本发明公开了基于超声波频谱分析锂电池内部状态的方法及装置,一种方法以设定频率的超声信号穿透锂电池,利用超声信号的主瓣功率与荷电状态的线性关系,计算出锂电池的荷电状态;利用高次谐波与主瓣的功率比值判断锂电池的健康状态。另一种方法利用扫频信号驱动超声换能片产生不同频率的超声信号穿透锂电池,得到锂电池的频率响应函数,利用频率响应函数判断锂电池老化程度。并提供了基于超声波频谱分析锂离子电池内部状态的装置。本发明对超声信号的频谱进行深入分析,有效地解决锂电池的SOC和SOH估算不精准的问题,并能够集成在电池管理系统中实现电池内部状态的实时测量,对电池可能出现的故障作出及时预警。
本发明公开了一种硝酸锂热解的方法,包括以下步骤:1)将硝酸锂和还原剂混合配置成水溶液,然后在80~200℃条件下喷雾干燥得到含硝酸锂固体的气固混合物,其中硝酸锂与还原剂摩尔比为1:0.01~1.5,所述还原剂为CH3OH、CH2O、HCOOH、乙醇或乙醛中的至少一种;2)步骤1)所得气固混合物与辅气混合并通过辅气预热至200~800℃反应,反应完成后,冷却,进行气固分离,即完成硝酸锂热解。本发明硝酸锂热解温度低,热解所得产物为电池级碳酸锂或是可进一步制备得到电池级碳酸锂,反应过程中没有引入阴阳杂质离子,工艺简单,成本低,显著降低了电池级碳酸锂的制作成本,具有重要的环保意义和经济价值。
本发明公开一种大型锂电池内阻估算方法,所述方法包括电池初始电阻计算、阶段电阻计算以及电阻分析对比;本发明利用锂电池的初始电阻和阶段电阻的测量计算,分析对比每个时间阶段之后锂电池的电阻变化,经过A、B、C、D几个时间段工作之后的锂电池电阻计算,从而分析得出一定时间段工作之后的锂电池电阻变化规律,进而可以对锂电池内阻进行估算,进而计算分析出锂电池工作一定时间后的电阻变化规律,从电阻变化规律中估算出锂电池不同工作时间段的电阻,这样在锂电池在不同时间段工作的时候,都可以利用工作时间的长短,然后结合得出的电阻变化规律,进而估算出锂电池的电阻,为提高大型锂电池内阻准确率,达到SOC估算精度提升的目标。
本发明属于锂离子电池技术领域,公开了一种电化学过程制备预锂化剂的方法,该方法具体是选取活性材料,将该活性材料制备成电极作为工作电极,并以金属锂作为对电极,加入电解液组装成电池;接着,对电池进行放电处理,使工作电极锂化;最后,对电池进行拆解,分离并收集活性材料转变后所得的物质,然后经清洗及干燥即可得到预锂化剂材料。本发明通过对制备方法的整体流程工艺进行改进,基于电化学原理,利用特定化合物种类的活性材料,通过放电实现锂化得到预锂化剂材料,与现有技术相比能够有效解决预锂化剂制备工艺复杂、安全性差、制备环境条件苛刻和难以量产等问题。
本发明涉及一种石墨烯气凝胶负载介孔磷酸铁锂纳米片复合材料及其制备方法。其技术方案是:将浓度为1.5~5kg/m3的石墨烯氧化物溶液置于水热釜中,水热反应,冷却,干燥,制得石墨烯气凝胶。按磷酸根源∶铁源∶锂源的摩尔比为1∶1∶(1~1.05)和磷酸根源的浓度为0.1~2mol/L,将磷酸根源、铁源和锂源溶于去离子水中,搅拌,超声分散,得到溶胶Ⅰ。在石墨烯气凝胶表面滴加溶胶Ⅰ至吸附饱和,干燥,得到前驱体Ⅱ。将前驱体Ⅱ置于管式气氛炉中,在600~750℃条件下煅烧5~12h,冷却,得到石墨烯气凝胶负载介孔磷酸铁锂纳米片复合材料。本发明具有工艺过程简单、操作简便和能实现工业化生产的特点,所制制品的比容量、倍率和循环性能优异。
本发明提供了一种锂化硫电极及其制备方法与应用。本发明所提供的锂化硫电极的制备方法,其特征在于:将含硫电极材料与浓度为0.001~10mol/L的芳基锂化试剂的溶液进行反应,其中,芳基锂化试剂为多环共轭芳香基锂,溶剂为非质子性溶剂,含硫电极材料中的硫与芳基锂化试剂中的锂的摩尔比为1:0.01~1000。选用性质温和的多环共轭芳香基锂为锂化试剂,在相对安全的化学环境下将S锂化为Li2S,且该法为常温反应,反应时间短,工艺简单,锂化深度可控,安全性强,易于工业化。同时,以富锂硫电极为正极的电池体系可与众多贫锂态的负极相匹配,亦将为电池能量密度再攀高峰提供不二助力。
本发明涉及高电压钴酸锂正极材料:化学式为:Li1‑yNyCo1‑xMxO2;元素M取代钴酸锂的钴离子层中的一钴离子;元素N取代钴酸锂的锂离子层中的一锂离子;M和N均为金属元素,选取至少两种不同的M源对应的混合盐溶液,与钴盐溶液混合,加入碳酸盐溶液,进行共沉淀反应;沉淀分离,煅烧,得到多元素掺杂的四氧化三钴的前驱体;将前驱体与N源混合,球磨;将所得产物与锂源混合均匀,煅烧,得到高电压钴酸锂正极材料。抑制不可逆相变的产生,缓解钴酸锂在高脱锂态下晶体结构畸变导致的宏观微裂纹产生,抑制高压下晶格氧的释放,提高锂离子扩散速率,同时外表层可阻隔材料与电解液的界面副反应,在高电压条件下具有良好的循环稳定性。
一种失效锂离子电池正极材料预处理方法,包括以下的步骤:S1称取锂盐,加水配制浓度≥0.1mol/L的锂盐溶液;其中,所述的锂盐为无机锂盐;S2测试失效正极材料的缺锂比例x,将S1的锂盐溶液与失效正极材料混合,得到混合物;其中,锂盐溶液的锂与正极材料的摩尔比大于等于失效正极材料的缺锂比例x;S3将S2的混合物在高压水热釜中进行水热反应,监控釜内混合物的的Li+浓度,直至浓度不继续降低,反应完成;其中,水热反应温度≥100℃;S4降温,过滤除去溶剂,水洗除去残余锂盐,烘干得到补锂的正极材料。本发明的方法,能够提高回收材料的再生效率和性能指标,重复性好、资源利用率高,工序简单高效,具有非常高的社会经济价值。
本发明公开了一种基于自适应灾变遗传优化循环神经网络的锂离子电池荷电状态估计方法及系统,实现对复杂运行工况下动力电池荷电状态的精确估计。该方法利用锂离子电池充放电过程中产生的电压、电流实时参数训练得到循环神经网络模型,并基于验证组数据对训练好的锂离子电池荷电状态估计模型进行测试评估。该方法使用了自适应灾变遗传算法对神经网络的初始权值和阈值进行优化,有效提高了神经网络最优权值和阈值的全局搜索能力,最终提升锂离子电池荷电状态估计精度与鲁棒性。本发明提出的锂离子电池荷电状态估计方法作为数据驱动建模方法,无需辨识锂离子电池内部各电化学参数,具有更好的实用性,可应用于复杂工况下动力电池荷电状态的实时估计。
本发明涉及一种锂电池电解液注液方法,其使用了一种锂电池电解液注液设备,该设备包括输送机构、输送台、升降机构、注液机构和擦拭机构,该锂电池电解液注液设备,通过输送机构、输送台、升降机构、注液机构和擦拭机构之间的组合作用,能够批量注液且保持注液量的精确和稳定性,也能够解决电解液滴落至设备和锂电池外壳上的问题,有效的避免了电解液对设备和锂电池外壳的污染,同时也防止聚集的电解液被随机带到某个锂电池外壳内,进一步保证了注液精度。
本发明提供一种Li3VO4/LiVO2复合锂离子电池负极材料的制备方法,具体是将碳酸锂、五氧化二钒及六次甲基四胺混合溶解于装有35ml无水乙醇的烧杯中,并快速搅拌1h使各组分充分混合;将得到的混合溶液转移到水热釜内衬中,于100℃~180℃鼓风烘箱中反应10~30h,自然冷却至室温得到中间相产物,由上层液体与下层沉淀组成;分离出中间相产物中的上层清液,将此上层清液置于60~85℃烘箱中烘干,研磨至粉末呈淡黄色,于氮气或氩气保护气氛中450~650℃下煅烧5~10h得到复合材料。本发明将该材料应用于锂离子电池负极材料上,显示了较好的电化学性能。
本发明公开一种用于锂硫电池的中等盐浓度电解液,该电解液含有混合锂盐,第一、二醚类溶剂以及至少一种氟化醚类溶剂形成的双醚‑氟化醚三溶剂体系;所述混合锂盐含有能在锂金属负极形成钝化膜的锂盐;所述第一醚类溶剂的氧配位空间位阻较小(分子内碳原子数/氧原子数≤4),能够解离锂盐;所述第二醚类溶剂的氧配位空间位阻较大(分子内碳原子数/氧原子数≥5),能够降低盐浓度及降低电解液粘度;所述氟化醚类溶剂能够进一步降低锂盐浓度并提高电解液的混溶性,其氟化基团可促进形成稳固的锂金属负极钝化层,提高了负极金属的沉积剥离效率。本发明提供的电解液可用于组装锂电池,所组装的锂电池循环寿命长、自放电效应弱,电导率高,粘度低,浸润性好,具有较高的商业应用价值。
本发明涉及三维碳纳米管修饰尖晶石镍锰酸锂材料及其制备方法和应用,尖晶石镍锰酸锂颗粒表面被碳纳米管均匀包裹,颗粒尺寸大小为0.5μm-1.5μm,碳纳米管之间形成三维网状结构,其中,尖晶石镍锰酸锂颗粒尺寸为0.5μm-1.5μm,本发明锂离子扩散速率、电子传输速率得到了明显提高,材料的倍率性能也得到了大幅提升,三维结构降低了锂离子的扩散路径,提高了其扩散速率,促进了在高能量密度正极材料的应用。此外,碳纳米管的包覆有效抑制了金属离子的溶解,特别是锰离子的溶解,提高了材料结构的稳定性,同时也减少了电解液与正极材料的副反应,有效改善材料的容量衰减问题,促进材料在高循环寿命领域的进一步应用。
本发明公开了一种锰系层状富锂正极材料及制备方法,本发明锰系富锂层状正极材料的化学通式为xLi2MnO3·(1-x)LiMnO2,其中,0
一种高倍率性能锂硫电池的复合正极材料,由导电剂、电化学活性物质以及修饰剂组成,所述导电剂为介孔碳材料,电化学活性物质分散于介孔碳材料的孔洞中,修饰剂通过化学键合的方式引入以调节孔口的性质,使锂离子自由通过而抑制多硫离子的通过。该复合正极材料的离子选择性通过的特征,可以保证锂离子在正极材料中的高效迁入脱出,同时有效地抑制多硫化锂在充放电过程中的从介孔碳材料的孔洞处溢出,使其在电解液中的溶解被抑制。因此,该复合正极材料不仅可以实现优秀的高倍率性能,并且可以有效降低活性物质的损失以及由多硫化锂的溶解造成的“穿梭效应”所导致的锂负极腐蚀、容量衰减迅速等影响,显著提高锂硫电池的循环性能。
本发明提供了一种基于锂掺杂氧化铌的多功能存储器件及其制备方法,该多功能存储器件包括:底电极,转变层和顶电极;转变层的材料为锂掺杂氧化铌薄膜。本申请的多功能存储器件,转变层的材料为锂掺杂氧化铌薄膜。且氧化铌是一种良好的相变材料,制备工艺简单;该材料价格较低,成本可控;本申请采用锂掺杂氧化铌作为转变层,由于锂金属易氧化且与氧空位相互作用,锂和氧空位一起形成的导电细丝更加稳定,故而使得基于该器件阻变过程中的最低限流低至500μA时实现稳定的双极性转变性能。同时基于该材料所得的器件还具有良好的忆阻特性,并且可以用来模拟神经突触;本申请的基于锂掺杂氧化铌的多功能存储器件,也可实现选通性能。
本实用新型公开一种锂电池化成装置,涉及锂电池技术领域。该装置包括化成柜,化成柜的内部装配有隔板,多组隔板的内部放置有锂电池,化成柜的一侧固定安装有侧板,侧板的内部装配有连接壳,化成柜的内部开设有第一散热孔和第二散热孔。该锂电池化成装置在使用时,通过转动化成柜一侧的螺纹杆,带动第一锥齿轮和第二锥齿轮之间啮合,从而带动活动杆转动,以带动连接壳从U形壳中移出,移动至锂电池的一侧,在使用完成后,可将连接壳转动回原位,此时多组锂电池之间存在一定间隙,方便拿取锂电池,减少传统夹具位置固定造成的拿取不便问题。
本实用新型公开了一种多功能锂电池存放箱,包括箱体和铰接在箱体侧壁上的防护门,所述箱体的底部设置有通过缓震组件连接有多个锁止万向轮,所述箱体的内部设置有多个存放盒,所述存放盒的上侧壁通过铰链转动连接有盖板,且存放盒内设置有用于对锂电池进行自动夹紧的夹紧机构。该种多功能锂电池存放箱,具有良好的缓震效果,避免锂电池在移动过程中因震动而损坏,同时,在存放时,能够在其重力作用下实现自动夹紧限位,避免锂电池的晃动、更加稳定,避免对锂电池造成损坏,并且,能够适用不同规格尺寸的锂电池,实用性更强。
本发明涉及锂电池正极补锂添加剂技术领域,公开了一种碳包覆富锂氧化物复合材料及其制备方法。该方法包括以下步骤:(1)将铁源或钴源与锂源混合,烧结后得到富锂氧化物Li5FeO4或Li6CoO4,其中,所述锂源与所述铁源的摩尔比为5‑25:1,所述锂源与所述钴源的摩尔比为6‑30:1;(2)将步骤(1)中得到的富锂氧化物粉碎;(3)将步骤(2)中粉碎后的富锂氧化物与碳源混合,烧结后得到碳包覆富锂氧化物复合材料。本发明所述的方法制备的碳包覆富锂氧化物复合材料能够克服富锂材料导电性不足的缺陷,具有良好的电化学性能,可以有效的弥补锂电池首次充放电过程中损失的活性锂。
本发明公开了一种锂离子电芯扩散阻抗的定量测试方法,具体包括以下步骤:S1、计算总阻抗,S2、第一次设置锂离子电芯的指定荷电状态,测试电芯的电化学阻抗谱,S3、第一次每个频率点扩散阻抗数值,S4、第二次设置锂离子电芯的指定荷电状态,测试电芯的电化学阻抗谱,再执行步骤S3相同操作对每个频率点扩散阻抗数值进行解析计算,S5、求均,本发明涉及锂电池测试技术领域。该锂离子电芯扩散阻抗的定量测试方法,可实现通过对扩散阻抗计算相关的测试量进行多次不同变量的测试,来降低计算误差,避免测试结果的偶然性,能够真实的反应电芯扩散阻抗的真实数值,从而对锂电池电芯扩散阻抗的定量测试工作十分有益。
本发明公开了一种高氯酸锂纯度的检测方法,属于化学分析技术领域。所述高氯酸锂纯度的检测方法包括以下步骤:在高氯酸锂溶液内注入强酸性离子交换柱,获取第一交换液;用水洗涤强酸性离子交换柱,洗至滴下溶液呈中性后,收集第二交换液及洗涤液;将第二交换液及洗涤液加入第一交换液内,获得混合液;在混合液内加入甲基红指示液,使混合液成红色;在原子吸收光谱仪上测定混合液的含锂量后,根据氢氧化钠标准溶液消耗量及氢氧化钠标准溶液的摩尔浓度,得到高氯酸锂含量。本发明高氯酸锂纯度的检测方法所用试剂少,节约成本,检测过程简便,检验数据稳定性高。
本发明涉及一种三草酸磷酸锂的制备方法,其包括如下步骤:1)将草酸和六甲基二硅氧烷溶在第一非水极性溶剂中,搅拌均匀后,配成底液待用;2)将六氟磷酸锂溶在第二非极性溶剂得滴定液,将滴定液向上述底液中滴加,滴加完成后,继续反应至结束,将得到的反应液分离纯化,即得。与现有技术相比,本发明的有益效果是:采用了价格便宜的市售原料和不复杂的工艺制备三草酸磷酸锂,该方法操作简单方便,选定的反应条件温和,避免了其他方法反应步骤多、操作复杂、且最终产品杂质过多的缺陷,保证产品的纯度和品质,从而得到的高品质高纯度产品的制备方法,适合工业化生产。
本发明提供的一种用于降低锂电原材料中TOC含量的系统,包括:结合微晶与活性炭过滤、用于滤除料浆中有机物和固体悬浮物的联合过滤系统;与所述联合过滤系统的输出端相连、用于滤除料浆中固体悬浮物的超滤子系统。相比于现有技术中由湿法冶金制备的锂电原材料直接应用于制备锂电池,本发明的一种用于降低锂电原材料中TOC含量的系统,能够有效降低锂电原材料中的TOC含量,以提高锂电池的性能。
本发明属于锂电池技术领域,具体为一种用于锂电池的自动卸料传输装置,包括底座,所述底座的上方设有工作台,所述工作条与底座之间固定有支撑柱,其中一个所述支撑柱的外侧壁上固定有液压油缸,所述液压油缸的伸缩端固定有卸料斗,所述卸料斗的下端固定有固定轴,所述固定轴上转动连接有支撑杆,所述支撑杆的下端与底座的上端侧壁固定连接,所述底座的上方设有两个转轴,所述转轴上固定套设有传输辊,两个所述传输辊之间套设有传输带,且传输带位于卸料斗的正下方,该用于锂电池的自动卸料传输装置节约了人力,提高了锂电池卸料效率,且锂电池生产过程中的灰尘可以及时处理,提高锂电池生产质量。
本发明公开了一种磺化聚醚醚酮锂聚合物电解质隔膜的制备方法及应用,首先将聚醚醚酮(PEEK)采用浓硫酸进行磺化处理得到磺化聚醚醚酮(SPEEK),并通过控制磺化温度和时间制备不同磺化度的磺化聚醚醚酮;与等摩尔量的锂化物在水中进行锂化、过滤、洗涤,干燥得到Li‑SPEEK;将Li‑SPEEK制备成多孔膜应用于锂离子电池中;本发明原料成本低,易得,制备方法简单,产率高,可行性高,可大规模生产,产品电化学窗口宽,热收缩稳定性高;可应用于电池隔膜、锂离子电池、锂硫电池或液流电池的电池器件中。
本发明公开了一种基于机械化学法的废旧锂离子电池正极材料的回收方法,属于废旧锂离子电池回收利用领域。将废旧锂离子电池正极材料研磨成粉末,并与活化剂和有机还原剂充分混匀,所述活化剂能产生活性自由基,得到混合物,将该混合物进行球磨,使所述废旧锂离子电池正极材料产生塑性形变,且晶体颗粒内产生晶格缺陷,使晶体颗粒发生晶型转变或无晶化;将球磨后的产物加入到去离子水中,使有价金属离子浸出。本发明中的方法不依赖于高浓度的强酸、强碱、强氧化还原试剂或价格昂贵的有机酸等,以固相中的机械化学反应为反应主体,在温和的浸出环境下实现废旧锂离子电池正极材料中有价金属锂、钴、镍、锰等有价金属的高效浸出。
本发明提供一种碳包覆?Li3VO4锂离子电池负极材料,该负极材料是以五氧化二钒、碳酸锂和六次甲基四胺为原料,通过水热反应得到中间相溶液,然后将柠檬酸加入到中间相溶液中混合均匀,烘干得到固体产物,将该固体产物经高温气氛烧结后制得无定形碳包覆在Li3VO4表面的锂离子电池负极材料,该负极材料为颗粒状,粒径为90~120nm。本发明利用了柠檬酸的碳化作用细化Li3VO4颗粒并在颗粒表面均匀包覆碳层。合成工艺简单,易于操作,材料制备成本低。所制备样品中Li3VO4为均匀的纳米颗粒,尺寸为90~120nm。所得样品中无定形碳均匀包覆在Li3VO4颗粒表面。所制备材料充放电容量高,循环性能优异。
本发明属于无机化合物醋酸锂的制备技术领域,具体公开了一种电池级无水醋酸锂的制备方法。本发明方法以工业级单水氢氧化锂和冰醋酸为原料,经中和反应制得醋酸锂净液,然后将净液浓缩、两次烘干后得到高品质的电池级无水醋酸锂。本发明方法原料廉价易得、流程简单,可操作性强,整个过程中元素利用率高,产品收率均在95%以上,没有对环境有害的气体及废渣产生,同时所得无水醋酸锂水分含量小于500ppm,杂质含量较低。
本申请公开了锂电池的自动回收装置。包括锂电池一级进料模块、锂电池二级进料模块、锂电池长度及电压检测模块、锂电池直径及外观检测模块和锂电池储存及性能检测模块;一级进料模块驱动云台电机固定安装在二级料仓外壳上,二级进料模块驱动云台电机固定安装在一级检测支撑台上,一级检测支撑台电机支架固定安装在二级检测支撑台上,二级检测支撑台固定安装在三级检测支撑台驱动云台电机上。该自动回收装置包括锂电池一级进料模块、锂电池二级进料模块、锂电池长度及电压检测模块、锂电池直径及外观检测模块和锂电池储存及性能检测模块,用户将废旧锂电池一次性投入到回收口,能实现锂电池的回收、长度检测、直径检测、电压检测、外观检测以及电池的性能检测。
本实用新型公开了一种便捷补充电解液的锂电池,其特征在于:包括金属外壳、内置于金属外壳内的锂电芯以及设置在金属外壳一端的金属帽;所述金属外壳还内置有容置箱,所述金属外壳上贯通有连通于容置箱内的插孔,所述容置箱与锂电芯之间设置连通有流孔,该流孔以将容置箱与锂电芯相互连通。凭借一个带有针管的注射器,即可对锂电池内注入适量的电解液,与现有的锂电池对比,无需运用到专业的工具以及较多而且还很麻烦的工序过程,便捷快速给锂电池注入电解液。
中冶有色为您提供最新的湖北有色金属加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!