得到Fe0/ZSM‑5复合材料。本发明工艺简单且成本低廉,能够大产量制备稳定性良好的Fe0/ZSM‑5复合材料,并且制备的Fe0/ZSM‑5复合材料用于处理水和土壤中的污染物性能优越。
本发明提出的外加颗粒增强大断面高体积分数Fe-C复合材料的制备方法,将加热熔化的Fe-C基体合金与预热的增强颗粒同时加入绕水平轴高速旋转的金属铸型中,高温Fe-C基体合金液与预热的增强颗粒在离心场中混合后形成环形混合体,利用增强颗粒与Fe-C合金液之间的密度差,使增强颗粒沿环形径向向外或向内迁移,形成增强颗粒/Fe-C复合材料的外层或内层和Fe-C合金基体的复合结构部件。本发明具有以下优点:复合材料层的厚度可以根据使用要求任意控制;复合材料层中增强颗粒分布均匀,体积分数可根据性能要求控制在50-85vol%;基体合金及其组织可以设计;复合材料工作层利用率高,基体合金可再循环利用;生产工艺简单,制备成本低。
本发明提供一种立方氮化硼颗粒增强的铝基复合材料制备方法。本发明的方法中,立方氮化硼的体积分数在1~40%之间可调。本发明的立方氮化硼颗粒增强的铝基复合材料制备方法具有时间短、工艺简单,生产成本低,适于工业化生产的特点。采用本发明方法制备的块体铝基复合材料致密度高、洁净纯、具有较高的硬度。与现有技术相比,本发明所制备的立方氮化硼颗粒增强铝基复合材料,采用高压条件,氮化硼颗粒的体积分数在1~40%之间变化;复合材料的相对密度在96.33~98.51%,布氏硬度在31.65~90.24HB,热导率在181.5~198.5W·m?1·K?1;该系列参数明显高于传统方式(无压或热压)烧结。另外,该复合材料制备过程,没有发生化学反应产生第三相,而现有方案中往往会产生第三相。
发明公开了一种多壁碳纳米管@聚丙烯酸@金属有机框架(MWCNTs@PAA@MOF-5)复合材料及制备方法,该复合材料是以多壁碳纳米管为晶体生长的“异相”核,在其上接枝上聚丙烯酸,金属离子?“铆接”?在多壁碳纳米管表面,有机配体在多壁碳纳米管表面形成金属有机框架材料,复合材料的尺寸为50~1000μm。通过化学修饰法制备出复合材料?MWCNTs@PAA;用溶剂热法制备出MWCNTs@PAA@MOF-5;该复合材料具有?MOF?材料的高的比表面积、好的吸附性能等特性,可以将现香烟的焦油含量进一步降低,在香烟过滤嘴上具有很好的应用前景。
本发明属于复合材料领域,公开一种碳‑铜复合材料的制备方法。采用碳纤维针刺毡作为碳纤维预制体;将TiC粉加入到NaOH溶液中,搅拌均匀,得到TiC悬浮液;将碳纤维预制体置于密闭容器中,对其抽真空;然后将TiC悬浮液注入到容器中,随后将惰性气体充入容器中,将TiC加压浸渍到碳纤维预制体中;取出加压浸渍后的碳纤维预制体,干燥处理;用铜粉包埋所得碳纤维预制体,将其置于石墨坩埚内,在真空或者惰性气氛保护下,在1100~1300 ℃下保温0.5~2 h,之后随炉降温冷却;取出石墨坩埚内所得坯体,经水洗后干燥处理,即得碳‑铜复合材料。本发明直接在碳纤维预制体的表面浸渗得到TiC涂层,显著改善了碳与浸渗Cu的界面润湿性较差的问题,制备得到性能优异的碳‑铜复合材料。
本发明属于碳纤维增强陶瓷基复合材料的表面处理领域,具体公开一种C/TiB2复合材料的表面处理方法。用B4C粉包埋C/TiB2复合材料,在真空950~1100℃下处理;将Ti粉、NH4Cl、Al2O3粉混合均匀得到混合粉末;用所得混合粉末包埋处理过的C/TiB2复合材料,在真空1200~1300℃下反应3~5h,之后自然降温冷却即可。本发明方法先在复合材料表面沉积一层B4C,继而利用Ti粉与残余硅反应得到的TiSi2,同时也能与表面的B4C反应得到TiB2,进一步稳固复合材料的性能。
本发明涉及材料化学技术领域,特别是涉及阴阳离子共掺杂的镍锰基材料及其制备方法和作为正极材料的应用。
本发明主要基于生物仿生学,利用激光加工、3D打印和电火花等加工方法在基体表面进行仿生微结构加工,以提高涂层与基体之间的冶金结合强度。在微结构上制备激光定向能量沉积涂层,增加了涂层与基体冶金结合面积,同时软硬度基体与高硬度涂层的规律交替出现,提高了涂层结合强度,降低了裂纹敏感性,同时软基体与硬涂层的结合界面上形成一定程度的互锁结构。因此,本发明方法可以在高端装备关键零件表面获得冶金结合质量好、硬度高且兼具良好韧性的涂层,提高高端装备关键零件的工作稳定性及使用寿命。
针对水性环氧分散体或乳液普遍存在的储存稳定性差、附着力差、干燥速度慢的技术问题,本发明提出一种水性环氧树脂分散体及其制备方法,具有储存稳定性、附着力优异,污染小,制备工艺简单,成本适中等优点。
本发明属于新型光致变色软材料技术领域,具体涉及基于铝离子敏化的光敏响应水凝胶光致变色材料的制备方法。
本发明涉及一种尼龙树脂基复合材料,尤其是涉及一种尼龙-氮化硼-氧化铝三元阻燃导热复合材料及其制备方法。
中冶有色为您提供最新的河南有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!