本发明涉及一种动力锂离子电池锰酸锂正极材料的制备和改进方法,采用以下工艺步骤:(1)将锰盐、锂盐、及少量溶剂,混合均匀后,准备煅烧;(2)将得到的混合物空气气氛中加热,得到前躯体;(3)将前躯体于自然冷却,加入掺杂元素,再研磨均匀;(4)得到的前躯与适量的包覆材料混合研磨均匀;(5)将上述粉末进行煅烧,得到粉末材料;自然冷却至室温后于球磨机中研磨,即得到所述的动力锂离子电池锰酸锂正极材料。本发明所制备正极材料颗粒均匀,结晶性能好;本发明所提供的尖晶石型的正极材料具有比容量高,循环性能好等较好的电化学性能;适合大规模化生产,可以用于动力锂离子电池正极材料使用。
本发明公开了一种锂离子电池的电解液,包括电解质、环状醚类溶剂、链状醚类溶剂和无机锂盐添加剂。相对于传统的碳酸酯类溶剂,本申请的电解液中的环状醚类溶剂和链状醚类溶剂不易发生化学分解生成气体分子,同时加以使用无机锂盐添加剂,可以抑制钛酸锂材料对电解液的诱导分解,大大提高相应电池的大倍率充放电循环稳定性。因此相对于传统的锂离子电池的电解液,本申请的锂离子电池的电解液不容易发生化学分解生成气体分子,避免了钛酸锂电池产生胀气。
本发明公开了一种适用于钛酸锂电池的锂离子电池电解液,涉及电池材料领域,能够显著抑制钛酸锂电池长期使用和高温环境下的产气问题。所述锂离子电池电解液包括电解质锂盐、非水有机溶剂和钛酸锂负极保护添加剂;锂盐由六氟磷酸锂(LiPF6)和双草酸硼酸锂(LiBOB)组成,且二者之间的摩尔比为100~80 : 0~20,非水有机溶剂以环状碳酸酯:线性碳酸酯:醚类=30~50 : 20~50 : 0~30的质量比均匀混合而成,电解质锂盐与非水有机溶剂组成的混合锂盐溶液的浓度为0.5~1.5mol/L,钛酸锂负极保护添加剂为硼酸酯类物质,其在电解液中的质量比为0.1%~10%。本发明能有效抑制钛酸锂电池的产气问题,且电池综合性能优良。
本发明涉及一种磷酸亚铁锂和亚铁酸锂复合电极材料的制备方法,该方法先将碳源、锂源、磷源和铁源混合,混合料经干燥后在非氧化性气体环境下依次通过低温焙烧和高温焙烧,自然冷却后经机械研磨过筛,得到磷酸亚铁锂和亚铁酸锂复合电极材料。本发明的制备方法工艺简单、成本低,采用本发明的制备方法制备出的复合电极材料覆碳含量小、振实密度高、比表面积10~30m2/g、比容量高、易于电极成型,该复合电极材料可用于混合超级电容器的电极材料、锂离子电池的电极材料等。
本发明公开了一种锂含量可控的富锂锰正极材料的制备方法,其特征在于将二氧化锰、导电剂和粘结剂在N‑甲基吡咯烷酮中混合均匀,涂布在铝箔上并烘干,将其连接放电仪器的正极作为正极片,放电仪器的负极连接金属锂,将正极片和金属锂置于同一个容器中,并加入溶解锂盐的有机溶剂,通过控制放电容量制备锂锰比可控的两种前驱体;混合烧结得到富锂锰正极材料,通过控制两种前驱体的质量比,即可得到不同锂含量的富锰锂材料。本发明可实现精确的锂锰比的控制,便于实现大规模生产,又可以根据客户的需求随时调整锂的含量,具有广泛的适用性。
本发明提供一种含氟磺酰亚胺锂锂盐的电解质溶液及其用途,该电解质溶液由四类成份组成:含氟磺酰亚胺锂,其他锂盐,碳酸酯类和/或醚类有机溶剂和其他功能添加剂,其中含氟磺酰亚胺锂锂盐在此电解质溶液中的摩尔浓度为0.001~2摩尔/升,其他锂盐在此电解质溶液中所占的摩尔浓度为0~2摩尔/升,其他功能添加剂在此电解质溶液中的摩尔浓度为0~0.5摩尔/升;含氟磺酰亚胺锂为离子型化合物,其阳离子为锂离子。本发明提供的电解质溶液中含有含氟磺酰亚胺锂,能大大提高电解质溶液的低温性能,将其应用于锂电池后,锂电池在50℃以上高温或-20℃以下低温的情况下,其电池容量百分率均有所提高,有利于锂电池的循环寿命和储存寿命的提高。
本发明提供了一种预锂化电池的化成方法、锂离子电池及其制备方法,该预锂化电池设置有负极预锂化层,化成方法包括以下步骤:将装配有预锂电芯的预锂化电池抽真空,分次注入电解液;预封边,在温度为‑20℃~15℃的环境中加压静置,压力为0.01~5Kgf/cm2;在温度为15℃~35℃的环境下,以0.01~0.1C的电流,充电至5~30%SOC,充电结束后,将电芯放电至4%~6%SOC;在温度为15℃~35℃的环境下,采用分段电流进行充电,且电流从小到大,充至100%SOC。该预锂化电池的化成方法操作简便,能够形成稳定的SEI膜,进而可以提升锂离子电池的循环性能。
本发明公开了一种锂电池系统及锂电池系统管理方法和应用。所述的锂电池系统包括:由一个以上锂电芯组成的锂电池组和电池管理系统,所述锂电池组的正极端串联有熔断机构;所述锂电池组的负极端分别与第一功率开关、第二功率开关串联,所述锂电池组的负极端与第二功率开关之间还串联有功率电阻;所述电池管理系统还分别与所述锂电池组、第一功率开关、第二功率开关连接。本发明提供的锂电池系统,能够实现锂电池系统直接替代铅酸电池使用,并不需要对原电动车的电机控制系统进行电路等硬件更改、亦不需要对电动车的其他结构进行改动,可以与多种型号的电机控制系统直接连接。
本发明提供了一种磷酸铁锂和钴酸锂的混合正极浆料及其制备方法,所述磷酸铁锂和所述钴酸锂的质量比为2:8‑8:2;所述磷酸铁锂为碳包覆磷酸铁锂,其中碳含量为3‑5wt%,D10为60nm以上,D90为300nm以下;所述钴酸锂为磷酸铁锂包覆的钴酸锂,其中磷酸铁锂包覆层的含量为10‑30wt%,D50为1.5‑3μm,D10为1μm以上,D90为4μm以下,将所述磷酸铁锂制备得到第一浆料,将所述钴酸锂制备得到第二浆料,待准备涂布正极,将第一和第二浆料混合制成混合正极浆料,在短时间内进行涂布。本发明提供的第一和第二浆料相比较于混合浆料,能够存储较长时间,有利于浆料的存储和运输,降低生产成本,并且当需要涂布时,能够在很短的时间内将两种浆料分散均匀,便于涂布使用,提高正极活性材料层的均匀性。
本发明提供了一种镍酸锂电池的化成方法,所述镍酸锂的分子式为LiNi1‑xAlxO2,x=0.02‑0.03,所述化成方法为开口化成,其中包括,将组装好的电池加热至50‑60摄氏度,注入电解液A,保持在该温度下,然后以充电截止电压恒压充电,直至充电电流低于截止电流;抽真空排气;恒流放电至放电截止电压,静置将电池自然冷却至室温,恒流充电至第二预定电压,以第二预定电压恒压充电,直至充电电流低于截止电流;注入电解液C,小电流恒流在第二预定电压和充电截止电压下循环若干次;调整电池温度至室温,在放电截止电压和充电截止电压下循环若干次,得到所述镍酸锂电池。由本化成方法得到的镍酸锂电池,具有良好的高温循环性能。
本发明公开了一种一种锂离子电池负极材料的制备方法包括以下步骤:(1)抽滤法制备出厚度为30‑250μm碳纳米管薄膜;(2)电镀法制备碳纳米管‑铁复合薄膜,其中铁与碳纳米管的质量比为1:(3.6‑4.5);(3)采用磁控溅射Sn和高温热处理制备出含有Sn2Fe合金相的碳纳米管‑铁‑锡复合电极,即所述锂离子电池负极材料。本发明的制备工艺简单省时,材料经济。本发明还提供一种该方法制备的锂离子电池负极材料,能够保证初始比容量在1800mAhg‑1以上,在100循环充放电后的容量恢复率在95%左右,可逆容量较高,在500次循环后容量恢复率可以达到87.8%。本发明还提供一种如前所述方法制备获得的锂离子电池负极材料的应用,其中所述锂离子电池负极材料用作负极片,和正极片、隔膜组装成锂离子电池。
本发明涉及一种长寿命磷酸铁锂/硬碳软包装锂电池,包括有外包装铝塑膜覆盖层,其特点是:外包装覆盖层下从外至内依次堆叠有隔膜层、负极层、隔膜层、正极层;负极层上延伸有负极极耳组件;所述正极层上延伸有正极极耳组件。有此,依托于硬碳层所构成负极层,与磷酸亚铁锂构成的正极层相配合,采用六氟磷酸锂有机溶剂,能够实现循环寿命长、比容量高、结构稳定、原料资源丰富、安全性好,不污染环境的二次锂离子电池。
本发明公开了一种锂电池正极材料镍锰酸锂的制备方法,包括共沉淀前躯体制备和微波快速制备。通过上述方式,本发明的锂电池正极材料镍锰酸锂的制备方法,制备的是4.7V非化学计量比镍锰酸锂材料,采用新型共沉淀方法实现锂、镍、锰三种元素的均匀反应,操作简单,合成时间短,大大简化了前躯体的准备过程,实现正极材料的快速制备,在大倍率充放电条件下,具有优良的充放电性能及循环性能。
本发明涉及一种锂硫电池电解液,包括锂盐和有机溶剂,锂盐包括如通式(1)所示的硫酸锂衍生物和其他锂盐,通式(1)为:
本发明公开了一种联产二氟磷酸锂和二氟二草酸磷酸锂的方法,包括如下步骤:一、将六氟磷酸锂和二氯二甲基硅烷溶解在非水溶剂中,六氟磷酸锂与二氯二甲基硅烷的摩尔比为1:2~1:2.5;二、在第一步骤形成的体系中,分若干批次间隔加入二水草酸固体;六氟磷酸锂与二水草酸的摩尔比为1.5:1~1:1;三、反应液降温后过滤,得到湿固体二氟磷酸锂粗品和二氟二草酸磷酸锂溶液;四、湿固体二氟磷酸锂粗品和二氟二草酸磷酸锂溶液后处理,得到二氟磷酸锂产品和二氟二草酸磷酸锂产品。本发明的优点在于:对产品进行了有效的分离和纯化,保证了产品的纯度及品质,大大降低了二氟磷酸锂和二氟二草酸磷酸锂的生产成本,具有高度的产业利用价值。
本发明公开了一种实现锂电池低温启动的电路结构及低温启动锂电池的方法。所述实现锂电池低温启动的电路结构包括:主要由锂电池组、第一继电器和电机串联形成的第一电路,所述电机连接于锂电池组的两个供电端之间;主要由所述锂电池组、第一继电器和至少一超级电容串联形成的第二电路,所述超级电容连接于锂电池组的两个供电端之间;以及,主要由所述锂电池组、第一继电器、第二继电器和至少一加热机构串联形成的第三电路,所述加热机构连接于锂电池组的两个供电端之间。本发明提供的实现锂电池低温启动的电路结构可以提高电池组的温度,使其达到启动温度,从而实现锂电池作为车用启动电池在低温下启动。
本发明涉及一种无负极锂金属电池电解液及无负极锂金属电池。为了解决现有无负极锂金属电池存在首效低和循环寿命差的问题,本发明提供一种针对无负极锂金属电池的电解液,其包括有机溶剂、锂盐和功能添加剂,功能添加剂包括添加剂A和其他功能添加剂,添加剂A为氟代环状碳酸酯类化合物,其他功能添加剂包括环状硫酸酯类化合物和/或锂盐型添加剂。本发明在无负极锂金属电池的电解液中添加由氟代环状碳酸酯类化合物与环状硫酸酯类化合物和/或锂盐型添加剂组成的功能添加剂,有助于提高了现有无负极锂金属电池首周效率和循环容量保持率,制备简单、成本低,易大规模推广利用,具有广阔的商业前景。
一种负极活性膜层及其制备方法、预锂化方法、负极极片及锂电池,属于电池领域。负极活性膜层的制备方法包括:在保护气氛下,将氟化碳与熔融锂液混合,然后涂覆于平面载体形成涂层并静置不少于2h,以使涂层中形成氟化碳层‑氟化锂层‑锂层的三明治结构;氟化碳与熔融锂液的质量比为10:(0.5‑1),且氟化碳的化学式为CFx,0.5≤X≤0.99,保护气氛用于抑制熔融锂液氧化。上述制备方法简单可控,形成由CF层‑LiF层‑Li层依次连接的负极活性膜层,含有负极活性膜层的预锂化方法、负极极片和锂电池均具有优异的首次效率,能够使负极极片在环境空气中长期保持稳定并具有优异的首次效率。
本发明公开了一种基于锂离子固体电解质的锂空气电池的制备方法,包括电解质骨架的制备、空气电极的制备、金属电极的制备以及电池引线的制备;得到的全固态锂?空气电池使用了石榴石型或钙钛矿型锂离子固体电解质材料制作多孔支撑体,空气电极催化剂和锂金属阳极渗透孔内,拓展电池反应三相界面,降低了电池极化电阻,缩短锂离子传输路径,减少了电池欧姆电阻;电池为一端封闭的管式结构,锂金属阳极灌注在管内,电池密封简易,易于在不同条件下进行工作;具有充放电容量高、倍率性能好、循环稳定性高、工作温度范围广等优点,适用于各种移动电子设备以及动力电池领域。
本发明公开了一种同时得到性能优异二氟草酸硼酸锂与四氟硼酸锂的合成工艺,包括如下步骤:(一)将含氟的化合物、含硼的化合物、含锂的化合物以及含草酸根的化合物在0~100℃、反应压力为0.1~1MPa、及反应介质中反应,其中锂元素、氟元素、硼元素与草酸根离子的摩尔比为2~3∶5~6∶2∶1;生成含有二氟草酸硼酸锂与四氟硼酸锂的反应液;(二)对反应液中的二氟草酸硼酸锂与四氟硼酸锂进行初步分离,然后用能萃取二氟草酸硼酸锂或四氟硼酸锂的有机溶剂进行进一步的萃取分离;(三)分别进行重结晶并真空干燥得到电池级的二氟草酸硼酸锂与四氟硼酸锂。本发明适合于工业化生产两种性能优良的、用于锂离子电池的锂盐。
本发明公开了一种锂离子电池正极材料磷酸锰锂的制备方法,它包括下述步骤:1)混合物的制备:称取定量的锂源化合物、锰源化合物、磷源化合物,按锂、锰、磷摩尔比为0.8~1.2∶0.8~1.2∶1的比例混合均匀;2)前驱体的制备:将上述制得的混合物在空气气氛中加热至250~350℃,并在250~350℃下持续煅烧2-5h,然后冷却至室温,得前驱体;3)合成磷酸锰锂:取出前驱体研碎、压片,而后继续在空气气氛中加热至500~900℃,并在500~900℃下持续煅烧15~25h,即得到目标产物磷酸锰锂。本方法能在空气气氛中合成出高纯度的磷酸锰锂,合成工艺简单,且大大降低了合成成本,利于实现磷酸锰锂的商业化生产。
一种锂电池盖板测试机的锂电池盖板气密检测装置,包括工作台、锂电池盖板送检输入机构、锂电池盖板移运机械手左右位移驱动机构、锂电池盖板移运机械手、抽真空机构、质谱仪和电气控制器,锂电池盖板送检输入机构设在工作台的右端朝向上的一侧,锂电池盖板移运机械手左右位移驱动机构与工作台固定,锂电池盖板移运机械手设在锂电池盖板移运机械手左右位移驱动机构上接,抽真空机构与质谱仪连接,质谱仪设在工作台的左端,电气控制器设在工作台的右端下方;锂电池盖板气密检测装置包括锂电池盖板气密性交替检测机构。提高检测效率,满足高效率的自动化生产要求;满足作为其它机构的锂电池盖板移运机械手与其配合而得以体现良好的系统性。
本发明提出了锂金属复合电极及其制备方法、锂离子电池。该锂金属复合电极包括:碳纸;亲锂层,覆盖碳纸的空隙的表面;金属锂,填充在碳纸的空隙内。本发明所提出的锂金属复合电极,其支撑结构选择多空隙的碳纸,碳纸的空隙表面包覆一层亲锂层可赋予支撑结构的表面亲锂性能,从而降低金属锂的成核过电势,在充放电过程中可有效地诱导金属锂在碳纸上均匀成核,进而减少了在充放电过程中锂枝晶的产生,并且,金属锂均匀地分布在碳纸的空隙中可显著地减轻其在充放电过程中的体积膨胀问题,同时,三维多空隙结构的碳纸具有较高的比表面积,增加锂金属的有效接触面积,进而提高锂金属复合电极的比容量。
本发明为一种提高镍锰酸锂电池容量的正极片,按质量百分比,其包含如下组分:0.1%?10%的化合物、1%~20%的导电剂、2%~10%的粘结剂、以及占据余下比重的且由镍锰酸锂构成的正极活性材料;所述化合物为钛酸锂、磷酸铁锂、钒酸锂或过氧化锂。本发明的一种提高镍锰酸锂电池容量的正极片及其应用的镍锰酸锂电池的有益效果在于:通过于正极片添加由钛酸锂、磷酸铁锂、钒酸锂或过氧化锂构成的化合物,钛酸锂、磷酸铁锂为、钒酸锂或过氧化锂可在较低电压下实现锂离子脱出的材料,因此其在高电压镍锰酸锂电池的充放电电压区间,在首次充电过程中贡献出活性锂离子,并在之后镍锰酸锂电池的放电过程中不再继续吸收锂离子,进而提高镍锰酸锂电池的电池容量。
本发明涉及一种利用能被锂抑制活性的酶比色法及酶联法技术的锂诊断/测定试剂盒,同时本发明还涉及测定锂浓度的方法原理、试剂的组成及成分,属于医学/工业/环境检验测定技术领域。本发明的试剂盒主要成分包括:缓冲液、还原型辅酶、氯化镁、肌醇-1-磷酸、腺苷二磷酸、草酰乙酸、肌醇-1-磷酸酶、丙酮酸羧化酶、甲酸脱氢酶及稳定剂;通过分别将对照及锂样品与试剂按一定的体积比混合,使之发生一系列的酶促反应,再将反应物置于紫外/可见光分析仪下,检测主波长340NM处吸光度下降的程度/速度,比较对照及锂样品吸光度下降的程度/速度的差别,从而测算出锂的浓度大小。
本发明公开了一种锂离子电池负极补锂复合膜及其制备方法和用途。本发明的锂离子电池负极补锂复合膜,按质量百分比计,由金属锂和有机粘结剂组成,所述有机粘结剂的质量分数为10~90%。本发明的锂离子电池负极补锂复合膜,可实现硅氧负极材料高效、安全的补锂,经补锂后的锂离子电池具有较高的首次充放电效率和放电容量,具有高的能量密度和良好的循环稳定性。本发明的锂离子电池负极补锂复合膜的制备方法,其补锂方法与现有锂离子电池制备工艺兼容性好、补锂均匀、效率高、无安全问题,适用于产业化大批量生产。
本发明公开了一种锂电池负极材料及其制备方法,属于新能源技术领域。本发明制备的锂电池负极材料是由液态锂合金和硅碳复合材料按质量比为1:3~1:20复配而成。利用液态锂合金在硅碳复合材料孔隙中分散填充,采用液态锂合金取代常规负极中嵌入的锂源,可有效避免电池在长期充放电循环过程中锂枝晶的形成,液态锂合金的存在,还可有效缓冲硅碳负极在充放电循环过程中的膨胀。通过控制锂合金中元素的种类,并控制硅碳复合材料的制备工艺,使液态锂合金可有效填充于硅碳复合材料中,形成类似凝胶的结构。
本发明提供一种包覆锂铝钛氧化物的钴酸锂正极材料的制备方法,包括以下步骤:1)将单宁酸加入缓冲溶液并超声溶解,之后将钴酸锂加入缓冲溶液中,超声分散,搅拌,离心,洗涤,洗至中性,烘干,得到单宁酸预处理的钴酸锂正极材料;2)将预处理的钴酸锂正极材料分散于无水异丙醇中,之后依次加入钛酸四丁酯乙醇溶液、Al(NO3)3乙醇溶液以及LiNO3乙醇溶液,室温搅拌后升温,并加热至乙醇完全挥发得到混合物,然后将收集的混合物在管式炉中进行烧结,即得到所述锂铝钛氧化物包覆改性钴酸锂正极材料。本发明钴酸锂正极材料基体表面均匀的锂铝钛氧化物包覆层能够阻止电极与电解液之间的反应,防止钴酸锂正极材料基体的容量衰减或循环性能恶化的现象。
本发明公开了一种改性预锂化硅氧材料及其制备方法、电极和锂离子电池,所述改性预锂化硅氧材料包括预锂化硅氧前驱体材料和缺陷修复材料,所述缺陷修复材料原位生长于预锂化硅氧前驱体材料的碳包覆缺陷处。本发明制得的改性预锂化硅氧材料,在保留了作为锂离子电池负极材料所具有的容量高、首次充放电效率高、循环性能好等优点的情况下,同时提高了对水的稳定性采用非整体包覆的原位反应修复手段,能够在不影响预锂化硅氧前驱体表面包覆碳层的导电性的情况下,最大程度保留材料整体的导电性,且其制备方法简单,成本低廉,适用于大批量生产,相应地,制得的改性预锂化硅氧材料能够用于制备电极材料和锂离子电池。
本发明涉及锂电池加工的技术领域,特别是涉及一种锂离子电池原材料六氟磷酸锂的制备方法,其提高六氟磷酸锂的析出效率,减少生产周期;包括如下步骤:第一步、对氟化氢进行精制,蒸出的氟化氢气体再经冷凝器冷凝为液体收集;第二步、五氟化磷制备,将精制氟化氢液体倒入反应釜与五氯化磷反应,使氟化氢相比五氯化磷过量,氟化氢与五氯化磷反应产生五氟化磷和氯化氢的混合气体;第三步、六氟磷酸锂制备,将五氟化磷和氯化氢的混合气体通入至反应釜内与氟化锂和氟化氢液体反应,反应得到六氟磷酸理溶液;第四步、分离结晶,将第三步所得六氟磷酸锂溶液除去不溶杂质,之后分隔为多份,然后进行加热析出,将析出结晶进行粉碎。
中冶有色为您提供最新的江苏苏州有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!