本发明铝基混合碳纤维复合材料线芯传输电缆及制备属于电力传输材料制备领域,其特征在于是一种由铝基混合碳纤维复合材料线芯增强的铝线电缆,该铝线电缆的线芯由多根铝或铝合金为基体,其上均匀分布着混合碳纤维,纤维所占体积比为50-60%,混合碳纤维由高模量碳纤维及高强度碳纤维构成,其中高模量碳纤维占总纤维的体积百分比为20-50%,铝基碳纤维复合材料线丝组成,线芯直径为2.5-3.6mm,电缆直径为16-40mm,铝基碳纤维复合材料线芯直接置于多层铝线的中心,形成铝基碳纤维复合材料线芯传输电缆。
本发明是一种用于复合材料结构单元界面的强化材料及添加方法,该强化材料是与复合材料基体材料相容的、固化工艺参数相匹配的结构胶粘剂或结构胶粘剂和0.5~5MM短切纤维的混合物,其中,混合物中结构胶粘剂的重量百分比是95%~99%,0.5~5MM短切纤维重量百分比是1~5%。用于上述复合材料结构单元界面的强化材料的添加方法的步骤是:(1)强化材料的制备,方法是将结构胶粘剂或与短切纤维的混合物压制成厚度为0.05MM~0.3MM的胶膜放到复合材料结构单元的界面上,将复合材料结构单元组合,封装后进行固化。
本发明公开了一种氮化碳-钛酸镍复合材料及其制备方法与应用,该氮化碳-钛酸镍复合材料包括氮化碳和钛酸镍,钛酸镍沉积于氮化碳表面构成氮化碳-钛酸镍复合材料。制备方法包括以下步骤:将双氰胺溶于乙二醇中,得到含双氰胺的乙二醇溶液;将醋酸镍和钛酸四丁酯加入双氰胺的乙二醇溶液进行聚合反应得到反应产物;将反应产物煅烧得到氮化碳-钛酸镍复合材料。本发明的复合材料具有稳定性强、循环利用性高,具有高的比表面积以及高的光催化活性位点等优点,其制备方法工艺简单、操作性高、成本低,制备的复合材料具有优越的光催化性能,广泛应用于光催化降解染料废水领域。
本发明公开了一种双功能MoS2/ZnO复合材料的制备方法,该方法通过①MoS2制备、②MoS2/ZnO制备两个工艺步骤实现,本发明方法操作工艺简单、成本低、重现性好,而且获得的拉曼增强信号灵敏度高、稳定性好,在制备复合材料领域具有重要研究价值和良好的应用前景,而且利用该方法制备的MoS2/ZnO复合材料对MB有非常好的光催化效果还能实现对BPA痕量检测。
本发明涉及一种具有环境响应细菌纳米纤维素复合材料及其制备方法和应用,所述复合材料为细菌纤维素基材在水凝胶状态下以互穿或者是半互穿的方式复合聚电解质高分子,通过完全或者部分脱水而得的复合材料。本发明具有在特定pH条件下高复水、高溶胀,而在非设计pH值条件下保持低溶胀、难复水状态的特点;而且可具有温度响应特性,可控制材料网络孔隙大小,控制溶质分子透过率,实现药物可控释放。同时该复合材料保持了细菌纳米纤维素高强度、高生物相容性等特性,可以用于智能伤口敷料、智能药物载体、传感器、化学阀等;制备工艺简单,成本低,具有良好的应用前景。
本发明提供一种抗菌复合材料、抗菌复合材料的制备方法及抗菌液,抗菌复合材料的制备方法包含将一高分子聚合物与有机改质无机粘土分散于一溶剂中,形成一预混物,接着将一硝酸银加入该预混物中分散,令银离子分散于该有机改质无机粘土的层间,且该硝酸银与该高分子聚合物的重复单元的摩尔比值介于0.05~0.3之间,得到一高分子复合材料,再将该高分子复合材料浸入一还原液中,令该高分子复合材料的银离子还原成银原子,即可完成该抗菌复合材料的制备。由该制备方法制得的抗菌复合材料及含有该抗菌复合材料的抗菌液具有持久的抗菌效果。
氧化锆增韧硼化物超高温陶瓷基复合材料及其制备方法,它涉及一种硼化物超高温陶瓷基复合材料及其制备方法。它解决了现有硼化物超高温陶瓷基复合材料韧性差的问题。本发明氧化锆增韧硼化物超高温陶瓷基复合材料由硼化物粉末、碳化硅颗粒和氧化钇部分稳定氧化锆颗粒加工而成。制备方法如下:一、将硼化物粉末、碳化硅颗粒和氧化钇部分稳定氧化锆颗粒混合;二、将混合物进行超声波清洗,然后球磨混合再烘干;三、烘干后的混合物经保温烧结,冷却至室温取出,即得氧化锆增韧硼化物超高温陶瓷基复合材料。本发明制备工艺简单、成本低,所得材料的韧性值高达6.0~6.8MPa·m1/2。
本发明涉及复合材料的模压成型方法,是防止复合材料的纵剖面向外露出的模压成型方法。为此,本发明的由上部金属部件、树脂部件和下部金属部件构成的复合材料模压加工方法包括:上端面上粘贴第一涂层薄膜,下端面上粘贴第二涂层薄膜的下部金属部件的制造步骤;按上部金属部件、第一热熔部件、树脂部件、第二热熔部件和下部金属部件顺序制造复合材料的步骤;将从所述复合材料的边缘向内侧引入一定距离的部位利用第一切割机切削至所述下部金属部件上端的步骤;将位于切削部位外侧的上部金属部件、第一热熔部件、树脂部件、第二热熔部件清除的步骤;将所述下部金属部件利用折边模具弯曲180度而防止上部金属部件和树脂部件在侧面向外露出的步骤。
本发明涉及一种人工复合材料和人工复合材料天线,所述人工复合材料相对设置于辐射源的电磁波传播方向上;设辐射源与所述人工复合材料第一表面上一点的连线与垂直于人工复合材料的直线之间的夹角为θ,夹角θ唯一对应所述人工复合材料内的一曲面,且夹角θ唯一对应的曲面上每一处的折射率均相同,所述曲面的母线为抛物线弧;所述人工复合材料的折射率随着夹角θ的增大逐渐减小;电磁波经过所述人工复合材料后在每一圆环体的顶面平行射出。通过将人工复合材料的折射率的跳变设计为曲面状,从而大大减少跳变处的折射、衍射和反射效应,减轻了互相干涉带来的问题,使得人工复合材料和人工复合材料天线具有更加优异的性能。
本发明提供了一种复合材料及包括该复合材料的负极片和电池。所述复合材料含有硅氧化物颗粒以及碳包覆物;所述硅氧化物颗粒的尺寸d≤4μm;所述复合材料具有二次颗粒结构;所述复合材料在拉曼光谱测试中在拉曼位移为1300‑1400cm‑1、1550‑1650cm‑1区域内含有强度分别为I1、I2的特征峰,且0.1≤I1/I2<0.5;所述复合材料在电子顺磁共振(EPR)测试中具有共振信号。所述复合材料组装的电池具有高倍率嵌锂能力,其在高倍率充电情况下具有较高的恒流充入比,在基于高倍率充电的循环中,可防止负极出现析锂现象。
本发明公开了一种多孔复合材料制件用工装及其成型方法,涉及航空工业复合材料成型技术领域,根据多孔复合材料制件数模几何特征,设计制造带有定位销钉孔和工艺设置孔的成型工装,工装模具上工艺设置孔的孔径参照多孔复合材料制件数模上孔径参数设置;在成型模具上预先铺叠软膜,通过激光定位的方式将钢钉穿透软膜插入成型模具上的工艺设置孔中,取下带有钢钉的软膜,得到组件A;在成型模具上按照数模要求铺叠复合材料预浸料片,通过组件A上的定位销钉确定软膜的位置,并将钢钉穿透复合材料预浸料片插入成型工装上的工艺设置孔中。固化后,将零件上的软膜及钢钉取下,对零件边缘及孔进行修饰处理,完成多孔复合材料制件。
本发明提供一种牙科复合材料、多层牙科复合材料及其制备方法和应用。牙科复合材料的制备方法包括:混合、搅拌、剪切研磨、真空消泡和固化。多层牙科复合材料至少为2层结构,且含至少1层牙科复合材料和/或至少1层牙科聚合物。其可分层、可独立、具有结构和力学性能的可调性、较高的抗断裂性、较高的弹性模量和较长的疲劳寿命;在增强力学性能的同时保持了现有牙科复合材料的轻便、美观、生物相容性好等特性。其制备方法包括:堆叠、点滴、压延和固化。该制备方法操作简单,成本低廉,能够制备获得梯度型、交替型和单调型等多层牙科复合材料,分别应用于修复磨牙和/或前磨牙、门牙和/或犬齿和不同位置的龋洞。
本发明公开了一种强π‑π共轭的缺陷石墨烯和酞菁铁复合材料关于氧还原电催化剂的制备方法,属于电催化领域。该强π‑π共复合材料采用缺陷石墨烯和酞菁铁为原料,成功地制备出了具有优异氧还原活性的电催化剂。该强π‑π共轭复合材料具有超薄纳米结构以及一定的缺陷结构,酞菁铁纳米片在缺陷石墨烯表面上均匀分布,用作氧还原电催化剂时表现出优异的催化活性(在0.1M KOH电解液中的半波电位为0.89V vs.RHE)。目前应用于电催化氧还原(ORR)的催化剂为传统的贵金属铂(Pt)及铂基复合物,但由于它们价格昂贵、储量低、稳定性以及耐甲醇性能较差等问题,使得其作为ORR催化剂的大规模应用受到限制。因此,开发一种制备简单,且具有高催化活性和稳定性的ORR催化剂具有重要的意义。本发明中,强π‑π共轭复合材料的制备过程简单,在碱性条件下ORR催化性能优异,是非常有前景的电催化材料。
本申请提供的铜基石墨烯复合材料的制备方法,包括:采用电化学抛光工艺对原始板状铜基底进行预处理,得到预处理后的铜基底,其中,上述原始板状铜基底的厚度为5μm~25μm;采用化学气相沉积工艺在预处理后的铜基底的上下表面生长石墨烯,得到石墨烯包覆铜基底;对至少一片石墨烯包覆铜基底进行热压烧结处理,得到铜基石墨烯复合材料,上述铜基石墨烯复合材料为由石墨烯和铜基底交替复合形成的层状复合材料,铜基底在所述铜基石墨烯复合材料的厚度方向上呈单晶态,且呈(111)晶面择优取向。本申请提供的铜基石墨烯复合材料的制备方法,可制备出电导率较高的铜基石墨烯复合材料。
本发明属于环境材料领域,具体涉及一种钒掺杂碳基Bi2O3复合材料的制备方法与应用。本发明利用木质素磺酸钠作为碳源,通过吸附的方式将BiVO4与木质素磺酸钠相结合,制备得到BiVO4‑木质素磺酸钠粉末,然后经过一步煅烧后BiVO4分解为Bi2O3,最终得到钒‑掺杂的碳基/Bi2O3复合材料。本发明制备的钒掺杂的碳基Bi2O3复合材料,使用的是生物提取物,其原料丰富,成本低廉,制备方法简单,制备的钒掺杂碳基Bi2O3复合材料可适用于抗生素废水的降解,尤其对盐酸土霉素具有很好的降解效果。对生物材料以及生物提取物作为新型碳材料的开发提供了实验基础和理论指导,提供了新的简单一步钒掺杂碳基复合Bi2O3的工艺。
本发明公开了一种考虑复合材料弹塑性与损伤耦合的弹塑性损伤有限元算法,属于复合材料力学性能有限元分析领域;以基于后退欧拉积分法则及牛顿迭代求解复合材料弹塑性损伤的模型为基础,通过在初始求解试用应力以及塑性屈服迭代中求解弹性应力时均考虑前一增量步中损伤状态量对当前应力的软化影响,从而在弹塑性求解过程中考虑损伤退化作用,更真实地反映树脂基复合材料在复杂加载条件下塑性行为与损伤之间的相互作用关系。本发明可有效地描述树脂基复合材料弹塑性与损伤的耦合作用关系,可应用于有限元软件中复合材料弹塑性损伤本构模型的开发、新型树脂基复合材料力学性能研究以及相关的复合材料工程结构精细化建模分析等科研及工程技术领域。
本发明属于氧化铝颗粒增强铝基复合材料制备领域,公开了一种Al2O3增强铝基复合材料及其制备方法。该按重量百分比计,该复合材料的原料包括5‑25%的Al2O3和75‑95%的基体材料,该方法包括以下步骤:对铝粉进行氧化处理得到Al2O3;分别对基体材料和不锈钢板进行预处理;将预处理后的不锈钢板的光洁面对折并压制成不锈钢封套;将Al2O3置于预处理后的基体材料上,将基体材料对折,使基体材料包裹住Al2O3,然后将基体材料四周封口并放入不锈钢封套中;对装有基体材料的不锈钢封套进行轧制,每轧制一道次后沿不锈钢封套的长度方向进行对折,再轧制下一道次,直到设定道次。本发明的Al2O3增强铝基复合材料中Al2O3能均匀弥散地分布在铝基体,有效地增强铝基体。
本发明公开了耐高温、高强度Al2O3气凝胶复合材料及其制备方法,首先采用溶胶‑凝胶法制得初态凝胶液,再采用真空浸渍纤维的方法将初态凝胶液滴入选定好的纤维预制体中,然后通过同步老化置换工艺制得终态凝胶,接着采用干燥工艺得到纤维预制体增强的Al2O3气凝胶复合材料,最后将上述的气凝胶复合材料置于烘箱中进行高温热处理,得到耐高温、高强度Al2O3气凝胶复合隔热材料。本发明制备出的气凝胶复合材料在耐高温和物理强度上表现出了优异的性能,此外具有成本低廉和工艺过程便捷等优点,这对实现工业化生产具有非凡意义。
本发明提供一种聚合物复合材料及其制备方法:所述聚合物复合材料中填料在聚合物基体中的质量浓度为0.1~20ppm;所述填料为石墨烯、二氧化硅、碳纳米管、炭黑、氧化铝、氧化锌、碳酸钙、二氧化钛、滑石粉、蒙脱土中的至少一种所述聚合物基体为环氧树脂、不饱和树脂中的至少一种;制备方法如下:先将填料与适量的聚合物基体预先混合均匀形成母料,当聚合物基体中有环氧树脂时,需加入聚合物介质用以降低聚合物基体的粘稠度;取适量母料,按填料在聚合物基体中的质量浓度比将母料稀释到聚合物基体中,混合均匀,即得聚合物复合材料。本发明聚合物复合材料单分散性好,力学性能高;其制备方法简单易操作,易于工业化大批量的生产操作。
本发明属于纳米新材料技术领域,具体涉及一种ZnO‑CdS@Au纳米复合材料及其制备方法和应用。所述的纳米复合材料是以纺锤状的ZnO纳米颗粒作为基底,表面沉积CdS纳米颗粒,最后包覆Au纳米颗粒。其制法是将Zn(NO3)2·6H2O、NH4F、NaOH反应,获得白色沉淀ZnO纳米颗粒;再将与Cd(NO3)2·4H2O、硫脲形成悬浮液,沉积,离心,获得ZnO‑CdS产物,最后加入氯金酸、柠檬酸钠,回流,冷却,离心,获得ZnO‑CdS@Au纳米复合材料。本发明的纳米复合材料的提高了纳米材料的光电特性,并且能够用来快速准确地检测四环素。
一种刚玉-莫来石复合材料及制备方法,属于耐 火材料领域。特别涉及一种刚玉-莫来石复合材料。其特征在 于合成刚玉-莫来石的主要原料是铝矾土和煤矸石,煤矸石的 重量百分比含量为5~25%,铝矾土的重量百分比含量为 75~95%,铝矾土中 Al2O3含量要求大于75%。合成刚玉-莫来石的步骤为:原料用 无水乙醇做介质,经过球磨6小时后在烘箱中保温12小时, 取出后机压成型,在1350℃~1450℃保温3~6个小时,空气 气氛下进行合成。试验结果表明:合成的刚玉-莫来石复合材 料非常纯,能显著提高材料的各方面性能。因为合成刚玉-莫 来石的主要原料是铝矾土和煤矸石,原料丰富价格低廉,合成 的刚玉-莫来石复合材料具有很高的附加值,所以是制备高温 耐火材料的又一个新途径。
本发明公开一种多级SnS2纳米花与C3N4量子点复合材料,涉及半导体光催化技术领域,复合材料为多级纳米花形貌,尺寸分布在4~6μm,C3N4量子点的尺寸分布在3~9nm。本发明还提供复合材料的制备方法,包括以下步骤:(1)C3N4量子点的制备;(2)多级SnS2纳米花的制备;(3)多级SnS2纳米花与C3N4量子点复合材料的制备,本发明还提供多级SnS2纳米花与C3N4量子点复合材料在有机物降解中的应用,本发明的有益效果在于:本发明制备的复合材料能够对水体中的双酚A和甲基橙实现良好的光催化降解,并能多次重复利用,具有循环稳定性。
本发明公开了一种以Cu@Ni核壳结构为润滑相的宽温域Ni3Al基自润滑复合材料,该复合材料由Cu@Ni核壳结构粉末、Ni3Al合金粉末、Mo粉制备而成,加入Cu@Ni、Mo粉末的质量分别为Ni3Al合金粉末总质量的10~20wt.%和10wt.%。Ni3Al基合金为预机械合金化粉末,其组成及各组分的原子百分含量为:Ni:Al=3:1。本发明还公开了该复合材料的制备方法,复合材料通过真空热压烧结技术制备。本发明所述复合材料在室温至800℃温度范围内具有优异的高温摩擦学性能。本发明所述复合材料适合制作在室温至800℃范围使用的轴承、轴衬、滑块及密封件等部件,在航空航天、核电等领域具有广泛的应用前景。
本发明属于Au‑GSH@TiO2@PDMS复合材料技术领域,公开了Au‑GSH@TiO2@PDMS复合材料及其制备方法和应用。Au‑GSH@TiO2@PDMS复合材料的制备方法包括,合成谷甘光肽(GSH)保护的金纳米团簇Au‑GSH、结晶态TiO2的制备、Au‑GSH@TiO2复合材料的制备以及采用紫外光固化法将PDMS将接枝在Au‑GSH@TiO2表面,最终得到Au‑GSH@TiO2@PDMS复合材料。该Au‑GSH@TiO2@PDMS复合材料有效的提高了Au‑GSH光稳定性,有效地解决了传统金属纳米团簇光致团聚的问题。
一种浆料注射工艺制备碳纤维增韧硼化锆‑碳化硅复合材料的方法,它涉及一种制备碳纤维增韧ZrB2‑SiC复合材料的方法。本发明的目的是要解决现有碳纤维增韧ZrB2‑SiC复合材料在制备过程中难以获得高致密度且碳纤维易损伤的问题。方法:一、制备均匀分散的ZrB2‑SiC陶瓷浆料;二、碳纤维增韧ZrB2‑SiC生坯;三、低温热压烧结,得到碳纤维增韧ZrB2‑SiC复合材料。本发明制备的碳纤维增韧ZrB2‑SiC复合材料的致密度高于92%,弯曲强度大于220MPa,断裂韧性大于4MPa·m1/2。本发明可获得一种浆料注射工艺制备碳纤维增韧ZrB2‑SiC复合材料的方法。
一种高界面强度的Cf/Mg复合材料及其制备方法。本发明属于轻质结构材料领域,具体涉及一种高界面强度的Cf/Mg复合材料及其制备方法。本发明是为解决现有Cf/Mg复合材料界面结合强度低的问题。产品由碳纤维和镁钇合金制成;其中所述的镁钇由纯钇合金和纯镁制成。方法:一、利用纤维缠绕机制备碳纤维增强体预制件;二、熔炼纯镁和纯钇,得到镁钇合金熔炼液;三、将碳纤维增强体预制件压入到成型模具的型腔内,然后将镁钇合金熔炼液注入到成型模具中,压制后,得到纤维增强镁基复合材料;四、将纤维增强镁基复合材料随模具冷却至室温,然后脱模,再机械加工去除边缘多余的镁钇合金,得到Cf/Mg复合材料。
一种利用树枝状大分子增强金属/环氧树脂复合材料界面性能的方法,它涉及一种增强金属/环氧树脂复合材料界面性能的方法;本发明解决了现有方法制作得到的金属/环氧树脂复合材料稳定性差的问题。方法:一、清洗基片;二、基片进行机械处理;三、基片氧化处理后干燥;四、将0.5~4代聚酰胺-胺树状分子覆盖在基片表面得到基片;五、用去离子水和溶剂交替清洗基片,然后干燥,即得到金属基底;六、环氧树脂固化体涂于金属基底表面,保温,固化,即得到强化后的金属/环氧树脂复合材料。本发明的方法制作得到的金属/环氧树脂复合材料的界面剪切强度20.7~35.8Mpa,本发明的金属/环氧树脂复合材料稳定性好。
耐高温高性能减毒性环氧基体及应用及其复合材料的制备方法,它涉及环氧基体及应用及其复合材料的制备方法。本发明要解决现有耐高温环氧基体及其复合材料的制备方法存在制备方法复杂,毒性较大,污染环境及制备成本高的问题。本发明的耐高温高性能减毒性环氧基体由脂环族环氧树脂、粘度为(0.013pa·s/25℃~10pa·s/25℃)的环氧树脂和间二氮茂系列固化剂制成。利用耐高温高性能减毒性环氧基体制备复合材料的方法:一、配制基体;二、复合材料成型及固化。本发明方法利于环保、降低对人体危害、成本低、方法简单、所制备复合材料耐热性能、力学性能、界面性能优良。本发明可用于国防、民用及航空航天等高技术领域。
本发明公开了一种复合材料臂架,该复合材料臂架包括由纤维材料和基体树脂制成的纤维复合材料层(1),其中,该复合材料臂架还包括结合在该纤维复合材料层外部的耐冲击层(2),该耐冲击层由耐冲击材料制成。还公开了一种具有上述复合材料臂架的工程机械。还公开了一种复合材料臂架的制造方法,该制造方法包括提供纤维复合材料层(1)的步骤,其中,该制造方法还包括结合步骤:在纤维复合材料层外部结合耐冲击层(2),该耐冲击层由耐冲击材料制成。通过上述技术方案,在臂架的装配、运输及使用过程中,耐冲击层能够起到保护作用,即使受到碰撞也不易使得臂架被破坏,提高了臂架的耐冲击性能。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!