本发明为具有超高热导率的封装式相变储能复合材料及其加工工艺,提出了一种利用膨胀石墨和纳米石墨烯片复合热导增强型封装式相变储能复合材料。本发明提出了作为蜡质相变材料的封装体膨胀石墨材料的结构优选范围,其膨胀率达到200倍以上,平均孔径在0.5‑20微米之间;同时确定了膨胀石墨和高导热纳米石墨烯片的配比范围。同时,本发明还提出了相应的复合材料制备工艺。本发明相变储能复合材料的热扩散系数达到2.9mm2/s以上,热导率则达到6.9W/mK以上,该热导率达到单质石蜡材料的近30倍,同时该复合材料的储能密度接近石蜡材料的90%。本发明相变储能复合材料储能密度和热导率都非常高,且绿色环保,具有非常良好的应用前景。
本发明公开了一种金属基超硬复合材料,属于超硬复合材料领域,该复合材料由以下重量百分比的原料制备而成:纳米金属粉20%-68.8%、镀覆金刚石或/和镀覆立方氮化硼粉体30%-75%和润湿剂0.2%-5%。本发明还公开了该金属基超硬复合材料的制备方法,包括如下步骤:将纳米金属粉、超硬材料粉体和润湿剂混合后冷压成胚体;将胚体置于真空或还原气氛中烧结,烧结温度高于纳米金属粉的熔点、低于超硬粉体的失效温度。通过本发明提供的方法制备出的复合材料可以精确的控制超硬材料和金属的体积配比,从而精确的控制制备出的金属基超硬复合材料的热物理性能,生产过程快,设备简单;同时,采用镀覆的超硬材料降低了金刚石或cBN破裂率。
一种二硫化钼/氢氧化镁纳米复合材料及其制备方法和应用,涉及二硫化钼/氢氧化镁材料及其制备和应用。本发明为了解决现有检测氮氧化合物敏感材料室温下灵敏度低、响应速度慢的问题。该复合材料由二硫化钼、硝酸镁、表面活性剂和硫脲制备而成。方法:称取钼酸铵、硫脲和聚乙二醇作水热反应得到二硫化钼粗产物;洗涤、干燥;研至成粉末;水热反应制备粗产物;进行洗涤,干燥箱得到二硫化钼/氢氧化镁纳米复合材料;应用:将二硫化钼/氢氧化镁纳米复合材料制备气敏元件对NOx进行检测。该复合材料敏感膜响应和恢复响应快,且对氮氧化合物气体的选择性较好,方法工艺简单。本发明适用于制备和应用二硫化钼/氢氧化镁纳米复合材料。
本发明公开了一种高耐热低散发聚丙烯复合材料及其制备方法,这种复合材料是由下列重量百分比的原料组成:聚丙烯43~65%,木质素5~20%,有机粘土5~15%,PP-g-MAH8~15%,弹性体POE3~5%,抗氧剂0.1~1%,其它添加剂0~1.5%。本发明的优点是:1、本发明中使用的木质素广泛存在,容易获得,生物可降解。2、本发明使用聚丙烯复合材料体系,对氧气有很好的阻隔作用,提高了聚丙烯材料的耐热氧老化能力,同时复合材料具有低散发性。3、本发明提出的聚丙烯复合材料维持了聚丙烯材料原有的力学性能,制备复合材料的生产工艺简单,成本低,容易工业化。
本发明提供了一种聚酯/碳纳米管复合材料及其制备方法,该复合材料是由碳纳米管和聚酯组成,其中聚酯在复合材料中占10~70wt%,聚酯分子量的范围是1,000~1,000,000;碳纳米管经过酸化、酰化处理后与羟基化合物反应,使碳纳米管表面带有羟基,然后再与聚酯单体在催化剂辛酸亚锡的作用下进行原位开环聚合反应,得到聚酯/碳纳米管复合材料,该复合材料同时具有了碳纳米管和聚酯的优点,由于可生物降解性材料聚酯的加入使我们可以在纳米水平制造功能性生物材料,开拓了该复合材料在生物科学和纳米技术领域的应用。
一种压电陶瓷与共聚尼龙复合材料及制备,该复 合材料由体积10%~50%共聚尼龙和90%~50%压电陶瓷组 成,其共聚尼龙是PA1010/ PA6、PA1010/PA66、PA66/PA6, PA66/ PA610、PA1010/PA66/PA610、或PA1010/ PA610/PA66/PA6,其压电陶瓷为钛锆酸铅、钛酸铅、钛锆酸 铅加入 Pb(Mg1/3Nb2/3)O3、钛锆酸铅加入 Pb(Mn1/3Sb2/3)O3、或为 (LixK1-x- yNay)NbO3,其中0.01≤x≤0.06,0.4≤y≤0.5。 其制法以制压电陶瓷与聚合物复合材料的方法制备,共聚尼龙 与压电陶瓷进行复合时,其中共聚尼龙的结晶结构由球晶结构 转变成纤维晶或伸直链晶体,模量增加,提高了复合材料的力 -电耦合,减少了应力损耗,因此这类复合材料的压电性能高 于PVDF与压电陶瓷复合材料。
一种将诸如纤维增强聚合物(FRP)层合板或者钢增强聚合物(SRP)层合板或者钢增强浆(SRG)复合物的增强复合材料(12)施加到结构元件(10)上的方法。该方法包括以下步骤:将可固化的粘合剂(14)施加到结构元件(10)的表面上和/或增强复合材料(12)的表面上,并使所述两种表面接触。直接或间接将预加应力Pmax施加到增强复合材料(12)上。然后减小增强复合材料(12)的处理长度LT所经受的预加应力Pmax,从而当粘合剂已经固化时,沿着处理长度LT的增强复合材料(12)将比邻近处理长度LT的增强复合材料(12)经受小的预加应力。
一种镁基复合材料由镁基金属与分布于该镁基金属中的纳米级增强体组成,所述镁基复合材料为多层结构,该多层结构由至少两层镁基金属层与至少一层镁基复合层交替排布,并且镁基复合层位于镁基金属层之间。一种镁基复合材料的制备方法,包括以下步骤:提供第一镁基板、第二镁基板和多个纳米级增强体;将所述多个纳米级增强体均匀固定于该第一镁基板表面;将第二镁基板覆盖于该纳米级增强体上,以形成一预制体;以及将预制体热压,形成镁基复合材料。采用本发明方法制备的镁基复合材料具有更高的强度和韧性,并且工艺简单、易操作,可广泛地应用于镁基复合材料方面。
本发明涉及一种夹层复合材料耐压壳体端部连接结构,包括设置于复合材料内表层端部的复合材料内凸缘、设置于复合材料外表层端部的复合材料外凸缘、安装于复合材料内外凸缘之间的分体式嵌入圆环、设置于连接结构端部的过渡法兰、设置于分体式嵌入圆环与内部填充芯材连接处的复合材料补强环;复合材料内外凸缘在复合材料内外表层原有纤维的基础上通过分层增加环向嵌入层、分步缠绕、与复合材料内外表层一体成型;过渡法兰与分体式嵌入圆环固定连接,同时可与外部结构连接;复合材料补强环降低连接结构局部处的应力集中水平,并紧固分体式嵌入环。本发明在保证复合材料耐压壳体内外表层纤维连续的情况下,有效实现与其他结构水密可拆卸连接。
本发明公开了修复河道污泥的复合材料及其制备方法和应用,该复合材料的重量百分比组成为:过氧化钙50~70%,铁改性硅藻土20~40%,氧化铜10~20%,将上述三种物质混合球磨20~40min,并过20~30目筛即得。按照150~250g复合材料/m2河道污泥,将该复合材料铺洒在河道污泥表面进行修复,复合材料中各组分在水中反应并相互促进,通过物理吸附和化学反应的协同作用,对河道污泥中的重金属离子、磷酸盐起到有效固定的作用,并且能够迅速降解河道污泥中的微生物和有机污染物,河道污泥修复和水体净化效果明显。而且,本发明复合材料对环境友好,不会引起二次污染,成本低。
本发明属于光催化复合材料领域,具体涉及一种TiO2‑碳基石墨烯复合材料及其制备方法和应用。该复合材料首先以多孔碳材料为基体,以酚醛树脂溶液为原料,通过水热法在基体上原位生长石墨烯,得到碳基石墨烯,然后采用溶胶法在碳基石墨烯表面复合TiO2纳米颗粒制备而得。该制备工艺简单、成本低、绿色环保。该复合材料比表面积大,且石墨烯原位生长在碳材料上,增加了TiO2、石墨烯与多孔碳基体之间的稳定性和协同作用,从而大幅提高材料的光催化性能。将该复合材料用于光催化降解蔬菜中的残留农药,2小时后的农药降解率即达90%以上,且过程中该复合材料容易回收,因此可多次重复使用。
本发明提出了一种Cu‑Zn‑ZnO复合材料及其制备方法和应用,涉及水体净化材料的技术领域。本发明的复合材料是在铜锌合金表面上直接生长有氧化锌一维纳米材料,包括以下重量百分含量的元素:Cu 49‑89%,Zn 9‑42%,O 2‑9%;本发明还给出了上述复合材料的制备方法,利用铜锌合金在高压消解罐中水热合成而得到;本发明的复合材料可用于洗衣机、热水器或净水器的净化杀菌装置中。本发明以铜锌合金为原料利用水热法一步合成了在铜锌合金表面上直接生长有氧化锌一维纳米材料的新型复合材料;该复合材料不仅具有去除余氯、重金属离子和硫化氢的功能,还可以有效的杀死细菌和病毒等微生物,功能全面,可以彻底净化水体。
本发明涉及一种将热塑性材料(10)和纤维复合材料(11)接合的方法,所述热塑性材料(10)焊接至所述纤维复合材料(11),其中所述纤维复合材料为纤维增强基体材料或包括纤维增强基体材料,其中所述基体材料为热固性材料或包括热固性材料。优选地,所述热塑性材料(10)和所述纤维复合材料(11)通过运动焊接和/或感应焊接在一起。另外,优选地,对于感应焊接,在热塑性材料和纤维复合材料之间的接合区域设置导电材料,从而在导电材料中产生感应热,使热塑性材料开始熔化而纤维复合材料被加热。
本发明公开了一种绢云母/二氧化硅复合材料及其制备方法,其特征在于所述的复合材料是以绢云母为核,纳米二氧化硅为壳的核壳结构形式的复合材料。其制备方法是在水溶液体系中,通过将表面改性后的绢云母与二氧化硅球混合并在一定温度下加热,得到一种核壳结构的复合材料。该技术使用的基体材料绢云母是天然矿物,原料易得,无污染且成本较低,制备过程简单安全可靠,易于实现控制,且产品质量稳定,所得到的复合材料在有机溶剂中具有良好的分散性,同时具有优异的抗紫外性能,可应用在涂料,化妆品等领域。在复合材料合成或其他相关科学领域具有很好的潜在应用价值。
一种纤维增强树脂基(Fiber?Reinforced?Plastic,FRP)复合材料R区超声检测模型建立方法,属于复合材料超声检测技术领域。该方法包括以下步骤:FRP复合材料R区试样几何尺寸和密度测量;对R区试样横截面解剖打磨并观察其微观组织,包括单铺层厚度、铺层总数及纤维铺放顺序;FRP复合材料单向板试样声速测量和弹性刚度矩阵反演计算;计算R区任意位置对应的Bond变换矩阵,并对弹性刚度矩阵进行旋转变换;设定超声检测探头参数和耦合介质的材料特性,完成模型建立。该方法在考虑FRP复合材料各向异性的同时,还实现了多层结构和曲面形状弹性特性的定量描述。利用该模型可对FRP复合材料R区超声检测进行模拟计算,为研究声传播规律、提高检测质量提供支持。
本发明公开了一种石墨烯/玻璃纤维增强尼龙复合材料,所述的石墨烯/玻璃纤维增强尼龙复合材料,包括以下组分重量份数的组分:尼龙60?90质量份、环氧树脂5?20质量份、石墨烯0.01?5质量份、玻璃纤维1?6质量份、硅烷偶联剂0.01?0.1质量份、乙醇1?2质量份、抗氧化剂0.05?2质量份、润滑剂0.5?3质量份。本发明还公开了上述石墨烯/玻璃纤维增强尼龙复合材料的制备方法。本发明所制备的石墨烯/玻璃纤维增强尼龙复合材料,不仅制备工艺简单,而且实验结果显示所制备的石墨烯/玻璃纤维增强尼龙复合材料的热稳定性、强度和韧性明显改善,而且有效的消除了浮纤现象,因而可扩大尼龙复合材料的实际应用。
本发明公开了一种磺胺喹恶啉钴镍纳米复合材料及其制备方法,本发明中将一定量的金属盐溶液加入到含有的磺胺喹恶啉有机配体中,在一定温度下搅拌,微波反应,超声分散经离心分离,洗涤,干燥制得相应的金属‑配体纳米复合材料,制备过程简单,成本低,适合大量生产;通过选用不同的溶剂,控制反应物的用量、反应时间和反应温度,实现磺胺喹恶啉钴镍纳米复合材料粒径的大小及分散性的有效调控。本发明制备的磺胺喹恶啉钴镍纳米复合材料是一种含有钴和镍的功能化复合材料,性能稳定,可用于催化C‑C键偶联反应,催化效率高,因此该磺胺喹恶啉钴镍纳米复合材料在催化领域具有广阔的应用前景。
本发明公开了一种提高炭/炭复合材料强度的方法,其特征在于:是在炭纤维和炭基体之间添加粘土/炭过渡层并一步热压,粘土/炭在热压过程中转变为陶瓷/炭,最终获得多相、多尺度的炭/炭-陶瓷/炭复合材料。本发明采用水热法,将生物质碳源碳化成纳米碳负载于粘土表面,形成粘土/炭纳米复合材料,再将此复合材料引入炭/炭复合材料中,以此达到在补强剂粘土和炭纤维及炭基体之间增加一炭过渡层的目的,从而改善炭/炭复合材料内的界面结合,提高了材料的强度。
本发明涉及碳纳米管/聚苯乙烯纳米导电复合材料的制备方法,它以聚苯乙烯和多壁碳纳米管为复合基体,以胆酸盐为分散介质,以有机溶剂为分散剂,通过溶液法制备获得。该方法制备工艺安全、简单,反应时间大大缩短,复合材料的电阻率可以通过调节胆酸盐浓度、复合基体、聚苯乙烯基体与碳纳米管的质量比来控制;本发明方法与共混法制备碳纳米管/聚苯乙烯纳米复合材料相比,由于胆酸盐溶液能够大量、有效的分散多壁碳纳米管,因此碳纳米管在复合材料中的分散性明显改善,解决了以往碳纳米管分散效率低的问题。本发明制得的复合材料的导电性也比共混法制备的复合材料的导电性高出几个数量级,相对于纯聚苯乙烯材料,电阻率更是降低了十几个数量级。
一种陶瓷颗粒局部定位增强耐磨复合材料的制造方法,其步骤是:先制作若干个多孔状硬质陶瓷颗粒预制体;然后将各多孔状硬质陶瓷颗粒预制体间隔地固定在砂模中的局部位置;最后将金属液浇铸到砂模中,待冷却后取出,得到耐磨复合材料;各多孔状硬质陶瓷颗粒预制体的制作方法为:先设计一个金属壳体,然后将硬质陶瓷颗粒填充到金属壳体内连同金属壳体一起制成多孔状硬质陶瓷颗粒预制体。通过本方法制造的耐磨复合材料,硬质陶瓷颗粒与金属基体的界面结合良好,结合强度高,使耐磨复合材料具有良好的耐磨性能和整体韧性,延长了耐磨复合材料的使用寿命,而且硬质陶瓷颗粒特别适合采用Al2O3或ZTA陶瓷颗粒,这样有利于降低耐磨复合材料的成本。
本发明涉及到一种具有非常优异的阻燃特性及极佳的可激光标记效果的可激光标识、无卤阻燃聚酰胺复合材料,该聚酰胺复合材料的特征在于它包含有下列物质:至少一种或者几种聚酰胺树脂,至少一种或者几种无机填充材料,至少一种或者几种可以提供复合材料优异阻燃性能的无卤阻燃剂,至少一种或者几种可提供复合材料优异可激光标识助剂,非必要的,组合物还可以包含如润滑剂、抗氧剂、颜料等其他助剂。该复合材料具有非常优异的耐温性能、阻燃性能、尺寸稳定性以及易于加工成型等综合性能,同时具有清晰、美观的激光标识效果。在家用产品、电子电器、激光手柄等领域有着非常广泛的应用,这种复合材料有着巨大的市场前景。
一种在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法,它涉及了一种在陶瓷复合材料表面原位生成的高抗氧化性能膜的方法。本发明解决了现有硼化锆-碳化硅陶瓷复合材料的抗氧化性能差、使用过程中质量损失大,无法将微弧氧化法应用到陶瓷表面的处理上。本发明在硼化锆-碳化硅陶瓷复合材料表面原位生成高抗氧化性能膜的方法按如下步骤进行:一、混合,研磨;二、烧结;三、微弧氧化反应;即在硼化锆-碳化硅陶瓷复合材料表面原位生成了高抗氧化性能膜。本发明成功应用微弧氧化法在陶瓷材料表面制备了高抗氧化涂层,制备出涂层大大提高了硼化锆-碳化硅陶瓷复合材料的抗氧化性能,降低了材料使用过程中的质量损失。
本发明公开了一种透明高阻隔复合材料及其制备方法,复合材料包括透明保护层、阻隔层、抗菌层,保护层位于阻隔层外,对阻隔层起到保护作用,提高复合材料的耐气候性能及耐化学性能,在寒冷、高温高湿、高盐雾和海上等气候及高湿度、高盐浓度的环境中有效保持复合材料好的抗吸湿性、抗腐蚀性等;阻隔层提高复合材料的阻隔水蒸气、氧气性能,提高复合材料包装的抗吸湿性、抗氧化性、密封性能,延长包装内环境状态不变;抗菌层提高复合材料的抗菌性能,减少细菌在复合材料包装内的繁殖,保证复合材料包装在极端条件下的性能;本发明提供的透明高阻隔复合材料的制备方法简便。
本发明涉及储能复合材料技术,具体涉及储能复合材料、储能复合纤维及其制备方法。该储能复合纤维的制备方法包括:称取聚乙二醇、纺丝级聚丙烯、纳米二氧化钛;将纳米二氧化钛加入到熔融的聚乙二醇中得到二氧化钛乙二醇悬浮液;将悬浮液移入相变材料储罐,道输送至计量泵,由计量泵定量输送至喷丝组件;纺丝级聚丙烯与二氧化钛通过高速搅拌器混合后移入螺杆挤出机输送至计量泵,并由计量泵定量输送至喷丝组件;在140-190℃温度纺丝,自喷丝组件中获得储能复合材料原丝;对储能复合材料原丝牵伸得到储能复合纤维。本发明可实现储能材料的密封,防止储能材料的泄漏,提高储能复合材料的储能的可重复性和稳定性,储能量及纤维直径的可控性。
本发明公开了一种新型高透波热塑性复合材料预浸料的制作方法,包括复合材料预浸料,所述复合材料预浸料包括:增强纤维材料、聚四氟乙烯基体、增韧热塑性树脂,首先以聚四氟乙烯作为基体,将增强纤维材料通过热熔法制备成纤维/聚四氟乙烯复合材料,再将纤维/聚四氟乙烯复合材料与增韧热塑性树脂复合,制成高透波热塑性复合材料预浸料,本发明结构科学合理,使用安全方便,通过复合材料预浸料,复合材料预浸料包括如下材料组成:聚四氟乙烯、聚偏氟乙烯、玻璃纤维、石英纤维和芳纶纤维制备出高透波热塑性复合材料预浸料,提高了高透波性和热塑性,并且通过增韧剂塑性树脂进一步提高了其自身的热塑性,是一种新型的复合材料,适合推广使用。
本发明公开了一种实现整齐切割的复合材料结构火工分离装置,所述装置包括复合材料板、聚能切割索、缓冲套、保护罩,其中:所述复合材料板的外表面预留削弱槽,复合材料板的内表面一侧安装聚能切割索;所述削弱槽通过减少复合材料铺层数实现,铺层数需要递减或做成小台阶状并在表面铺设一层连续铺层;所述缓冲套包围在聚能切割索周围,缓冲套与复合材料板贴合面一侧留有凹槽,尺寸大小刚好放置聚能切割索;所述保护罩罩在缓冲套的外表面,保护罩的上边倚靠复合材料板凸起处以实现定位,保护罩的安装面与复合材料板通过固定螺栓连接。本发明使用的复合材料经过编织或Z‑PIN工艺增强提高整体性,从而降低切割后复合材料损伤。
本发明涉及一种储能飞轮复合材料转子的快速制备方法,该储能飞轮复合材料转子由铝合金轮毂(1)、钢圈(2)、玻璃纤维复合材料环(3)、碳纤维复合材料环(4)(根据需要选配)组成。铝合金轮毂(1)和钢圈(2)都是由锻造毛坯机加工而成,并经过过盈装配到一起,然后把金属转子放置到数控缠绕机上将预浸复合材料带(玻璃纤维预浸带或碳纤维预浸带)通过预张力进行缠绕,缠绕同时利用高能电子束(5)(紫外光或激光)轰击,使预浸复合材料带上的特殊配方树脂在线固化,最终得到复合材料层的抗拉强度高达1000‑3000Mpa。本发明主要解决了金属转子材料强度瓶颈和复合材料转子内圈金属材料与外圈复合材料之间应力、应变、固化温度等协调问题,不仅改善了飞轮复合材料转子的生产工艺,提高了生产效率,还有效的提高了储能飞轮的储能密度。
本发明公开了一种氮掺杂石墨烯‑硫堇‑金纳米复合材料、电化学传感器及其制备方法和应用,该氮掺杂石墨烯‑硫堇‑金纳米复合材料的制备方法,包括:将氮掺杂石墨烯NG、硫堇Thi、金源、还原剂在避光的条件下进行超声反应以制得氮掺杂石墨烯‑硫堇‑金纳米复合材料NG‑Thi‑AuNPs。基于该掺杂石墨烯‑硫堇‑金纳米复合材料的电化学传感器对DES和H2O2的检测具有优异的准确性、稳定性和灵敏性,同时该复合材料和电化学传感器制备方法均具有操作简单、成本低廉的优点。
本发明提供了一种铝基复合材料、其制备方法及其应用,该铝基复合材料包括铝基体及分布于所述铝基体中的NbB2增强相和NbAl3增强相。本发明提供的铝基复合材料中包括NbB2增强相和NbAl3增强相,它们弥散分布于铝基体中,NbB2增强相与铝基体界面间存在部分共格关系,NbB2增强相作为铝基体非均匀形核的异质形核核心,细化铝基体组织;NbAl3增强相与铝晶格系数相近,能够与铝基体很好地结合,使得铝基复合材料具有较高硬度和高温抗拉强度。另外,本发明提供的铝基复合材料延伸率良好和耐磨性优异。
本发明公开了一种弥散铜复合材料及其制备方法,属于弥散铜加工技术领域。弥散铜复合材料由以下质量百分数的组分组成:Al2O30.24~3.74%,Y2O30.03~1.27%,余量为Cu及不可避免的杂质。本发明以Cu2O粉末和Cu-Al-Y合金粉末为原料,经混料、压制、烧结内氧化、挤压、锻造制备弥散铜复合材料,该复合材料具有高强度和高导电性,强度在500Pa以上,电导率在80%IACS以上,克服了其他复合材料高强度与高导电不可兼得的缺陷,同时具有优良的抗软化性能,高温强度高,塑性好,软化温度在800℃以上。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!