一种木塑复合材料生产机组,它涉及一种复合材料生产机组。本发明为了解决现有的木塑复合材料生产过程中,存在聚烯烃木塑复合材料发泡板材在模具内控制发泡困难、出模后成型较难的缺点。本发明的挤出口模(2)安装在木塑复合材料挤出机(1)的输出端,挤出口模(2)、冷却引导辊(3)、加热压延辊(4)、主动冷却定型辊(5)和多个被动冷却定型辊(6)由左至右依次安装,传动组件(8)连接主动冷却辊(5)和被动冷却辊(6),相邻两个冷却定型辊(6)的上方和下方分别设有一个冷却水喷淋装置(7)。本发明用于木塑复合材料生产。
本发明提供了一种石墨烯呋喃树脂复合材料,由石墨烯和呋喃树脂经反应制备得到。本发明提供的石墨烯呋喃树脂复合材料利用石墨烯的力学性能,使这种石墨烯呋喃树脂复合材料具有较好的韧性。本发明提供了一种石墨烯呋喃树脂复合材料的制备方法,包括以下步骤:1)将呋喃树脂和石墨烯溶液进行混合,得到混合溶液;2)过滤所述混合溶液,得到沉淀物;3)将所述沉淀物在100℃~140℃条件下进行反应,得到反应产物;4)在呋喃树脂固化剂的作用下,将所述反应产物进行固化,得到石墨烯呋喃树脂复合材料。本发明提供的方法制备得到的石墨烯呋喃树脂复合材料具有较好的韧性,而且操作过程简单,工艺简便。
本发明提供了一种空气净化器用甲醛滤网复合材料及其制备方法,包括:将溶剂与交联剂混合,搅拌,加入聚1,4-二苯基丁二炔和介孔二氧化钛纳米颗粒,搅拌后得到第一混合液;向所述第一混合液中加入活性炭纤维进行交联反应,干燥后得到空气净化器用甲醛滤网复合材料。本发明以活性炭纤维为基体材料,其具有较大的比表面积和高的吸附活性,确保复合材料较大的吸附能力。另一方面,通过筛选具有高紫外光响应的介孔二氧化钛纳米颗粒和可见光响应的聚1,4-二苯基丁二炔进行复合,大大提高了复合材料的光催反应活性,提高复合材料对甲醛的降解率。实验结果表明,本发明制备的空气净化器用甲醛滤网复合材料具有较高的吸附能力和催化降解能力。
本发明公开了一种超疏水的中空Fe3O4/介孔二氧化硅纳米复合材料,该复合材料具有核-壳结构,以中空Fe3O4纳米微球为磁核,以SiO2为壳,其中核的粒径为220~260nm,壳的厚度为35~50nm,SiO2壳层为介孔结构,复合材料表面修饰有乙烯基和甲基。本发明还提供了该复合材料的制备方法,先将中空Fe3O4纳米微球超声分散于异丙醇溶液中,随后在室温下加入NH3·H2O,搅拌均匀后,分次缓慢加入正硅酸四乙酯,反应完成后洗涤,随后分散于去离子水中,在聚乙烯吡咯烷酮K15的保护下,加入NaOH进行表面刻蚀,最后通过乙烯基三甲氧基硅烷进行表面疏水改性,最终得到超疏水的中空Fe3O4/介孔二氧化硅纳米复合材料。该复合材料质轻且多孔,可有效吸油和锁油,并可回收重复利用,在油污染处理方面具有很大的应用前景。
一种超轻质全复合材料桁架及其制备方法,它包括三根以上轴向复合材料杆以及若干组环向肋条和螺旋向交叉形肋条,所述三根以上轴向复合材料杆平行布置,所述环形肋条呈正多边形并绕设于轴向复合材料杆的外侧;若干组环形肋条呈等间距平行布置,所述螺旋向交叉形肋条布置于相邻两组环形肋条之间,与环向肋条一起形成网状结构单元,其制备方法依次通过固定芯模、缠绕芯模、绑束、加热、固化、脱模后形成超轻质全复合材料桁架。本发明是一种结构简单紧凑、重量轻、力学性能优异、成本低廉,且加工简单、效率高的超轻质全复合材料桁架及其制备方法。
本发明公开了一种自愈合碳/碳、碳/碳化硅复合材料的制备方法,用于解决现有技术制备方法制备的碳/碳、碳/碳化硅复合材料周期长的技术问题,其技术方案是通过浆料浸渗工艺在多孔C/C或C/SiC复合材料内部引入B4C颗粒,使B4C颗粒弥散于C/C或C/SiC内部纤维束间大孔隙中;然后,通过液硅渗透工艺将Si引入复合材料内部,与B4C原位反应生成SiB4和SiC,形成SiB4改性C/SiC复合材料。该方法使制备同样气孔率的致密C/C或C/SiC复合材料的制备周期由现有技术的720h以上下降为80~150h。
本发明是一种直升机复合材料桨叶表面处理的方法,属于复合材料表面处理技术领域。其特征在于:该方法通过对现有复合材料的表面处理工艺加以改进,解决了复合材料桨叶在使用过程中涂层脱落、开裂、老化的问题。将金属的常温轻微腐蚀技术用于复合材料桨叶的前缘包铁上,解决了复合材料桨叶前缘包铁涂漆前的表面化学处理问题。步骤如下:环氧腻子填充复合材料桨叶表面针孔;涂覆环氧底漆增强漆层结合力;涂覆蚀洗底漆解决前缘包铁与漆层的结合力;涂覆聚氨酯面漆。与现有技术相比,本发明方法解决了复合材料桨叶前缘包铁涂漆前的表面化学处理问题,从而解决了复合材料桨叶前缘包铁掉漆问题。
本发明公开了一种正交各向异性复合材料的碰撞仿真模拟方法,属于有限元分析技术领域,通过样片级材料试验得到复合材料特性参数;根据所述复合材料特性参数,初始复合材料MAT54号材料卡中的参数作为复合材料的仿真分析的初始参数;开展样片级材料试验的仿真标定分析得到中间复合材料MAT54号材料卡;展开复合材料横梁三点弯高速冲击试验,得到正交各向异性复合材料的仿真标定模型和最终正交各向异性复合材料MAT54号材料卡。实现对正交各向异性复合材料变形及断裂失效特性的准确仿真模拟,可快速实现对各种类型复合材料卡进行开发,显著降低材料卡的标定难度,缩短材料卡标定周期,提升材料卡整体标定精度。
本发明涉及一种玻璃及其制备方法、碳量子点复合材料。玻璃的制备方法包括:提供碳量子点复合材料和玻璃基质材料粉末,所述碳量子点复合材料选自CDs‑CaF2复合材料、CDs‑SiO2复合材料和CDs‑CaF2‑SiO2复合材料中的任意一种;将所述碳量子点复合材料与所述玻璃基质材料粉末混合,在300‑700℃惰性环境中烧结,制备得到所述玻璃;或者提供碳量子点复合材料,所述碳量子点复合材料为CDs‑CaF2‑SiO2复合材料;将所述CDs‑CaF2‑SiO2复合材料在300‑700℃惰性环境中进行煅烧,制备得到所述玻璃。该玻璃具有成本低、易于加工成各种形状、各向同性、透明度高、以及高的发光效率等优点。
本发明公开了一种高透波多孔石英/石英陶瓷基复合材料及其制备方法。由石英纤维增强体、石英基体和孔道组成,其特征在于孔道均匀存在于石英/石英陶瓷基复合材料靠近内表面的部分。在石英纤维编织或叠层形成的增强结构中预制纯铁丝在其中,通过溶胶凝胶的方法合成石英基复合材料复合材料,然后使用硝酸和硫酸的混合溶液腐蚀掉复合材料中的铁丝,得到高透波多孔石英/石英陶瓷基复合材料。本发明的优点该材料强度高,力学性能和透波性能好。
本发明属于复合材料成型技术,涉及消除复合材料阴模成型拐角缺陷的模具和方法。消除复合材料∏形梁热压罐阴模成型拐角缺陷的模具,其特征在于,它由底板[1]、两个侧板[2]和两个垫片[3]组成;消除复合材料∏形截面环形零件热压罐阴模成型拐角缺陷的模具,其特征在于,它由中心圆管[6]、两个端环[4]和两个垫圈[5]组成;消除复合材料热压罐阴模成型拐角缺陷的方法,操作的步骤如下:确定固化时的热膨胀量差ΔL;确定固化时的收缩量即Δd;计算垫片[3]或垫圈[5]厚度t;铺叠和吸胶;零件固化。本发明消除了阴模成型复合材料构件拐角结构拐角区架桥和沟痕缺陷,提高了拐角区内部质量。
本发明是基于钒酸铋复合材料的制备方法及其应用,采用一锅法制备含钒酸铋和氧化铋的纳米复合材料,公开了一例基于钒酸铋的多功能型光催化剂的制备方法及其在CO2吸附及还原得到太阳能燃料、重金属离子Cr(VI)还原和气相NO去除中的应用。属于纳米材料制备技术及能源环保领域。本发明采用溶剂热法,利用五水合硝酸铋和钒酸铵为原料,通过一锅法合成桑葚状的钒酸铋与氧化铋的复合材料。得到的纳米复合材料结构良好,很好地提升了其对CO2的吸附性能,并且实现了光生载流子的加速迁移和有效空间分离。该纳米复合材料在能源及环境光催化中显示出优异的催化活性。
本发明公开了一种Nafion聚合物基Er3+/Yb3+共掺杂氟化钙纳米晶复合材料及其制备方法,按以下步骤进行:制备Nafion浓缩液;制备Er3+/Yb3+共掺杂氟化钙纳米晶;制备Nafion聚合物基Er3+/Yb3+共掺杂氟化钙纳米晶复合材料。本发明采用二步法合成近红外发光性强的Er3+/Yb3+共掺杂氟化钙纳米晶与Nafion的复合材料,制备出的复合材料膜均匀、透明,复合材料中纳米晶的晶相结构为立方晶相,为单一相晶体,且纳米晶粒度均匀、分散性好,没有明显的团聚现象。本发明的制备方法简单,易于放大,可控性好,产品性能优异,具有广阔的市场前景。
本发明涉及铁酸铜光‑芬顿催化磁性复合材料及其制备方法,属于光降解技术领域。本发明解决的技术问题是水热法、模板法制备光催化材料时需控制的参数比较多,工艺复杂。本发明的技术方案是提供铁酸铜光‑芬顿催化磁性复合材料的制备方法,由硝酸铁、硝酸铜、燃料混合配制成水溶液,然后通过低温燃烧合成得到具有磁性的铁酸铜光催化磁性复合材料,所述复合材料的主要成分为CuFe2O4。本发明制备工艺简单,易于工业化生产,制备得到的铁酸铜光催化磁性复合材料作为光‑芬顿光催化剂适用于染料降解以及水处理过程中有机污染物的降解。
本发明属于陶瓷复合材料领域,具体涉及一种碳化硅石墨烯复合材料制备方法,本发明的一种碳化硅石墨烯复合材料制备方法,其特征在于将SiC、Al2O3、Mg的混合粉体压制成块体,在二氧化碳气氛下进行两步烧结,冷却后得到碳化硅‑石墨烯复合材料,本发明的碳化硅石墨烯复合材料制备方法,具有工艺简单、制备周期短、成本低等优点。
本发明公开了一种石墨烯改性的磷酸铁锂/碳复合材料及其应用,所述的石墨烯改性的磷酸铁锂/碳复合材料是通过溶剂热原位复合的方式并通过加入表面活性剂制备磷酸铁锂/石墨烯复合材料,再加入水溶性碳源的水溶液,控制碳含量,将混合物经过干燥、退火处理后获得石墨烯改性的磷酸铁锂/碳复合材料。本发明制得的石墨烯改性的磷酸铁锂/碳复合材料可用作锂离子电池的正极活性材料,可以实现电池电化学性能特别是充放电性能及循环稳定性的显著提升。
本发明涉及一种采用“淤浆法(湿法)”制备连续纤维增强热塑性共混树脂基预浸料及其复合材料的方法。它以可溶性热塑性树脂做载体(第一组分),以不溶性的高分子粒子(第二组分)和/或其他功能性粒子(第三组分)做为悬浮粒子,配制成稳定的粉体悬浮溶液(俗称“淤浆”),经湿法缠绕,制备出连续纤维的预浸料,再按照常规的热固性复合材料制备工艺,成型得到共混基的热塑性树脂基复合材料。本发明具有通用性,适用于各种热塑性树脂之间的搭配,还可以通过引入第三组分对基体及其复合材料进行功能化改性,如阻隔、阻燃、导电、导热、吸波等,制备得到结构-功能一体化的热塑性复合材料。同时,利用粒子的粒度分布和缠绕工艺的特定匹配,还可以制备出梯度分布的组分结构。
镀W金刚石/铝复合材料的制备方法,它涉及一种金属基复合材料的制备方法。本发明为了解决金刚石与铝发生反应,生成Al4C3,所得复合材料界面结合差、热导率低的技术问题。本方法如下:一、金刚石颗粒表面镀W;二、预热;三、加压浸渗:用炉内压力机施加10~15MPa压力,使熔融铝浸渗入镀W金刚石颗粒中,然后以100℃/h的降温速率降温到300℃以下,卸载压力,关闭真空炉,脱膜,得到镀W金刚石/铝复合材料;金刚石的体积分数为55~65%,致密度≧98%,热导率高达622W/(m·K),热膨胀系数低至7.08×10?6/K,弯曲强度高达304MPa。本发明属于复合材料的制备领域。
本发明一种增强镁基复合材料的制备方法,涉及通过把纤维或细丝与熔融金属接触制造含有非金属纤维或细丝的合金,是一种通过浮动催化法在纳米碳化硅颗粒上原位生长碳纳米管制备碳纳米管-碳化硅原位复合增强相,在液相机械搅拌混合基础上,通过放电等离子体烧结工艺制备碳纳米管-碳化硅混杂增强镁基复合材料的方法,克服了现有的增强镁基复合材料的制备方法所存在的碳纳米管合成效果不佳、易发生结构破坏和增强效果差,增强相在镁基体中分布不均,增强相-镁基体易发生不良界面反应,碳纳米管-氧化铝复合增强相结构设计不佳,不适合作为镁基复合材料的增强相,所制得的镁基复合材料的力学性能不理想的诸多缺陷。
一种非绝缘导热聚烯烃基木塑复合材料及其制备方法,它涉及一种聚烯烃基木塑复合材料及其制备方法。本发明要解决现有木塑复合材料的传热性能很弱的问题。一种非绝缘导热聚烯烃基木塑复合材料按重量份数木质纤维材料、聚烯烃塑料、碳系纳米材料、偶联剂、相容剂及润滑剂制备而成。制备方法:一、称取;二、改性处理碳系纳米材料;三、熔融分散;四、高速混合;五、制备熔融混合物料;六、成型。本发明用于一种非绝缘导热聚烯烃基木塑复合材料及其制备方法。
本发明涉及聚合物复合材料领域,具体是一种超高分子量聚乙烯/镍导电复合材料的制备方法,其步骤为:将镀镍超高分子量聚乙烯粉末放入到模具中,在180~200℃、10~15MPa条件下热压5-10min成型,则得到具有隔离结构以及高导电、低逾渗特点的超高分子量聚乙烯/镍复合材料。本发明通过热压成型工艺制备超高分子量聚乙烯/镍导电复合材料,其中,具有核-壳结构的复合粒子实现了金属镍在超高分子量聚乙烯粉末表面的均匀包覆,在模压成型过程中,超高分子量聚乙烯在熔融状态下的高粘度限制了壳层金属镍的扩散,起到了良好的堆挤和隔离效果,最终获得电导率可控且具有隔离结构的超高分子量聚乙烯/镍导电复合材料。
本发明提供了一种粉煤灰改性废弃塑料复合材料的制备方法,属于高分子复合材料技术领域,将粉煤灰、废弃塑料、粘结剂、润滑剂、光稳定剂及玻璃纤维按一定配比混合后在开炼机中熔融共混,得到复合材料。本发明采用粘结剂增强复合材料中组分键合能力,节能环保、方法简单易操作,适合大规模工业化生产;生产的复合材料具有较好的弯曲性能和拉伸性能,适合制造一般工程塑料应用于建材、管材和板材领域;且生产成本相比聚乙烯或聚丙烯成本能降低45-60%,具有较好的市场竞争和使用前景。
本发明提供MnO2纳米复合材料的制备方法为:将含锰纳米材料分散于高锰酸钾溶液中,进行水热反应,得到MnO2纳米复合材料;所述含锰纳米材料为MnOOH纳米线、α-MnO2,β-MnO2或Mn3O4。所述含锰纳米材料可以与高锰酸钾反应或者本身发生晶型变化得到β-MnO2,高锰酸钾自分解得到平行或交错的片状δ-MnO2包裹在所述β-MnO2外围,形成复合材料。所述MnO2纳米复合材料具有介孔的层状结构,保证了充足的比表面积,有利于充放电过程中进行氧化还原反应。实验结果表明,本发明的MnO2纳米复合材料比容量为250~306.6F/g,1000循环后电容量依然能够保持在原容量的90%以上。
本发明公开了一种石墨烯复合材料,按照质量百分数包括30%~65%的石墨烯、15%~35%的经过化学气相沉积处理的石墨、0.04%~4%的导电剂以及15%~42%可溶性高分子聚合物;所述可溶性高分子聚合物包覆所述石墨烯、经过化学气相沉积处理的石墨和导电剂形成局部有序的纳米线结构。这种石墨烯复合材料可以作为锂离子电容器的负极活性材料,利用其局部有序的纳米线结构来储存电荷,减少因负极直接与电解液接触导致的不可逆的副反应的发生,使得锂离子能够可逆均匀地嵌入-脱嵌于石墨烯复合材料的层间间隙,提高了正极材料的引出容量,从而提高锂离子电容器的能量密度。本发明还提供一种上述石墨烯复合材料的制备方法,以及采用该石墨烯复合材料的锂离子电容器。
本发明公开了一种输电线路用复合材料横担及其制备方法,属输电杆配套构件领域。该输电线路用复合材料横担结构呈圆柱形实心结构,该圆柱形实心结构由内至外分为三层,芯层、中间层和外层;其中,芯层为一拉挤成型的复合材料实心棒;在该实心棒的外表面缠绕玻璃纤维树脂基复合材料构成的中间层;在中间层外面包覆一层由伞裙构成的外层。其制备方法包括:由玻璃纤维增强热固性树脂拉挤成型芯层的步骤;玻璃纤维缠绕树脂基复合材料构成中间层的步骤;中间层外包覆一层伞裙构成外层的步骤。利用本方法制备的横担,其质量轻、绝缘性和耐老化性能好、应用于实际线路上可有效提高其安全系数,方便安装并可降低成本。
本发明涉及一种复合材料卡瓦及其制作方法,其卡瓦包括卡瓦基体(1)和牙齿(2),卡瓦基体(1)上设有牙齿孔(3),牙齿(2)倾斜镶嵌在牙齿孔(3)内,卡瓦基体(1)由复合材料制成,牙齿(2)由硬质陶瓷材料制成;其制作方法包括以下步骤:S1.旋转下模(102)内的抽芯杆(103);S2.合模;S3.向模腔(104)内填入复合材料;S4.通过平板硫化机加温,并加压;S5.保温保压;S6.旋转抽芯杆(103);S7.脱模得到卡瓦基体;S8.将牙齿粘接在牙齿孔内。本发明复合材料的卡瓦易钻磨、硬度强度高、耐腐蚀,本发明复合材料卡瓦的制作方法简单,无需进行机加工,可实现连续、快速生产。
本发明提供的是一种天然石墨基复合材料的制备方法。用有机溶剂将沥青溶解,加入填料,混合均匀,除去溶剂,破碎成小颗粒制得粘接剂混合物;按重量百分比为天然石墨粉50~70%、掺杂催化石墨化组元2~20%、粘结剂混合物22~35%的比例将上述原料均匀地混合,得到混合物;将混合物通过常规工艺或热压工艺制备高强度、高热导率的石墨基复合材料。本发明的优点体现在:由于在原料中加入了具有增强作用的填料碳纳米管、碳纤维或者碳化硅纤维,使得制备的石墨复合材料的强度显着提高,同时原料中加入的催化石墨化组元,可以提高石墨复合材料的石墨化度,进而提高其热导率。因此可以天然石墨为原料代替焦炭制备高强度、高热导率的石墨复合材料,其抗弯强度均大于30MPA,热导率大于250W/M.K,而且成本显着降低。
本发明提供了一种耐热聚乳酸复合材料及其制备方法,属于高分子材料技术领域。它解决了现有制备聚乳酸交联材料的方法和聚合物交联材料中存在的制品的生物可降解性差、成本较高和力学性能较差等技术问题。本耐热聚乳酸复合材料包括以下重量份的成分:低聚-D乳酸含量的聚乳酸树脂50-99份;成核剂0.1-15份;淀粉或改性淀粉1-50份;其中所述的低聚-D乳酸含量的聚乳酸树脂中聚-D乳酸含量低于5WT%。本复合材料的制备方法包括以下步骤:A.混料、造粒;B.注塑成型;C.热处理。本复合材料的力学性能优异、耐热性能好。本复合材料的制备方法的工艺流程简单、加工性能强、成本低可实现大规模的工业化生产。
本发明属于纳米材料技术领域,具体涉及高性能环氧树脂复合材料及制备方法。首先将碳纳米管羧酸化、酰氯化、氨基化或羟基化,通过小分子芳香族多元酸酐化合物修饰碳纳米管,制备携带酸酐基团的碳纳米管。超声波振荡和高速搅拌,使碳纳米管分散于环氧树脂基体中,采用有机酸酐类固化剂固化,得到碳纳米管/环氧树脂复合材料。本发明使碳纳米管/环氧树脂复合材料的制备更方便;赋予碳纳米管参与反应的活性,碳纳米管上的酸酐基团与环氧树脂中的环氧基团发生化学交联,从而提高了碳纳米管在环氧树脂中的分散,得到高性能的环氧树脂复合材料。与对照样相比,固化后复合材料的各项力学性能指标提高5%~300%,体积电阻率降低3~9个数量级。
本发明涉及一种碳纳米管复合材料预制件及其制备方法,该碳纳米管复合材料预制件包括一基片及一碳纳米管阵列形成于该基片,其中,该碳纳米管阵列远离基片的一端碳纳米管之间的间隙大于靠近基片的一端碳纳米管之间的间隙。该碳纳米管复合材料预制件的制备方法包括以下步骤:提供一碳纳米管阵列形成于一基片;将上述形成有碳纳米管阵列的基片置于一溶剂中一段时间;将上述基片取出后烘干处理,形成碳纳米管复合材料预制件。本发明所提供的碳纳米管复合材料预制件中碳纳米管之间具有较大的间隙,且制备方法工艺简单、成本低、周期短、易于实现。
中冶有色为您提供最新的有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!