本发明提供了一种锂离子电池及其制备方法,其制备方法包括以下步骤:将三元材料与导电剂、高分子粘结剂混合,涂覆于铝箔上,干燥得到正极片;将氧化石墨烯在分散剂中分散得到氧化石墨烯分散液,然后涂覆于正极片上形成氧化石墨烯涂层,得到氧化石墨烯修饰的正极片;将氧化石墨烯修饰的正极片与隔膜、电解液、锂片和镍网在手套箱中组装成扣式电池;将扣式电池进行电化学还原得到锂离子电池。本发明的锂离子电池正极为还原氧化石墨烯修饰的三元材料正极,电子导电率高,循环性能和倍率性能都有显著的提高。
一种高比能量锂离子电池及其制备方法,正极由镍钴铝酸锂、磷酸铁锰锂、单臂碳纳米管、聚偏氟乙烯按一定比例组成,负极由纳米硅、人造石墨、单臂碳纳米管、聚丙烯按一定比例组成,该方法制备的锂离子电池能量密度高,循环寿命长。
本发明公开了一种基于硅负极的新型高电压锂离子电池及能量存储元件,该锂离子电池包含正极、负极和电解液,正极活性物质选自磷酸钴锂及其复合物,负极活性物质选自硅基材料。本发明提供的锂离子电池具有电压高、安全性好、比能量高的特点。
本发明涉及用于磷酸铁锂电池的插电充电容量估计方法。公开了使用来自插电充电事件的数据估计磷酸铁锂电池组的充电容量的方法。实验室测量的电池组电阻,其已知为随电池电阻的寿命保持不变,能够用于在充电期间从端电压确定开路电压。充电后的实际开路电压可以之后测量,在电池组已经搁置了足够时间量之后。开路电压的两个值,如果在具有足够大的斜率的电池组的SOC-OCV曲线上的点处取得,提供电池组充电状态的两个值。通过随两个开路电压读数之间的时间间隔积分充电电流,并且使用两个充电状态值,电池组容量能够由插电充电数据确定。
本发明公开了一种使用水溶性粘接剂的锂离子二次电池及其负极片,所述水溶性粘接剂为改性聚丙烯酸类聚合物,其由单体1~3、或是单体1和3通过自由基聚合引发剂聚合制备而成:相对于现有技术,本发明所使用的粘接剂能有效提高锂离子二次电池的首次充放电效率,并大幅改善其高温循环性能、高温存储性能以及充放电倍率性能。
一种磷酸铁锂/碳纳米管复合材料的制备方法,其先搅拌水性碳纳米管分散液,再添加锂源、铁源、磷酸盐、碳源、水并搅拌形成一定稠度的浆液,然后球磨,再对球磨后的浆液进行冷冻干燥,以制得含碳管的前驱体粉,最后烧结前驱体粉以获得磷酸铁锂/碳纳米管复合材料。本设计能确保制备出的复合材料不仅碳包覆层均匀、振实密度较高,而且碳纳米管分散于磷酸铁锂材料的一次颗粒之间,极大的提高材料的电子电导率,用该复合材料组装的电池具有较好的电化学性能。
本发明提供了一种锂离子电池正极材料及含有该正极材料的锂离子电池正极和电池。该正极材料包括磷酸铁锂正极活性材料和磷酸铁,其中,磷酸铁的颗粒一次粒径不低于20微米。通过将大颗粒的磷酸铁与磷酸铁锂正极活性材料混合用于正极材料中时制备的电池本身防过放能力优异,制备的电芯放电至2.0V以后,继续放电接近0V,正极电位曲线的下降趋势趋于平缓,负极电位曲线尚未上升过高(一般不高于1.5V),两电位曲线即接近或相交于0V。不仅可以防止过放,保障单体电芯的安全,而且可以实现低势能或不带电的安全运输。
本发明公开一种可在高温下直接吸附CO2的Na掺杂硅酸锂陶瓷材料的制备方法。采用固相反应法,以石英砂和Li2CO3为反应原料,同时以Na2CO3为掺杂源,石英砂、碳酸锂、碳酸钠按照摩尔比(0.9~0.99):2:(0.01~0.1)进行配料混合,通过高温烧结得到高吸附率的Na掺杂硅酸锂陶瓷材料;与现有技术相比,本发明所制备的Na掺杂硅酸锂陶瓷材料的CO2吸附率高,能耗低,工艺重复性高,为工业化生产提供一定的研究基础。
本发明公开了一种锂离子电池人造石墨负极材料的制备方法,属于锂离子电池石墨负极材料技术。该方法过程包括:将煤沥青或煤沥青与煤焦油的混合物加入反应釜内,在350~480℃,聚合5~15小时,将该反应产物与未反应的原材料导入冷却槽中降温停止反应,然后用离心装置将固体物质——中间相沥青微球离心出来,将得到的中间相沥青微球干燥并用KMnO4/甲苯溶液中浸渍,然后将甲苯在低温下回收并将浸渍有KMnO4的中间相沥青微球在2300℃进行石墨化,石墨化度大于89%。本发明的特点在于,降低中间相石墨微球的原料纯度和成本,降低高温石墨化成本,提高中间相石墨微球的市场竞争力。
一种汽化热完全回收式溴化锂中央空调,包括高压发生器、高温热交换器和吸收蒸发腔体,高压发生器蒸汽腔、过热蒸汽降温减压室、降温减压膨胀阀、高压冷剂泵和冷剂水盘依次连通;蒸汽压缩机与过热蒸汽降温减压室连通,蒸汽压缩机、压缩过热蒸汽降温减压室、冷凝换热器、冷凝控制膨胀阀、冷剂水冷却器和冷剂水盘依次连通;冷凝换热器设置在高压发生器的浓溶液腔内;压缩过热蒸汽降温减压室还与降温减压膨胀阀和高压冷剂泵之间连通;采用这样的结构,高压发生器蒸发的冷剂蒸汽的潜热能被完全利用,蒸汽压缩机消耗的功也能被高压发生器吸收用于弥补散热损失和传热损失,溴化锂空调运行期间除蒸汽压缩机在连续消耗电能外,发生器不再需要其它热源加热。
本发明提供活性物质、活性物质的制造方法及锂离子二次电池。本发明的活性物质与使用现有技术的LiMnPO4作为正极活性物质的情况相比,能够使锂离子二次电池的放电容量增加。本发明所涉及的活性物质含有LiMnPO4的晶粒,且在垂直于晶粒的(060)面的方向上的晶粒大小为20~93nm。
一种真空金属热还原制取金属锂的装置及其方法,该装置包括反应室和收集室,反应室是由反应室炉壳和设置在反应室炉壳内部的内衬组成,在反应室的内部安装有电阻发热体,在反应室的侧面设置有反应室炉门,反应室的下部开有孔,在反应室下面对应孔的位置安装有收集室,收集室有一个安装在反应室下部的收集室外壳,在收集室外壳内上部,反应室下面安装有冷凝器,在收集室内对应冷凝器的下面设置有收集容器,在收集室外壳的侧面开有收集室炉门,在收集室的下部设置有抽真空管口;将煅烧CaCO3生成的CaO与Li2CO3混合压块后煅烧,将生成的Li2O和CaO磨粉并与金属还原剂混合压块放入反应室在真空条件下加热进行还原反应制取金属锂。
本发明涉及一种改进了能量密度的锂二次电池,其使用包括含有吸收和释放锂离子的锂混合过渡金属氧化物的阴极活性材料的阴极,最终放电电压为1.5V至2.75V。作为阴极活性材料使用多种锂混合过渡金属氧化物、或与基于LCO的阴极材料混合使用,从而将最终放电电压可从3.0V降低至1.5V至2.75V。现有的基于LCO的阴极材料是即使降低最终放电电压,其容量和能量密度也没有得到改变。与此相比,使用本发明的阴极材料时,随着降低最终放电电压而进一步改进了10-20%的容量。
本发明涉及锂电池生产设备技术领域,尤其涉及锂电池测厚装置,机架安装有测厚龙门架,测厚龙门架设置有称重传感器,称重传感器设置有上平板,上平板的正下方设置有用于放置锂电池的下平板,上平板与下平板相互平行,上平板的前端设置有用于测量上平板与下平板之间距离的测距传感器,下平板下端面连接有上推板,上推板下方设置有下推板,上推板和下推板之间连接有弹簧,下推板下方设置有顶杆,顶杆连接有伺服电机;测厚龙门架后端设置有上料工位机构,测厚龙门架前端设置有下料工位机构;本发明可有效避免伤害锂电池的本体,保证较高的测试精度和产品质量,且结构布置合理,体积较小,所占空间较小,有利于设备摆放和操作。
本发明提供了一种核壳结构的锂电池硬炭微球负极材料及其制备方法,所述的核壳结构的锂电池硬炭微球负极材料由淀粉以及表面的石墨化层制成;该材料表面经过催化石墨化处理形成了石墨化层,而内部保持了硬炭结构;通过制备淀粉基硬炭微球、催化石墨化处理得到产品,本发明制备的核壳结构炭微球由于具有高石墨化度外层,因此首次效率高于传统硬炭类材料,而内部为硬炭结构,因此容量较高,倍率性能优良。
本发明涉及一种由钽铌矿浮选尾渣锂云母制造公路反光粉及其工艺,它是用锂云母作为基料,经筛选和酸碱洗涤而成为具有折射和反射功能的反光粉末,其工艺流程为基料筛选→洗涤→表面处理。本发明选材合理,工艺简单,成本低,克服了现有反光粉的缺点,可广泛用于高速公路划线涂料中,具有40%以上的反射率和深远璀璨珠的光效应,增添了高速公路的夜间行车的标示和警示效果,无毒,无放射性,使废渣回收利用,变废为宝。
一种硅酸铁锂正极材料的制备方法,本发明通过将三价铁盐、Na2SiO3 与碱液并流加入到反应器,控制反应体系pH值,使三价铁与SiO32-发生水解, 经过滤、洗涤得到铁、硅的共沉淀物;然后将铁、硅共沉淀物与锂源化合物、 草酸溶液及碳源化合物混合成浆状,球磨,将Fe3+还原为Fe2+,经干燥得到 合成硅酸铁锂的前驱体材料;前驱体材料在保护性气氛下低温焙烧得到由纳 米粒子组成的团聚型酸铁锂正极材料。本发明具有工艺适应性强,易于实现 工业化生产,产品具有较高的密度与优良的电化学性能。
在含有能够吸藏和放出锂离子的硅氧化物的锂离子二次电池用负极活性的物质中,使用下述硅氧化物,所述硅氧化物具有硅位于中心且硅或氧位于4个顶点的四面体单元结构,构成所述单元结构不规则地排列的非晶结构,将位于所述单元结构中的所述4个顶点的氧的数量记为N,其中N=0、1、2、3或4,将所述单元结构表述为SI(N)时,所述硅氧化物中的所述单元结构的数量NSI(N)满足以下的关系式(1)~(3)。
本发明提供一种氯化锂的干燥工艺技术及装置,涉及化工原料的制备。在氯化锂的生产中,需将中间产品氯化锂母液制成颗粒状,本工艺采用流化喷雾干燥技术,将浓度为150~320g/l的母液在压缩空气的作用下,通过喷嘴使其雾化,定量喷入造粒塔内,塔内的晶种将细雾附着成团粒,在热空气的作用下,将其干燥制成粒度为Φ1~8mm的颗粒,含水量小于0.5%。该工艺可用于大规模工业化生产,直收率达92%,可直接用于电解法生产金属锂及作其他化工原料。
本发明提供了一种锂离子正极材料及其特备方 法,其化学通式为LiNi1-x- yCoxMyO2,其中, 0≤x<1,0<y≤0.8,0<x+y<1,M是选自Ti、Mg、Cr和 Mn中的一种或几种元素;制备时将称好的原材料加入混料球 在球磨机中进行混合、球磨,使原材料混合均匀,获得均匀的 原料混合物,然后再经过预烧和合成工艺,可制得高比容量(≥ 165mAh/g)、低成本的正极材料。该材料可取代钴酸锂材料, 用于生产高容量产品,可提高市场竟争的能力。
本发明公开了钨酸锂在制药中的应用,特别是在治疗神经退行性疾病、糖尿病引起的神经病变、脑缺血包括脑功能障碍药物的制备中应用。由于钨酸锂阴、阳离子都有活性,二者发挥协同作用,可以更好地抑制GSK-3的活性。通过抑制GSK-3Α的活性,降低AΒ的生成,以减少SP;通过抑制GSK-3Β的活性,抑制TAU蛋白的过度磷酸化,以减少NFT。通过提高皮质神经元内BDNF的含量,在缺血缺氧状态下,促进神经细胞的存活和损伤修复,改善学习记忆功能障碍。
本发明公开了一种锂离子电池正极材料及其制备方法,正极材料为层状结构的氧化镍钴锰锂,化学成分LiNi1-x-yCoxMnyO2,其中0.15≤x≤0.3,0.2≤y≤0.4。用共沉淀方法制得氧化镍钴锰锂粉体,选择金属磷酸盐作为包覆物质,包覆量为正极材料质量的0.5~1.5%。利用流化床技术得到表面包覆磷酸锌的氧化镍钴锰锂。该方法包覆改性后的电池材料比容量高,高温下循环稳定性好。
本发明关于新能源汽车世界版无须地上充电锂电池作启动的可再生能源交流发电机组纯电动车,涉及新能源汽车的动力来源用交流发电机本能可再生能源电力推进的纯电动车领域。结构由锂电池组、电动机、发电机与能量转换装置的电源整流器、变压器、时间继电器及电流转换器组装成一台可再生能源动力来源的“机器”。发明原理:把“地球最开始旋转起来的能量”就是从“原始太阳”的“旋转园盘”中得到的最原始“动力来源”的绝对原理应用在本发明中的交流发电机组中电动机最开始是怎样转动起来的——电动机最开始转动起来的能量就是从“原始太阳”的“旋转园盘”锂电池组中得到的(第一原动力)——全球通用新能源汽车内的锂电池。
本发明公开了一种直接制备液态六氟磷酸锂(LiPF6)的工艺方法,在稳定剂和催化剂存在的条件下,利用五氯化磷直接在溶剂中与氟化锂直接制备液态六氟磷酸锂。本发明工艺简单,对生产设备无特殊要求且所有反应在同一设备中进行,生产过程中无腐蚀性、剧毒原料且不产生任何废弃物对环境没有污染;所制备的液态六氟磷酸锂产率高、纯度高、稳定性强,在100℃下不易分解,且可以直接可以配制成高纯度电解液。
本发明克服现有技术中锂离子电池容量得不到有效恢复的不足,提供一种容量恢复型锂离子电池的维护方法。容量恢复型锂离子电池的维护方法,步骤为:(1)、破坏SEI膜;(2)、加入SEI膜修复剂;(3)、化成、密封。本发明的有益效果是:利用简单的设计,使形成的SEI膜破坏后重新再生,使得锂离子电池的使用寿命由原来的1000次以上提高到3000次到5000次以上,而且可以反复再生,在再生过程中电池容量得以有效恢复。
本发明涉及一种铌掺杂钴锰酸锂复合正极材料的制备方法,包括如下步骤:(1)按化学式LiNbaCobMn1-a-bO2,其中a为0.03-0.05,b为0.2-0.3,称取草酸锂,氯化钴、硝酸铌和硫酸锰作为原料,将上述草酸锂,氯化钴、硝酸铌和硫酸锰溶于去离子水中,配置成混合溶液,然后加入络合剂聚丙烯酸,混合均匀后,恒温水浴中机械搅,得到溶胶;(2)将上述溶胶置于恒温水浴中,蒸发浓缩得到固体湿凝胶,取出后置于烘箱内烘干后,球磨得到干凝胶粉末;将干凝胶粉末烧结得到产品。本发明制备的锂离子电池用复合正极材料,掺杂铌改性以提高其离子扩散性能,采用钴锰材料复合以提升材料的比容量和热稳定性,使得该正极材料具有较高比容量和循环稳定性。
本发明公开了一种制备磷酸铁锂材料的方法。该方法包括:将碳源、锂源、铁氧化物和磷酸在水中混合并直接在烘箱中以80-120℃烘干5-10小时;将得到的固体产物在非氧化性气氛中于600-900℃恒温焙烧1-18h,冷却至室温,制得磷酸铁锂材料粉末。本发明工艺简单易行,不产生对环境污染的气体,制备出的磷酸铁锂材料晶体结构好、纯度高、比容量高、产品性能稳定,适合进行工业规模化生产。
中冶有色为您提供最新的有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!