本发明公开了一种二硫化钼包覆二氧化钼负极材料的制备方法和应用;属于锂离子电池负极材料的制备技术领域。本方法是将超细金属钼前驱体置于二氧化硫气氛下焙烧,一步得到表层均匀包裹二硫化钼纳米层的二氧化钼材料。该材料用作锂离子电池负极,不仅具有很高的比容量,还具备良好的循环稳定性和倍率性能。该合成方法简单有效,制备所得材料性能优异,具有较广的应用前景。
本发明公开了一种纳微结构硅负极材料的制备方法,包括如下步骤:(1)将冶金级微米硅分散于有机分散液中;(2)配制HF‑金属盐溶液作为刻蚀剂,将刻蚀剂缓慢加入硅的预分散液中,得到表面沉积有金属颗粒的微米硅;(3)将表面沉积有金属颗粒的微米硅重新分散于有机分散液中;(4)将HF‑H2O2溶液加入硅的分散液中,间歇性加入有机分散液;(5)将多孔硅浸泡在HNO3溶液中,得到高纯度多孔硅;(6)将高纯度多孔硅通过氧化程度可控的球磨处理。本发明采用金属辅助化学刻蚀‑氧化程度可控的球磨联用的方法,制备出一种表面光滑包裹一层致密氧化层SiOx,且内部富含微孔的纳微结构硅负极材料,可以缩短锂离子传输路径和容纳硅体积膨胀,具有非常优异的循环稳定性。
本发明提供一种旅游管理用计算机查询系统,包括多个查询点、以及后台数据库服务器;每个查询点都包括固定支架、GPS定位器、以及查询设备,固定支架的下端通过地脚螺栓固定于地面,查询设备具有外壳、嵌装在外壳前表面上的触摸显示屏、以及固定在外壳内部的中央处理器和锂电池,锂电池、GPS定位器和触摸显示屏都与中央处理器相连接,中央处理器通过无线网络与后台数据库服务器相连接。使用时,通过触摸显示屏输入想要查询的旅游景点,则后台数据库服务器通过该查询点中的GPS定位器定位查询人员所在的当前地点,并根据其输入的旅游景点计算出较优的旅游线路图、并发送给中央处理器,从而帮助人们能够正确合理的找到自己的理想线路。
一种多孔钒锰氧化物负极材料的制备方法,包括以下步骤:(1)将钒源、锰源与二水合草酸、柠檬酸按钒元素、锰元素、二水合草酸、柠檬酸摩尔比为1:1:2:1~3比例,加入去离子水中形成溶液,控制溶液中锰离子的浓度为0.5~1mol/L;(2)将所得的溶液置于带有超声搅拌装置的水浴锅中,超声搅拌反应3-6h,形成溶胶;(3)将所得的溶胶放入80~120℃烘箱中干燥2~6h,得凝胶;(4)将所得的凝胶在保护气氛中,于200~500℃下,焙烧2~10h后,随炉冷却至室温,即成。本发明反应过程简单,便于产业化控制,所制备的钒锰氧化物具有多孔结构,有利于锂离子脱嵌,具有良好的克容量与循环性能。
一种三元正极材料及其生产方法。金属镍、钴、锰混合料在有惰性气体或氮气保护条件下,经高温熔融,熔融后进行雾化造粒,造粒后氧化得到镍钴锰合金氧化物,该氧化物与锂化合物按金属元素含量摩尔比为(Ni+Co+Mn):Li=1:1~1:1.15混合后在600~1050℃温度下焙烧后得到,该三元正极材料粒度均匀,呈规则球形或类球形,振实密度大,具有较高的充放电容量和较好的电化学循环性能。本发明采用镍、钴、锰金属作为原料,全固相反应制备三元材料,能完全避免湿法制备前躯体工艺过程中造成的环境污染,工艺流程简单,操作方便,生产效率高。
本申请涉及锂电池领域,具体而言,涉及一种硅氧负极材料及其制备方法、二次电池用负极。将碳包覆一氧化硅与金属材料热处理,使所述碳包覆一氧化硅中至少部分一氧化硅与所述金属材料反应生成硅酸盐和硅单质,得到硅氧负极材料。硅酸盐不具备嵌锂能力,不仅可以抑制材料的体积膨胀,还能提高硅氧负极材料的首效。此外,金属材料与一氧化硅的反应过程中,由于碳层的存在,碳层可以使该反应过程缓慢进行,避免生成大量的热而导致硅晶粒尺寸偏大,较小的硅晶粒尺寸可使硅氧负极材料表现出较好的循环性能。
本发明公开了一种具有低热膨胀系数的LTCC基板材料及其制备方法,该LTCC基板材料主要由硼硅酸盐玻璃和陶瓷原料制备得到,陶瓷原料为β‑锂辉石和/或氧化铝,硼硅酸盐玻璃与陶瓷原料的质量比为35~60∶40~65,硼硅酸盐玻璃主要以质量比为30~60∶30~60∶5~20∶1~4∶2.5的H3BO3、SiO2、MgO、Li2CO3和Na2CO3为原料制备得到。制备方法包括先制备硼硅酸盐玻璃渣,球磨成粉,然后与陶瓷原料混合、造粒、压制、排胶和烧结,得到LTCC基板材料。该LTCC基板材料具有烧结温度低、热膨胀系数小和介电性能优异等优点。
本发明提供了一种酰氨基多元羧酸/羟肟酸类化合物及其在矿物浮选中的应用,所述酰氨基多元羧酸/羟肟酸类化合物的结构式如下述式(Ⅰ)所示;其中式(Ⅰ)中R代表C6~C18的脂肪烃基,n=1~3,M1、M2、M3、M4分别选自‑OH、‑ONa、‑OK、‑NHOH、‑NHONa或‑NHOK中的一种或几种;其中n1=1~3,n2=1~3,n3=1~3;本发明提供的酰氨基多元羧酸/羟肟酸类化合物作为捕收剂可强化对金属氧化矿的螯合和识别作用,促进捕收剂在矿物表面有序排列,有效浮选回收钨矿、稀土矿、锡矿、锂矿、磷矿、氧化锰矿、氧化铜矿、萤石或钛铁矿,具有强捕收能力、高选择性、吨矿用量低等优点,特别是适合处理难选细粒矿石。
本发明公开了一种基于物联网的农业监控系统,包括数据监控平台和至少一个移动检测终端;移动检测终端与数据监控平台无线通信连接;在土壤中还设有多个固定式检测终端;固定式检测终端上设有温湿度传感器;固定式检测终端与数据监控平台有线或无线通信连接;移动检测终端具有电动行走机构和锂电池;锂电池用于驱动电动行走机构,还用于为移动检测终端上设置的检测设备供电;监控系统所针对的监控区域(301)具有多条用于移动检测终端通信的道路(303),在监控区域中或监控区域外至少设有一个无线充电平台;无线充电平台中设有无线充电机构能为移动检测终端充电。该基于物联网的农业监控系统集成度高,功能丰富。
本发明公开了一种木材软化剂及其制备方法和应用;木材软化剂包括以下重量份数的原料:双氧水14‑18份、油酰乙醇胺5‑7份、三氟甲烷磺酸钾4‑6份、N,N‑二甲基乙酰胺2‑4份、乙酸锂1‑5份、三聚磷酸钠0.8‑1.2份;本发明采用双氧水、油酰乙醇胺、三氟甲烷磺酸钾、N,N‑二甲基乙酰胺、乙酸锂和三聚磷酸钠为原料经上述工艺制备而成,制备的木材软化剂软化温度低,软化时间短,在相同的软化温度下,减少软化时间约50%,软化效率高,降低了木材软化处理的成本,软化效果好,而且本发明制备工艺简单,易于实现工业化生产,值得推广。
本发明公开了一种合成三元正极材料的方法,包括:S1、将三元正极材料前驱体与氧化剂混合,以原料本身为磨球进行球磨预氧化;S2、将锂盐和氧化剂溶于溶剂中,形成混合液,然后将球磨预氧化后的三元正极材料前驱体加入所述混合液中;S3、进行回流反应,并在回流反应过程中泵入掺杂元素的悬浊液或溶液;S4、将回流反应后的浆料经固液分离、洗涤和干燥后即得三元正极材料。本方法能制备出结晶度好、嵌锂彻底、倍率性能好、振实密度高的三元正极材料,且还能有效解决传统工艺能耗和成本高、固液反应不充分等问题。
本发明属于分子生物学检测领域,具体地,属于病毒核酸提取的领域。本发明请求保护一种提取2019新型冠状病毒核酸的组合物,所述组合物包括:提取溶液1:盐酸胍、硫氰酸胍、尿素、莎梵婷、氯化钾、氯化锂、十二烷基硫酸三乙醇胺、NP‑40、曲拉通X‑100,和异丙醇;提取溶液2:Tris‑HCl、氯化锂、醋酸钠、十二烷基硫酸三乙醇胺、NP‑40、SDS,和乙醇;以及提取溶液3:Tris‑HCl、氯化钠,和乙醇。使用本发明的组合物,能够特异性的提高2019新型冠状病毒的核酸提取和纯化的灵敏度,其检测限可达10拷贝/mL。
本发明涉及一种适应大功率工作的石墨烯涂层电池极耳结构及其制造方法,其中石墨烯涂层电池极耳结构包括锂离子电池、超级电容器或锂离子电容的极片上无电极材料层的极耳箔材,该极耳箔材表面附着有石墨烯涂层。本发明通过在箔材极耳上附着石墨烯涂层作为保护,可防止或减缓极耳在大功率工作发热条件下箔材表面氧化膜的生长增厚。
本发明涉及一种可编程控制的LED灯控制装置,包括聚合物锂电池、手动开关、遥控开关发射器,遥控开关接收器、插卡式全彩LED控制器和全彩LED灯带,聚合物锂电池连接手动开关、遥控开关接收器、插卡式全彩LED控制器和全彩LED灯带,遥控开关发射器与遥控开关接收器无线连接,手动开关和遥控开关接收器都连接插卡式全彩LED控制器,插卡式全彩LED控制器连接控制全彩LED灯带。本发明结构轻巧,耐折抗拉,安全可靠,美观大方,并且可做任何造型,极大提升艺术效果。
本发明提供了一种制备17α-羟基孕酮或其类似物的方法,包括如下步骤:将式(4)的化合物在金属镁和卤化锂存在下,于溶剂和卤甲烷中,反应,然后采用酸性物质水解,最后从反应产物中收集目标产物(1),本方明降低了生产成本,同时避免了所使用试剂及中间产物毒性大、不稳定、副产物对环境污染严重等问题,反应条件温和,经简单纯化后其纯度可达到99%以上。便于工业化实施。反应方程式如下:
本发明公开了一种高能量密度电池用电解液及其制备方法,包括锂盐、钾盐、第一添加剂和第二添加剂;上述钾盐中含有氟基;上述锂盐、钾盐、第一添加剂和第二添加剂的重量份比为2‑6:1‑3:2‑7:1‑3。本发明的高能量密度电池用电解液制备工艺不复杂,所用原料经济合理,适用于工业生产。
本发明公开了一种三轴节点式数字地震仪信号处理电路系统,包括电源电路模块、传感器信号输入模块、信号处理电路模块和数字信号输出模块,所述传感器信号输入模块将地震信号传输给信号处理电路模块进行处理,再经数字信号输出模块数字化后输出后实时传输,所述电源电路模块为所述传感器信号输入模块、信号处理电路模块和数字信号输出模块供电。所述电源电路模块采用+12V锂电池供电,锂电池输入的+12V电源经过转换形成三路输出,其中一路降压至DC+5V输出,一路降压至DC‑5V输出,一路降压至VCC+3.3V输出。本发明每个节点之间通过无线互联,大幅降低了由于线缆引入的噪声干扰。
一种氮未取代吡唑和吲唑类硼酸的制备方法,以氮未取代卤代吡唑及其衍生物或氮未取代卤代吲唑及其衍生物和三异丙基氯硅烷溶于有机溶剂中进行反应,生成三异丙基硅基保护的卤代吡唑或者卤代吲唑化合物,再与正丁基锂发生锂溴交换反应,加入硼酸酯引入硼原子,水解后高收率的到得了氮未取代吡唑或吲唑类硼酸。
本发明公开了一种电弧炉用高温烟气热回收预热式氧枪及其应用方法,预热式氧枪包括导热油预热装置和冷却水预热装置;导热油预热装置包括:导热油受热回路,其一部分伸入电弧炉烟气管道内;导热油预热回路与导热油受热回路传热连接,导热油预热回路一部分伸入氧枪内;冷却水预热装置包括:第三导热油池,其进油管和出油管均与导热油受热回路连通;冷却水预热回路一部分伸入氧枪内;冷冻水回路;溴化锂吸收式制冷机组通过第二热管与第三导热油池连接,冷却水预热回路和冷冻水回路均与溴化锂吸收式制冷机组连接。该预热式氧枪可利用烟气余热对氧气进行预热,并且可得到热水和冷冻水。
本发明提供了一种二芳基喹啉衍生物的制备方法,以6‑溴‑2‑甲氧基喹啉和三取代苯甲醛为起始原料,经锂化加成得到仲醇,再经羟基还原,卤原子取代,再锂化加成的方法得到目标产物,该化合物在药物化学领域具有广泛的应用前景。
本发明提供了一种快离子导体包覆的高镍三元正极材料及其制备方法,所述高镍三元正极材料为一次颗粒组成的球形或类球形二次颗粒,直径为1~30μm,化学式为LiNi0.8Co0.1Mn0.1O2。制备方法包括:按比例称取合成快离子导体的原料,在溶剂中分散均匀,得到混合溶液;将高镍三元前驱体加入混合溶液中,再进行搅拌、干燥和研磨,得到快离子导体包覆的高镍三元前驱体粉末;将所得前驱体粉末与锂盐混合均匀,烧结后得到快离子导体包覆的高镍三元正极材料。快离子导体材料作为三元正极材料的包覆物质可为锂离子传输提供快速传输通道,达到降低电池内阻的目的;包覆后在不降低电池放电比容量的情况下,提升了电池循环稳定性。
本发明属于锂离子电池正极材料技术领域,具体涉及一种聚苯胺/聚乙二醇共包裹的复合三元正极材料,包括正极三元材料以及包覆在其表面的聚苯胺和聚乙二醇。本发明还提供了所述的复合正极三元材料的制备方法和应用。本发明所述的复合三元正极材料,通过所述的正极三元材料和所述的聚苯胺和聚乙二醇之间的表面作用,协同提升得到的复合三元正极材料的电学性能,改善包覆效果和化学稳定性。另外,本发明创新地采用湿法包覆方法,工艺简单,配合所述的组分协同,可进一步改善包覆效果,提升材料的性能,还具有操作简便,一致性高等优势。
本发明提供了一种制备咪达普利关键中间体及其衍生物式Ⅰ的方法,由(4S)-3-取代基-1-甲基-2-氧代咪唑烷-4-羧酸酯衍生物Ⅱ与N-[(S)-1-乙氧基羰基-3-苯基丙基]-L-丙氨酸-N-羧酸酐Ⅲ或N-[(S)-1-乙氧羰基-3-苯丙基]-L-丙氨酸Ⅳ在非质子性溶剂中由锂盐催化反应即得。本发明的优点是反应条件温和,反应速度快,收率高,污染小,有广泛的应用前景;其中R2为氢原子、碱金属及碱土金属原子、C1~C4烷烃基、苄基,当R2为氢原子时,该产物即为咪达普利。
高吸液率微纳结构聚合物电解质膜的制备,由聚合物材料包覆支撑骨架制备而成。经过处理,聚合物膜呈现微纳结构并形成微米、纳米量级的孔,与支撑骨架本身具有的纳米孔形成网状分布孔结构,层层交联的聚合物包覆在特殊的支撑骨架上,形成特殊的海绵状微纳结构聚合物电解质膜。这种微纳结构的聚合物膜可吸收大量的电解液,大大增加了吸液率,改善了隔膜对电解液的亲和能力,网状微纳结构让电解液很好地保持在其中,使聚合物电解质膜内部锂离子分布均匀,浓度平衡,充放电时电池内部的电流密度均匀;特殊的支撑骨架保证了膜的机械性能。聚合物电解质膜制备工艺路线简单,原料价廉易得,膜的制备可在常规条件下进行,不需要苛刻的生产环境。使用此膜制备的聚合物锂离子电池具有优异的电化学性能。
本发明提供一种类球形单晶正极材料,单晶正极材料为含Ni和M的层状锂过渡金属氧化物正极材料,该单晶正极材料的一次粒子为类球形,平均尺寸为2.0~2.3μm。还提供一种该单晶正极材料的制备方法,将前驱体经过低温预氧化和混锂后,再采用三段式一次烧结工艺,第一段长时间的低温保温,第二段短时间的高温保温和第三段长时间的低温保温获得。该类球形单晶正极材料颗粒小、振实密度较高、颗粒不易破碎、内阻低、电化学性能好。
本发明公开了一种风光储充校园微电网系统,包括分布式发电单元和混合储能单元,所述分布式发电单元与所述混合储能单元相连;所述分布式发电单元包括光伏系统和风力发电机组,所述混合储能单元包括超级电容和锂电池组。本发明还公开了一种如上所述的微电网系统的控制方法,控制风光储充校园微电网系统在并网模式与离网模式之间切换,以及基于增强学习对混合储能单元进行能源的优化管理。本发明具有提高用电经济性、提高用电安全稳定性、延长锂电池组使用寿命等优点。
本发明涉及一种快速表征二氧化钛纯度的方法,属于分析检测技术领域。本方法以TiO2同步辐射XRD检测结果为基础,分别与拉曼光谱法或电化学表征法的数据建立多相TiO2含量标准曲线。拉曼光谱检测法是在拉曼谱图中找到对应相TiO2最强特征峰,电化学表征是在容量微分曲线中找到对应相TiO2嵌锂峰,分别拟合峰面积并将待测相的峰面积除以总的峰面积,以得到的比值作为横坐标,同步辐射XRD精修出的含量作为纵坐标,分别建立TiO2含量标准曲线,作为对未知相含量TiO2定量检测依据。本方法适用于多相TiO2中指定相TiO2的定量测定;基于具有统计意义的数据建立标准曲线,检测结果更准确;提供拉曼检测和电化学检测两种检测方式,应用领域广泛。
本发明公开了一种桐油基酸性萃取剂及其制备方法和在选择性萃取分离过渡金属离子中的应用。将桐油与甲醇发生酯交换反应,得到桐油酸甲酯;所述桐油酸甲酯与含酸性功能基团的亲双烯体烯烃化合物通过Diels‑Alder加成反应,即得桐油基酸性萃取剂。该桐油基酸性萃取剂的物理化学性质稳定,饱和容量大,萃合物油溶性好,且具有良好的过渡金属离子络合能力,将其与4PC组成协同萃取体系,对复杂金属离子溶液体系中的过渡金属离子有很强的正协同萃取效果,而对锂离子等存在明显的反协同萃取效果,非常适用于过渡金属离子与锂离子的选择性萃取分离,具有良好的工业应用前景。
本发明提出了一种去除镍钴锰溶液中氟的方法,属于溶液净化技术领域。一种去除镍钴锰溶液中氟的方法,包括以下步骤:分离、破碎、筛选废旧锂离子电池的集流体;酸溶集流体,得到含铝溶液;含铝溶液加入到含氟的镍钴锰溶液除氟,得到含氟渣和除氟后的镍钴锰溶液。本发明提供的技术方案,除氟后的镍钴锰溶液中氟离子及铝离子浓度均小于0.01g/L;含氟渣中镍钴锰含量均低于0.5%;通过利用溶解集流体得到的含铝溶液去除镍钴锰溶液的氟,实现锂离子电池回收时集流体和电池正极材料的并线处理,缩短回收流程,节约回收成本;镍钴锰溶液除氟后,进入到后续工艺流程,对设备基本没有腐蚀。而且,除氟后的镍钴锰溶液含铝量极低,整个除氟过程没有引入铝杂质。
中冶有色为您提供最新的湖南长沙有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!