护套(3)是一种材料,其由铝(Al)基质组成,其中纳米氧化铝粒子(Al2O3)均匀分散,其中Al2O3的含量是0.25体积%至5体积%并且余量是Al。优选的是,Al2O3源自于用作用于固结的原料的铝粉上存在的表面层。基于二硼化镁(MgB2)芯(1)的超导体是通过粉末套管或中心镁扩散至硼的技术来制造的,而所述管是所述Al+Al2O3复合材料,其是粉末冶金的产品。通过冷等静压对松散铝粉进行压制,然后将粉坯在高温和真空下脱气,然后热挤出成管。在惰性气体或真空下将填满镁粉和硼粉的混合物或由硼粉包围的镁线的薄扩散阻挡层(2)管放入所述Al+Al2O3复合管中。将此种复合单元冷加工成细线材,然后在625℃‑655℃下退火8分钟‑90分钟,从而引起线材芯(1)中超导MgB2的形成。
本发明公开了一种基于WO3的无线无源H2气体传感器及其制备方法,该气体传感器包括:陶瓷基底以及印刷于陶瓷基底上的电感线圈与复合气敏电阻,电感线圈的外端经陶瓷基底通孔内填充的银浆与复合气敏电阻一端的连接,内端与复合气敏电阻的另一端相连,构成LR敏感回路;陶瓷基底以氧化铝生瓷带为材料,采用HTCC工艺制备,电感线圈以Ag为浆料,采用丝网印刷工艺制备,复合气敏电阻采用Pt‑WO3复合材料,由磁控溅射工艺制备。本发明的气体传感器利用无线非接触的测量方法,通过分析随电阻变化的Q值,即可准确实现低温条件下待测气体H2的检测,采用成熟的丝网印刷和磁控溅射制备工艺,具有加工简便,成本低廉等优点。
本发明涉及一种正极材料及其制备方法及包含该正极材料的锂离子电池,属于锂电池材料技术领域。本发明的正极材料,包括锰酸锂体相材料以及包覆在锰酸锂表面的镍钴锰酸锂表层材料,所述表层材料占正极材料的质量百分比为0.01~40%。本发明在锰酸锂的表面包覆镍钴锰酸锂形成的正极材料,由于包覆层优良的锂离子传导性能,有效解决了现有技术中界面电阻高的问题,同时大大提高了正极材料的高温循环性能;此外,该包覆层是电化学活性材料,还能发挥有效的克容量,从而能显著改善复合材料放电容量。
本发明提供了一种定形相变材料的制备方法,包括:将多巴胺放入溶有硝酸铜的磷酸缓冲溶液中搅拌,制得聚多巴胺/铜离子杂化微球;将聚多巴胺/铜离子杂化微球置于管式炉中热解,制得介孔碳微球/铜微球(MC‑Cu);以MC‑Cu为载体,以聚乙二醇(PEG)为芯材,通过聚乙二醇与多巴胺之间的氢键作用,将聚乙二醇固载于MC‑Cu的孔隙内,制得相变复合材料PEG/MC‑Cu。本发明的制备方法具有操作简单、条件温和、无毒害等优点。
本发明公开了一种耐磨刷丝及其生产方法,由下列重量份的原料制成:包括塑料层和钢丝两个组成部分,其中,所述塑料层具有基础材料、塑料助剂和研磨材料,所述基础材料、塑料助剂和研磨材料的组成比例为:10:0.5:2;所述基础材料为尼龙610或尼龙1010或者PP、PVC、PBT、PET或其中任意组合的复合材料;所述塑料助剂包括偶联剂、阻燃剂、抗磨剂、增韧剂、塑料抗老化剂、耐温剂、增塑剂、扩链剂、相溶剂和润滑剂;所述研磨材料为碳化硅Sic或氧化铝Al2O3;本发明按照上述材料和特定的配方制成,大大提高了刷丝在恶劣环境条件下的工作寿命,通过用该刷丝扫地具有质量高、效率高、耐磨损性强的优点。
本发明提供了一种检测邻苯二酚的电化学发光方法,具体属于电化学发光检测领域。该操作流程包括:(1)UiO‑66与g‑C3N4复合材料的制备;(2)UiO‑66‑g‑C3N4修饰在玻碳(GC)电极表面制得电化学发光传感器,即UiO‑66‑g‑C3N4/GC化学修饰电极;(3)利用电化学发光法检测邻苯二酚。其中以UiO‑66‑g‑C3N4/GC化学修饰电极作为工作电极,Ag/AgCl电极作为参比电极,铂电极作为辅助电极,组成传统的三电极体系。该方法的检测范围为1.0x10‑11~5.0x10‑6mol/L,最低检测限为9.0x10‑12mol/L。本发明检测邻苯二酚的方法灵敏度高且简单快速。
本发明公开了一种纳米二氧化硅的单分子层表面改性方法,其包括:提供纳米二氧化硅材料并对所述纳米二氧化硅材料进行高温烘干处理;将高温烘干处理后的纳米二氧化硅材料加入到硅烷偶联剂溶剂中,搅拌分散后形成混合溶液;对所述混合溶液进行高温回流反应工艺,冷却后依次经过离心洗涤工艺和干燥工艺处理,制备获得单分子层表面改性的纳米二氧化硅。本发明提供的改性方法能够获得单分子层改性表面改性的纳米二氧化硅,其不仅能够降低改性时偶联剂的用量,而且更好地改善改性的纳米二氧化硅作为填料在树脂中的分散性从而使得复合材料具有更优良的综合性能。
本发明公开了一种分离式锁式线迹缝制装置及缝制方法,属于缝合技术领域。本发明通过将机头组件及梭箱组件分体设置,在缝合时,通过第一滑轨将机头组件悬于待缝合材料上方,通过第二滑轨将梭子单元设置在待缝合材料下方,并控制针刺单元和梭子单元同步沿待缝合部位移动,依次对各缝合点进行锁式线迹缝合,该方法实现了对母线方向长度大(1.5m以上)、小端尺寸小(60mm以下)的锥形结构的机械缝制,保证锥形多层柔性薄膜复合材料制品各层薄膜材料之间不会发生错位、滑移及起褶现象,提高了缝合效率,并且,该方法缝纫孔间距可控、缝纫线张力可控、缝合质量稳定,适合于批量化生产。
本发明公开了一种碳化锆/碳化铝复合陶瓷及其制备方法与应用。该方法主要通过氧化锆增韧氧化铝复合陶瓷与碳源高温烧结实现,其主要原理是碳对金属氧化物中氧的置换反应;具体为:将ZTA与碳源混合均匀,900~2054℃烧结,冷却,冲洗,干燥,得到碳化锆/碳化铝复合陶瓷。该工艺操作简单、成本低、绿色环保、且易于大面积制备;所制备的ZTAC组织均匀,其机械强度和金属润湿性均优于ZTA,可实现对ZTA的替代,用于制备陶瓷增强金属基耐磨复合材料,在矿业、电力、冶金、建筑、机械等领域具有广阔的应用前景。
本发明属于无机非金属材料领域,具体涉及一种空心氮掺杂碳纳米管的制备方法。以正硅酸乙酯(TEOS)为二氧化硅前驱体制备二氧化硅模板,以3‑氨基甲醛树脂(APF)为碳源、氮源,通过调节氯化镍溶液的浓度、3‑氨基酚和甲醛加入量,以及碳化温度,实现对Ni@N doped C复合材料的长径比、含氮量和结构参数的控制。经过刻蚀除硅后,最终可以制备出具有高N含量,高比表面积,大孔体积,可调长径比和中孔尺寸的空心氮掺杂的碳纳米管。
本发明提供了一种氧化石墨烯量子点溶液的制备方法,包括如下步骤:1)将膨胀石墨在高温下进行膨胀,获得石墨蠕虫;2)将步骤1)中所述石墨蠕虫进行剪切处理,然后均匀分散到含有高分子分散剂的溶剂中,获得石墨蠕虫分散液;3)使用激光束照射步骤2)所述石墨蠕虫分散液,获得石墨蠕虫悬浮液;4)将步骤3所述中所述石墨蠕虫悬浮液离心并过滤,得到氧化石墨烯量子点溶液。使用本发明制备的氧化石墨烯量子点溶液拥有卓越的物理性能、纳米级尺寸和化学普遍性,运用该种方法分散得到的氧化石墨烯量子点溶液可作为复合材料的添加剂,显著改善材料的性能。
本发明提供一种专带有三维骨架硬质合金基体的聚晶金刚石复合片制备方法,所述基体材料为WC‑Co硬质合金与金属合金的复合材料,所述三维骨架结构硬质合金基体由圆柱状硬质合金及其在该圆柱一个底面上通过3D打印方法制备一种三维骨架结构,所述三维骨架结构的材料包括硬质合金及其他合金;所述3D打印方法包括SLM及3DP方法;所述金刚石聚晶合成方法采用六面顶压机高温高压法。与传统硬质合金基体相比,本发明采用三维骨架结构硬质合金基体可以增加基体与金刚石聚晶的结合强度,显著提升金刚石复合片的断裂韧性及抗冲击能力,从而显著提升聚晶金刚石复合片的使用寿命。
本发明涉及复合材料技术领域,具体涉及一种高导热绝缘型聚四氟乙烯摩擦材料及其制备方法和应用。本发明提供的高导热绝缘型聚四氟乙烯摩擦材料,按质量份数计,包括以下制备原料:聚四氟乙烯50~80份;聚酰亚胺5~20份;云母5~20份;纳米氧化铝5~15份;纳米氮化铝1~10份。本发明采用上述配比的原料制备得到的聚四氟乙烯摩擦材料在具有高导热和高绝缘性能基础上,还具有耐磨、摩擦系数稳定等特点,能够满足超声电机中对于摩擦材料的要求。
本发明涉及仿老土墙表皮肌理的呈现方法领域,具体涉及一种超强超薄混凝土仿老土墙25mm表皮肌理的呈现方法,通过在墙体植入膨胀螺丝及基面处理,将硅胶肌理模具和铝合金模板组合一体的复合型新模板,包括但不限于上述模具和模板,其他如塑胶模具、钢木模板或其他材质模板,支设牢固,即可将经过科学配比的搅拌均匀的新型混凝土复合材料浇筑入模,养护到期,拆模即为超强超薄的细腻逼真的老土墙肌理。
石墨烯碳纳米管复合气凝胶电极材料的制备方法,它属于新能源材料制备领域,涉及一种碳纳米管复合材料的制备。本发明是为了解决现有方法制备的石墨烯碳纳米管气凝胶热稳定性差、电导率低的技术问题。本方法如下:一、制备离子液体;二、制备氧化石墨烯;三、制备氧化单壁碳纳米管;四、将氧化石墨烯和氧化单壁碳纳米管,分别置于咪唑基离子液体中进行超声破碎分散,将等体积的氧化石墨烯分散液和氧化单壁碳纳米管的分散液加入PTFE内胆中,用浓度为氨水将混合液pH值调至8~13,干燥,进行离子交换提纯、抽滤,冷冻,即得。本发明制备的复合电极材料具有很好的可塑性、热稳定性、电导率,具有很高的比表面积和比较出色的电化学性质。
一种基于MOFs衍生金属氧化物碳纳米纤维电极材料的制备方法,所属锂离子电池负极材料技术领域。其制备方法:将MOFs粒子和聚丙烯腈纤维混合的N‑N二甲基甲酰胺(DMF)溶液作为纺丝前驱体,通过静电纺丝将MOFs串接在聚丙烯腈纤维上得到前驱体薄膜,经后续的预氧化和碳化处理,制备出MOFs衍生的金属氧化物@碳纳米纤维复合材料。MOFs衍生的金属氧化物可以保持前驱体MOF材料独特的框架结构用来作为锂离子存储器,碳纳米纤维可以促进电子快速转移以提高电极材料的电导率,将具有独特结构的金属有机框架(MOFs)衍生材料(金属氧化物)镶嵌在碳纳米纤维上形成一种三维导电网络结构,作为锂离子电池负极材料展示出较高的可逆比容量和优异的循环性能。
本发明提供了一种超轻高精度快速成型天线反射面及其制备方法,所述天线反射面包括表面金属层、胶层、PMI泡沫,所述胶层与PMI泡沫反射面的工作面连接。本发明将快速便捷的金属转移法和轻质高刚度的PMI泡沫应用于天线反射器的制备,有效解决了传统的铝蜂窝夹层复合材料反射面需要使用成本高、流程长的热压罐成型工艺的问题,相较于传统的蜂窝夹层结构天线反射器,不仅明显的缩短了制备的工艺流程,更将其重量减轻了3倍,并且能够保证型面精度相当。
目前市场上出现的各类用于垃圾分类的前端设备,都是基于人工分类模式。一种基于人工智能的户外生活垃圾自动分拣的装置,使用了基于深度学习的图像分类技术来对垃圾进行分类判定,判别属于可回收物还是不可回收物,采用云端分类模型与本地分类模型相结合的方式,提升分类的正确性和连接可靠性,外壳采用玄武岩纤维复合材料,使得外壳具备高强度、轻量化、隔热、无信号屏蔽等特点,使用氟碳漆涂装翻转板,使得维护人员非常容易清洗留存的垃圾脏污,使用基于颜色特征分布的机器视觉分析方法,用于判断投料板上是否存在投入的垃圾,节约上传数据流量,使用基于颜色特征分布的机器视觉分析方法,用于判断投料板上是否脏污情况,使用多种传感器探测设备状态用于判断设备内垃圾的容量,使用红外漫反射传感器感应人手部是否靠近投料口,自动打开投料门。
本发明公开了一种Cu@Cu0.451Mn0.84902纳米复合结构材料及其制备方法。所述Cu@Cu0.451Mn0.84902纳米复合结构材料是在合成Cu纳米线的基础上包覆Cu0.451Mn0.84902纳米片而得到的纳米复合结构材料。该制备方法首先采用水性还原法合成Cu纳米线,然后采用水热合成的方法对得到的Cu纳米线包覆Cu0.451Mn0.84902纳米片,从而得到的纳米复合结构。其中Cu纳米线为支撑作为电子和电荷的传输路径;Cu0.451Mn0.84902纳米片增加复合材料比表面积,进一步改善纳米材料Cu与Cu0.451Mn0.84902之间的协同效应,从而提高了材料的各种性能。
本发明公开了一种用于对映异构体拆分的MOF@SiO2核壳微球HPLC手性柱。采用原位生长的方法,以氨丙基硅胶为核,在其表面可控的生长手性MOFs作为壳合成一种核壳复合材料,并将这种MOF@SiO2核壳微球作为高效液相色谱固定相用于手性分离。相比纯MOF手性柱,本发明的MOF@SiO2核壳微球HPLC手性柱能拆分多种对映异构体,并且这种色谱柱具有更高的分辨率、更高的柱效、更快的分离速度等多种优点,对于改善纯晶体柱因晶体颗粒不均匀导致背景压力较高、柱效较低等问题有着重要的意义。
本发明公开了一种V3S4@CNTS电催化剂的合成及其在作为电催化裂解水产氢催化剂方面的应用。二硫化钒作为一种层状材料,近年来受到人们越来越多的关注。然而关于V3S4的报道却极少。本发明通过水热—煅烧两步法得到,将钒源与碳纳米管混合溶液进行水热反应,得到钒氧化物和碳纳米管的复合材料,然后将钒氧化物与硫混合在管式炉中煅烧,洗涤、干燥后收集得到最终产品,材料化学组成均一和在全PH电解液中电催化活性、稳定性高的V3S4@CNTS产氢电催化剂。
本发明公开了一种汽车油门踏板和汽车油门自动控制系统。所述汽车油门踏板包括:感知模块、铝合金外壳和油门踏板基体;所述感知模块置于所述铝合金外壳与所述汽车油门踏板基体中间。所述汽车油门自动控制系统,包括:内置碳纤维增强复合材料感知模块的汽车油门踏板、控制模块、加速度传感模块和车载电脑;感知模块上的电路接头与控制模块连接,所述加速度传感模块、控制模块和车载电脑依次连接。本发明提供的汽车油门踏板和采用这种汽车油门踏板的汽车油门自动控制系统具有油门响应灵敏的特点,能够解决汽车加速效果无法满足驾驶员要求的问题。
本发明公开了一种真空叠轧金属复合板板坯真空制备自动检测控制装置,属于金属复合材料制造技术领域,用于嵌入式真空叠轧类金属复合板坯的真空制备,包括真空泵、真空电磁阀、真空计、三通接头、多个通气管道和多个内螺纹六角套管,真空电磁阀位于靠近真空泵一侧的真空计前端,真空电磁阀和真空计的连接方式均为内六角螺纹连接,真空计的上方设有真空计通讯接头,并连接电控柜,用于将模拟量信号转化为数字信号传输给电控柜。本发明实现了真空值自动采集,检测精度更高,产品真空度值从模拟量到数字量的转化,实现数值可视化,真空制备过程中自动抽真空工作同时对保压过程进行数据监控,实现真空度自动读取和实时监控。
本发明为一种利用铁尾矿制备椭球状硅酸锌复合吸附剂的方法。该方法包括以下步骤:将铁尾矿球磨至过300目网筛后得到矿粉,然后将矿粉加入到碱溶液中,搅拌得悬浮液A;将锌盐溶解在去离子水中得溶液B;将溶液B加入到悬浮液A中,继续搅拌和超声得悬浮液C;将悬浮液C转至水热反应釜中,120~220℃条件下反应4~36h,得到灰白色的椭球状硅酸锌复合材料。本发明既可解决我国储量丰富、亟待利用的铁尾矿堆积造成的环境问题,实现资源化、高附加值功能化利用,又可为硅酸锌的制备提供新途径。
本发明属于钾离子电池的技术领域,具体的涉及一种钾离子电池负极材料及其制备方法。该负极材料为无定型碳材料掺杂硫原子形成的复合材料,由于可控合成出来的掺杂硫原子的多孔结构有效地改善了钾离子电池的比容量和循环性能,克服了现有技术制备的钾离子电池负极材料在充放电过程中体积膨胀和低比容量问题,有效地提高了钾离子电池的比容量和循环性能。
本发明涉及电子元器件技术领域,特指一种低压高介电铝电解电容器用化成箔的制造方法,通过在四级化成的低压腐蚀箔的再化成处理中使用硅烷偶联剂,可在无机物质和有机物质的界面之间架起“分子桥”,把两种性质悬殊的材料连接在一起,提高复合材料的性能和增加粘结强度的作用,通过对化成中的低压腐蚀箔加入了硅烷偶联剂,使复合膜的铝和钛两种金属能够很好的结合,最终达到提高箔的电性能的目的。
本发明公开了一种高低温退火韧性的铁基非晶合金及其制备方法和用途,所述铁基非晶合金的化学表达式为FeaCobNicBdCeCufMg,其中,a、b、c、d、e、f和g为对应各元素的原子摩尔百分含量,且:65≤a≤76,5≤b≤13,3≤c≤8,8≤d≤16,0.1≤e≤0.7,0.1≤f≤0.4,1≤g≤5,a+b+c+d+e+f+g=100;所述组分M为Zr、Nb、Cr中的至少一种元素。本发明的铁基非晶合金在低温退火后仍能保持良好的韧性,对折180°不断,同时还具有良好的软磁性能与电性能,以及高的非晶形成能力,制备工艺简单,可广泛应用于传感器、变压器、电加热材料、非晶增强复合材料等方面。
本发明提供了一种g‑C3N4/CsPbI3/TiO2纳米管阵列的制备方法,属于纳米复合材料技术领域。具体制备方法的步骤为:通过金属钛或钛合金的电化学阳极氧化法首先制备纳米管阵列结构;然后在马弗炉中进行晶化处理,得到TiO2纳米管阵列;再将CsPbI3纳米粒子加入g‑C3N4悬浮液中,得到含CsPbI3和g‑C3N4的混合溶液;最后将TiO2纳米管阵列与混合溶液反应,制备得到g‑C3N4/CsPbI3/TiO2纳米管阵列。该改性处理方法在充分发挥纳米管有序阵列的优势的同时,实现了两种半导体材料的多元复合改性。制备得到的g‑C3N4/CsPbI3/TiO2纳米管阵列,比表面积大,对太阳光的响应吸收范围宽,可作为高性能的复合电极,为高性能光催化剂的设计提供支撑。
本发明公开了一种复合降低冲击声传输材料及其制备工艺,涉及复合材料技术领域,解决了因减震材料仅依靠自身的发泡原理并不能有效降低冲击声的问题。包括如下重量份数的组分:多元醇聚酯树脂70~80份;有机硅树脂20~35份;膨胀珍珠岩粉末30~35份;海泡石粉末25~30份;玻璃陶瓷粉末15~20份;磷钼酸铵10~12份;环炳烷油1~3份;二烷基二硫代磷酸锌0.5~1.5份;季铵盐0.5~1.5份;色粉0.3~0.7份;增塑剂15~23份;稳定剂2~6份。本发明中的复合降低冲击声传输材料在受到较大的冲击时,能够有效降低冲击声,具有良好的使用效果。
本发明提供了一种液体姿轨控动力系统的主承力结构,包括:倒锥壳体、球窝、轨控发动机的安装支撑结构;所述球窝设置于倒锥壳体的锥壳本体(2)上;所述轨控发动机的安装支撑结构与倒锥壳体相连。本发明主承力结构布局紧凑、功能多、重量轻,可以实现高振动量级下薄壁复合材料压力容器的可靠安装,本发明对大推力、大总冲、高可靠、轻小型化液体姿轨控动力系统具有良好的适应性。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!